(3.236.122.9) 您好!臺灣時間:2021/05/14 06:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:詹雅惠
研究生(外文):Ya-HuiJhang
論文名稱:可見光通訊網路中基於注水原理之二階段功率配置
論文名稱(外文):Two-stage Power Allocation Based on Water-Filling Principle in Visible Light Communication Networks
指導教授:許靜芳許靜芳引用關係
指導教授(外文):Ching-Fang Hsu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:資訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:39
中文關鍵詞:可見光通訊功率配置存取點連結用戶移動性注水原理
外文關鍵詞:Visible light communication (VLC)Power allocationAP associationUser mobilityWater-filling
相關次數:
  • 被引用被引用:0
  • 點閱點閱:35
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在全球無線網路通訊的蓬勃發展,對於無線的流量需求科技的進步而持續大幅增長,而目前用來傳輸流量的無線電頻率波段,在未來面對龐大的無線需求時,因為頻譜資源有限,而可能無法提供完整服務,造成頻譜緊縮的問題。而為了解決這項議題,可見光通訊便被提出做為舒緩此問題的方案。
在室內環境中常以LED燈做為無線網路的通訊媒介並以光進行傳輸,但因光照的範圍有限,室內常會有數個無線存取點以保證訊號的強度,而當使用者移動時,可能因訊號的變動而造成傳輸品質提高或是降低,而如何有效改善服務品質以及資源分配的方法常是一個重要的議題。在先前的研究中,對於功率配置常以數學求極值計算方式求取最佳分配功率,但常需耗費大量計算時間,但在使用者具移動性的環境中對於無線資源的分配就必須更加的快速,因此本論文提出一個結合可見光中無線存取點連結服務改善與基於注水原理的二階段功率配置,除了優化傳輸的服務品質外,也針對目前遠離無線存取點的使用者們,採取具收回機制的管控與檢查,針對不同的情況去反覆調整環境裡的傳輸情形,以達到傳輸率最高的目的。
The global mobile data traffic continues to grow, this trend will lead radio frequency (RF) communications to spectrum crunch because of limited bandwidth. While visible light communication (VLC) has become an emerging solution for the limitation.
VLC networks use light emitting diodes (LED) to be access points(AP), there also several APs in the indoor environment to guarantee the signal strength. But the throughput of the user equipment (UE) would change rapidly when they move, so the management of radio resources and solution of improving throughput are important issues in VLC networks. In the previous literature, methods of power allocation usually find optimal value of the problem using mathematical optimization. However, these methods also have high complexity in computation, which may not be the most suitable for mobility-aware environment. Therefore, we proposed a method which joint AP association and low complexity two-stage power allocation based on water-filling principle to improve the quality of service (QoS) of UE. we also apply the mechanism of checking list to check UEs dynamically, they would be withdrawn or reallocate power in the process to optimize the total throughput.
摘要 III
Abstract IV
致謝 VI
Content VII
List of Figures X
List of Tables XI
Chapter 1 Introduction 1
Chapter 2 Background 3
2.1 Visible Light Communication 3
2.2 Resource management 3
Chapter 3 Related Work 5
3.1 AP Association 5
3.1.1 Distance and Signal strength Strategy (SSS) 5
3.1.2 Lagrange Multipliers 6
3.1.3 User Clustering 7
3.2 Power Allocation 9
3.2.1 Dinkelbach Method 9
3.2.2 Subgradient Method and Lagrange Multipliers 9
3.3 Water-filling Principle 10
Chapter 4 System Model and Problem Formulation 12
4.1 VLC Channel Model 12
4.2 Channel-to-Noise Ratio 12
4.3 Signal-to-Interference-plus-Noise Ratio 13
4.4 Notation 13
4.5 Problem Formulation 14
Chapter 5 Proposed Scheme 16
5.1 Motivation 16
5.2 Checking List Mechanism 17
5.2.1 Alerting Area 17
5.2.2 Blocked Area 18
5.3 AP Association 18
5.3.1 AP Association with UEs in Connection 18
5.3.2 AP Association with UEs in Blocked Area 20
5.4 Power Allocation 21
5.4.1 First-round Water-filling Power Allocation (FWPA) 21
5.4.2 Second-round Power Allocation (SPA) 23
5.5 Algorithms and Flow Chart 23
5.5.1 Algorithm 23
5.5.2 Flow Chart 27
5.6 Time complexity 28
Chapter 6 Performance Evaluation 30
6.1 Parameter Settings 30
6.2 Simulation results 31
Chapter 7 Conclusion 35
References 36
[1]M. Leba, S. Riurean and A. Lonica, LiFi — The path to a new way of communication, 2017 12th Iberian Conference on Information Systems and Technologies (CISTI), Lisbon, 2017, pp. 1-6, doi: 10.23919/CISTI.2017.7975997.
