|
1.Ilfeld, B.M., T.E. Morey, and F.K. Enneking, Continuous Infraclavicular Brachial Plexus Block for Postoperative Pain Control at HomeA Randomized, Double-blinded, Placebo-controlled Study. Anesthesiology: The Journal of the American Society of Anesthesiologists, 2002. 96(6): p. 1297-1304. 2.Long, J., E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. in Proceedings of the IEEE conference on computer vision and pattern recognition. 2015. 3.Marhofer, P. and V.W. Chan, Ultrasound-guided regional anesthesia: current concepts and future trends. Anesth Analg, 2007. 104(5): p. 1265-9, tables of contents. 4.Walker, F.O., et al., Ultrasound of nerve and muscle. Clin Neurophysiol, 2004. 115(3): p. 495-507. 5.Gai, S., et al., Speckle noise reduction in medical ultrasound image using monogenic wavelet and Laplace mixture distribution. Digital Signal Processing, 2018. 72: p. 192-207. 6.Smistad, E. and F. Lindseth, Real-Time Automatic Artery Segmentation, Reconstruction and Registration for Ultrasound-Guided Regional Anaesthesia of the Femoral Nerve. IEEE Trans Med Imaging, 2016. 35(3): p. 752-61. 7.Sarle, W.S., Neural networks and statistical models. 1994. 8.LeCun, Y., Y. Bengio, and G. Hinton, Deep learning. nature, 2015. 521(7553): p. 436-444. 9.Krizhevsky, A., I. Sutskever, and G.E. Hinton. Imagenet classification with deep convolutional neural networks. in Advances in neural information processing systems. 2012. 10.Niu, X.-X. and C.Y. Suen, A novel hybrid CNN–SVM classifier for recognizing handwritten digits. Pattern Recognition, 2012. 45(4): p. 1318-1325. 11.Noble, A. and D. Boukerroui, Ultrasound image segmentation: a survey. IEEE Transactions on medical imaging, 2006. 25(8): p. 987-1010. 12.Ronneberger, O., P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image segmentation. in International Conference on Medical image computing and computer-assisted intervention. 2015. Springer. 13.Zhao, H. and N. Sun, Improved U-Net Model for Nerve Segmentation, in Image and Graphics. 2017. p. 496-504. 14.Ultrasound Nerve Segmentation. 2016; Available from: https://www.kaggle.com/c/ultrasound-nerve-segmentation/data. 15.Cahall, D.E., et al., Inception modules enhance brain tumor segmentation. Frontiers in computational neuroscience, 2019. 13: p. 44. 16.Ioffe, S. and C. Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015. 17.Baby, M. and A. Jereesh. Automatic nerve segmentation of ultrasound images. in 2017 International conference of Electronics, Communication and Aerospace Technology (ICECA). 2017. IEEE. 18.Lawrence, S., et al., Face recognition: A convolutional neural-network approach. IEEE transactions on neural networks, 1997. 8(1): p. 98-113. 19.Zhang, Q., et al. Image segmentation with pyramid dilated convolution based on ResNet and U-Net. in International Conference on Neural Information Processing. 2017. Springer. 20.Szegedy, C., et al. Inception-v4, inception-resnet and the impact of residual connections on learning. in Thirty-first AAAI conference on artificial intelligence. 2017. 21.Srivastava, N., et al., Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research, 2014. 15(1): p. 1929-1958. 22.Aghasi, A., et al. Net-trim: Convex pruning of deep neural networks with performance guarantee. in Advances in Neural Information Processing Systems. 2017. 23.Wold, S., K. Esbensen, and P. Geladi, Principal component analysis. Chemometrics and intelligent laboratory systems, 1987. 2(1-3): p. 37-52. 24.Abdi, H. and L.J. Williams, Principal component analysis. Wiley Interdisciplinary Reviews: Computational Statistics, 2010. 2(4): p. 433-459. 25.Manikanta Reddy, D. and H.C. Karnick, On segmentation of Nerve Structures in Ultrasound Images. 2016. 26.Juang, P.-A. and M.-N. Wu. Ultrasound speckle image process using wiener pseudo-inverse filtering. in IECON 2007-33rd Annual Conference of the IEEE Industrial Electronics Society. 2007. IEEE. 27.Hiremath, P., P.T. Akkasaligar, and S. Badiger, Speckle noise reduction in medical ultrasound images, in Advancements and breakthroughs in ultrasound imaging. 2013, Intechopen. 28.Perez, L. and J. Wang, The effectiveness of data augmentation in image classification using deep learning. arXiv preprint arXiv:1712.04621, 2017. 29.Agarap, A.F., Deep learning using rectified linear units (relu). arXiv preprint arXiv:1803.08375, 2018. 30.Aghasi, A., A. Abdi, and J. Romberg, Fast convex pruning of deep neural networks. arXiv preprint arXiv:1806.06457, 2018. 31.Li, Y., et al., U-net Ensemble Model for Segmentation inHistopathology Images. 2019. 32.Milletari, F., N. Navab, and S.-A. Ahmadi, V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation, in 2016 Fourth International Conference on 3D Vision (3DV). 2016. p. 565-571.
|