(3.235.245.219) 您好!臺灣時間:2021/05/07 22:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:周松彥
研究生(外文):Song-YanZhou
論文名稱:都市垃圾焚化飛灰資源化之初探
論文名稱(外文):A Preliminary Study on Recycling Fly Ash from Municipal Waste Incineration
指導教授:申永輝申永輝引用關係
指導教授(外文):Yun-Hwei Shen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:資源工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:81
中文關鍵詞:飛灰反應灰穩定灰水洗IRC-748鹽酸浸漬資源化
外文關鍵詞:fly ashreaction ashstable ashwater washingIRC-748
相關次數:
  • 被引用被引用:0
  • 點閱點閱:48
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著台灣經濟蓬勃發展,人民生活水準日益提升,廢棄物的數量及種類也逐年提高,早期台灣垃圾處理方式為衛生掩埋,但因台灣屬於地狹人稠,土地取得越來越不易,加上近年來環保意識的興起,所以常無適當之場址作為衛生掩埋場之用途,因此環保署在民國80年垃圾處理方法中宣示,未來垃圾將以焚化處理為主,並加速興建大型焚化廠,以達到垃圾減量掩埋或回收目的。而垃圾焚化後所產生的飛灰因含有重金屬,且日積月累下飛灰的量也相當的可觀,因此如何再將飛灰減量及回收重金屬是本篇的主要探討重點。
本研究飛灰取自於台南市城西焚化廠,材料分別為飛灰、反應灰及穩定灰,首先將三種材料分別破碎研磨過篩,再將其進行全消化全元素分析、XRD礦物結構分析和SEM拍攝後,就開始水洗實驗。而飛灰在液固比為30和時間1小時水洗的情況下,溶解率約為27%。反應灰在液固比為20和時間1小時水洗的情況下,溶解率約為25%。穩定灰在液固比為20和時間1小時水洗的情況下,溶解率大約為32%。
將水洗飛灰後的水洗液用IRC-748樹脂做離子交換回收鈣元素,可以得知三種灰的水洗液pH值越高,IRC-748可吸附的鈣越多。再將已經吸附飽和鈣的IRC-748用去離子水及鹽酸做脫附實驗,可以發現水可以脫附鈣,但脫附量較鹽酸少。而鹽酸的脫附量會隨著濃度越高,當達第3管時1N HCl鈣濃度為18213ppm,3N HCl第3管鈣濃度可達到20673ppm。
最後,將水洗實驗後的濾餅用鹽酸做浸漬實驗,目的要浸漬出重金屬Pb、Zn和Cu,可以發現飛灰最佳參數為液固比為15、濃度為1N、溫度為40°C及時間為1小時,Pb的溶解率為42%、Zn的溶解率為65%、Cu的溶解率為74%。反應灰最佳參數為液固比為15、濃度為2N、溫度為60°C及時間為2小時,Pb的溶解率為44%、Zn的溶解率為72%、Cu的溶解率為49%。穩定灰最佳參數為液固比為20、濃度為2N、溫度為40°C及時間為1小時,Pb的溶解率為49%、Zn的溶解率為66%、Cu的溶解率為41%。
In this study, fly ash was taken from Chengxi Municipal Solid Waste Incineration Plant of Tainan City. The materials were fly ash, reaction ash and stable ash. First, the three materials were crushed and sieved, and then they were subjected to full digestion and element analysis, XRD mineral structure analysis and SEM shooting. After that, the water washing experiment was started. The fly ash has a dissolution rate of about 27% when the liquid-solid ratio is 30 and the water is washed for 1 hour. The reaction ash has a dissolution rate of about 25% when the liquid-solid ratio is 20 and the water is washed for 1 hour. The stable ash has a dissolution rate of about 32% when the liquid-solid ratio is 20 and the time is 1 hour.