[2]L. U. Khan, ‘‘Visible light communication: Applications, architecture, standardization and research challenges,’’ Digit. Commun. Netw., vol. 3, no. 2, pp. 78–88, May 2017.
[3]M. Uysal and H. Nouri, Optical wireless communications — An emerging technology, 2014 16th International Conference on Transparent Optical Networks (ICTON), Graz, 2014, pp. 1-7, doi: 10.1109/ICTON.2014.6876267.
[4]L. I. Albraheem, L. H. Alhudaithy, A. A. Aljaser, M. R. Aldhafian and G. M. Bahliwah, Toward Designing a Li-Fi-Based Hierarchical IoT Architecture, in IEEE Access, vol. 6, pp. 40811-40825, 2018, doi: 10.1109/ACCESS.2018.2857627.
[5]X. Wu, M. Safari and H. Haas, Joint Optimisation of Load Balancing and Handover for Hybrid LiFi and WiFi Networks, 2017 IEEE Wireless Communications and Networking Conference (WCNC), San Francisco, CA, 2017, pp. 1-5, doi: 10.1109/WCNC.2017.7925839.
[6]M. Dehghani Soltani, X. Wu, M. Safari and H. Haas, Access point selection in Li-Fi cellular networks with arbitrary receiver orientation, 2016 IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Valencia, 2016, pp. 1-6, doi: 10.1109/PIMRC.2016.7794890.
[7]X. Wu, C. Chen and H. Haas, Mobility Management for Hybrid LiFi and WiFi Networks in the Presence of Light-Path Blockage, 2018 IEEE 88th Vehicular Technology Conference (VTC-Fall), Chicago, IL, USA, 2018, pp. 1-5, doi: 10.1109/VTCFall.2018.8690694.
[8]P. H. Pathak, X. Feng, P. Hu and P. Mohapatra, Visible Light Communication, Networking, and Sensing: A Survey, Potential and Challenges, in IEEE Communications Surveys & Tutorials, vol. 17, no. 4, pp. 2047-2077, Fourthquarter 2015, doi: 10.1109/COMST.2015.2476474.
[9]Q. Gao, S. Ekin, K. Qaraqe and E. Serpedin, Capacity Maximizing Power Allocation for Multi-Channel Visible Light Communications, 2019 IEEE International Smart Cities Conference (ISC2), Casablanca, Morocco, 2019, pp. 79-82, doi: 10.1109/ISC246665.2019.9071704.
[10]Li, Xuan, Zhang, Rong, Wang, Jiaheng and Hanzo, Lajos (2015) Cell-centric and user-centric multi-user scheduling in visible light communication aided networks. IEEE International Conference on Communications, United Kingdom. 08 - 12 Jun 2015.
[11]M. Obeed, A. M. Salhab, M. Alouini and S. A. Zummo, On Optimizing VLC Networks for Downlink Multi-User Transmission: A Survey, in IEEE Communications Surveys & Tutorials, vol. 21, no. 3, pp. 2947-2976, thirdquarter 2019, doi: 10.1109/COMST.2019.2906225.
[12]A. Gupta, A. Banerjee, K. Pathak and S. Srivastava, On Association and Bandwidth Allocation for Hybrid RF/VLC Systems, 2018 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS), Indore, India, 2018, pp. 1-6, doi: 10.1109/ANTS.2018.8710146.
[13]X. Wu and H. Haas, Mobility-aware load balancing for hybrid LiFi and WiFi networks, in IEEE/OSA Journal of Optical Communications and Networking, vol. 11, no. 12, pp. 588-597, December 2019, doi: 10.1364/JOCN.11.000588.