After washing the fly ash with IRC-748 resin for ion exchange to recover calcium element, it can be known that the higher the pH value of the three ash water washes, the more calcium IRC-748 can absorb. Then IRC-748 that has adsorbed saturated calcium is used for desorption experiments with deionized water and hydrochloric acid. It can be found that water can desorb calcium, but the amount of desorption is less than that of hydrochloric acid. The desorption amount of hydrochloric acid will increase with the concentration. When it reaches the third tube, the calcium concentration of 1N HCl is 18213ppm, and the calcium concentration of the third tube of 3N HCl can reach 20673ppm.
Finally, the filter cake after the water washing experiment was impregnated with hydrochloric acid for the purpose of impregnating heavy metals Pb, Zn and Cu. It can be found that the best parameters of fly ash are liquid-solid ratio of 15, concentration of 1N, temperature of 40°C and The time was 1 hour, the dissolution rate of Pb was 42%, the dissolution rate of Zn was 65%, and the dissolution rate of Cu was 74%. The best parameters of reaction ash are liquid-solid ratio of 15, concentration of 2N, temperature of 60°C and time of 2 hours, the solubility rate of Pb is 44%, the solubility rate of Zn is 72%, the solubility rate of Cu is 49% . The best parameters of stable ash are liquid-solid ratio of 20, concentration of 2N, temperature of 40°C and time of 1 hour. The solubility rate of Pb is 49%, the solubility rate of Zn is 66%, and the solubility rate of Cu is 41% .
摘要 I
SUMMARY II
致謝 VIII
圖目錄 XII
表目錄 XIV
第一章 前言 1
1-1 研究緣起 1
1-2 研究目的 2
第二章 文獻回顧 3
2-1 飛灰簡介 3
2-1-1 廢棄物分類 3
2-1-2 飛灰的產生 4
2-1-3 飛灰的產生量及掩埋場的現況 5
2-1-4 飛灰的組成 9
2-1-5 重金屬汙染與相關法規 10
2-2 浸漬 14
2-3 離子交換法 15
2-3-1 離子交換法簡介 15
2-3-2 離子交換樹脂的組成及其功能 15
2-3-3 離子交換樹脂種類及結構 16
2-3-4 離子交換反應 20
2-3-5 離子交換管柱操作方法 24
2-4 前人研究 26
第三章 研究方法與步驟 28
3-1 實驗器材及實驗藥品 28
3-1-1 實驗器材 28
3-1-2 實驗藥品 29
3-2 研究方法和步驟 31
3-2-1 實驗流程 31
3-2-2 水洗 32
3-2-3 離子交換 32
3-2-4 鹽酸浸漬 32
3-2-5 氯離子檢測(硝酸銀滴定法) 32
3-2-6 全消化測定 33
第四章 結果與討論 34
4-1 SEM、XRD及全消化分析 34
4-1-1 SEM分析 34
4-1-2 XRD分析 40
4-1-3 全消化分析 43
4-2 水洗實驗 44
4-2-1 飛灰水洗 44
4-2-2 反應灰水洗 46
4-2-3 穩定灰水洗 48
4-2-4 水洗金屬溶出分析 50
4-2-5 水洗液氯離子濃度 57
4-3 離子交換 59
4-3-1 飛灰吸附 59
4-3-2反應灰吸附 60
4-3-3 穩定灰吸附 61
4-3-4 脫附 62
4-4 鹽酸浸漬 63
4-4-1 飛灰浸漬 63
4-4-2 反應灰浸漬 67
4-4-3 穩定灰浸漬 71
第五章 結論 75
5-1 結論 75
5-2建議 76
參考文獻 77
[1]行政院環境保護署. 一般廢棄物產生量. https://stat.epa.gov.tw/ (accessed.
[2]E. Kalogirou, N. Themelis, P. Samaras, A. Karagiannidis, and S. Kontogianni, Fly ash characteristics from waste-to-energy facilities and processes for ash stabilization, in ISWA World Congress, 2010.
[3]放流水標準, 行政院環境保護署, 2019.