[14]M. Obeed, A. M. Salhab, S. A. Zummo and M. Alouini, Joint Power Allocation and Cell Formation for Energy-Efficient VLC Networks, 2018 IEEE International Conference on Communications (ICC), Kansas City, MO, 2018, pp. 1-6, doi: 10.1109/ICC.2018.8422556.
[15]X. Wu and H. Haas, Load Balancing for Hybrid LiFi and WiFi Networks: To Tackle User Mobility and Light-Path Blockage, in IEEE Transactions on Communications, vol. 68, no. 3, pp. 1675-1683, March 2020, doi: 10.1109/TCOMM.2019.2962434.
[16]R. Jiang, Q. Wang, H. Haas and Z. Wang, Joint User Association and Power Allocation for Cell-Free Visible Light Communication Networks, in IEEE Journal on Selected Areas in Communications, vol. 36, no. 1, pp. 136-148, Jan. 2018.
[17]M. Obeed, A. M. Salhab, S. A. Zummo and M. Alouini, New Algorithms for Energy-Efficient VLC Networks With User-Centric Cell Formation, in IEEE Transactions on Green Communications and Networking, vol. 3, no. 1, pp. 108-121, March 2019.
[18]R. Zhang, J. Wang, Z. Wang, Z. Xu, C. Zhao and L. Hanzo, Visible light communications in heterogeneous networks: Paving the way for user-centric design, in IEEE Wireless Communications, vol. 22, no. 2, pp. 8-16, April 2015, doi: 10.1109/MWC.2015.7096279.
[19]M. Obeed, A. M. Salhab, S. A. Zummo and M. Alouini, New Algorithms for Energy-Efficient VLC Networks With User-Centric Cell Formation, in IEEE Transactions on Green Communications and Networking, vol. 3, no. 1, pp. 108-121, March 2019.
[20]Q. Wu, M. Tao and W. Chen, Joint Tx/Rx Energy-Efficient Scheduling in Multi-Radio Wireless Networks: A Divide-and-Conquer Approach, in IEEE Transactions on Wireless Communications, vol. 15, no. 4, pp. 2727-2740, April 2016, doi: 10.1109/TWC.2015.2509067.
[21]M. Kashef, M. Ismail, M. Abdallah, K. A. Qaraqe and E. Serpedin, Energy Efficient Resource Allocation for Mixed RF/VLC Heterogeneous Wireless Networks, in IEEE Journal on Selected Areas in Communications, vol. 34, no. 4, pp. 883-893, April 2016, doi: 10.1109/JSAC.2016.2544618.
[22]M. Obeed, A. M. Salhab, S. A. Zummo and M. Alouini, Joint optimization of power allocation and load balancing for hybrid VLC/RF networks, in IEEE/OSA Journal of Optical Communications and Networking, vol. 10, no. 5, pp. 553-562, May 2018, doi: 10.1364/JOCN.10.000553.
[23]P. He, L. Zhao, S. Zhou and Z. Niu, Water-Filling: A Geometric Approach and its Application to Solve Generalized Radio Resource Allocation Problems, in IEEE Transactions on Wireless Communications, vol. 12, no. 7, pp. 3637-3647, July 2013, doi: 10.1109/TWC.2013.061713.130278.
[24]C. Xing, Y. Jing, S. Wang, S. Ma and H. V. Poor, New Viewpoint and Algorithms for Water-Filling Solutions in Wireless Communications, in IEEE Transactions on Signal Processing, vol. 68, pp. 1618-1634, 2020, doi: 10.1109/TSP.2020.2973488.
[25]Q. Qi, A. Minturn and Y. Yang, An efficient water-filling algorithm for power allocation in OFDM-based cognitive radio systems, 2012 International Conference on Systems and Informatics (ICSAI2012), Yantai, 2012, pp. 2069-2073, doi: 10.1109/ICSAI.2012.6223460.
[26]A. Aldalbahi et al., Extending ns3 to simulate visible light communication at network-level, 2016 23rd International Conference on Telecommunications (ICT), Thessaloniki, 2016, pp. 1-6, doi: 10.1109/ICT.2016.7500485.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