[4]W.-T. Kuo, C.-C. Liu, and D.-S. Su, Use of washed municipal solid waste incinerator bottom ash in pervious concrete, Cement and Concrete Composites, vol. 37, pp. 328-335, 2013.
[5]S. Sushil and V. S. Batra, Analysis of fly ash heavy metal content and disposal in three thermal power plants in India, Fuel, vol. 85, no. 17-18, pp. 2676-2679, 2006.
[6]A. G. Kim and P. Hesbach, Comparison of fly ash leaching methods, Fuel, vol. 88, no. 5, pp. 926-937, 2009.
[7]I. Tsuboi, E. Kunugita, and I. Komasawa, Recovery and purification of boron from coal fly ash, Journal of chemical engineering of Japan, vol. 23, no. 4, pp. 480-485, 1990.
[8]K. K. Fedje, C. Ekberg, G. Skarnemark, and B.-M. Steenari, Removal of hazardous metals from MSW fly ash—an evaluation of ash leaching methods, Journal of Hazardous Materials, vol. 173, no. 1-3, pp. 310-317, 2010.
[9]Z. Fang and H. Gesser, Recovery of gallium from coal fly ash, Hydrometallurgy, vol. 41, no. 2-3, pp. 187-200, 1996.
[10]M. Seggiani, S. Vitolo, and S. D'Antone, Recovery of nickel from Orimulsion fly ash by iminodiacetic acid chelating resin, Hydrometallurgy, vol. 81, no. 1, pp. 9-14, 2006.
[11]P. P. Bosshard, R. Bachofen, and H. Brandl, Metal leaching of fly ash from municipal waste incineration by Aspergillus niger, Environmental science & technology, vol. 30, no. 10, pp. 3066-3070, 1996.
[12]林偉凱, Ed. 屬資源再生技術發展概況分析. 財團法人金屬工業研究發展中心, 2009.
[13]朱屯, Ed. 萃取與離子交換. 冶金工業出版社, 2005.
[14]李洪桂, Ed. 濕法冶金學. 中南大學出版社, 2002.
[15]陸九芳, Ed. 分離過程化學. 清華大學出版社, 1993.
[16]J. Lehto, The nuclear industry: ion exchange, in Encyclopedia of Separation Science: Academic Press, 2000, pp. 3509-3517.
[17]林祐全, 電聚浮除法配合薄膜系統處理都市垃圾焚化底渣水洗廢水之研究, 碩士, 水資源及環境工程學系, 淡江大學, 新北市, 2004. [Online]. Available: https://hdl.handle.net/11296/f8zyck
[18]S. A. Cavaco, S. Fernandes, M. M. Quina, and L. M. Ferreira, Removal of chromium from electroplating industry effluents by ion exchange resins, Journal of hazardous materials, vol. 144, no. 3, pp. 634-638, 2007.
[19]G. Schmuckler, Chelating resins—their analytical properties and applications, Talanta, vol. 12, no. 3, pp. 281-290, 1965.
[20]R. R. Navarro, K. Tatsumi, K. Sumi, and M. Matsumura, Role of anions on heavy metal sorption of a cellulose modified with poly (glycidyl methacrylate) and polyethyleneimine, Water research, vol. 35, no. 11, pp. 2724-2730, 2001.
[21]A. A. Atia, A. M. Donia, and K. Z. Elwakeel, Selective separation of mercury (II) using a synthetic resin containing amine and mercaptan as chelating groups, Reactive and Functional Polymers, vol. 65, no. 3, pp. 267-275, 2005.
[22]P. Ling et al., Adsorption of divalent heavy metal ions onto IDA-chelating resins: simulation of physicochemical structures and elucidation of interaction mechanisms, Talanta, vol. 81, no. 1-2, pp. 424-432, 2010.
[23]R. E. Benesch, R. Benesch, and C. I. Yu, Oxygenation of hemoglobin in the presence of 2, 3-diphosphoglycerate. Effect of temperature, pH, ionic strength, and hemoglobin concentration, Biochemistry, vol. 8, no. 6, pp. 2567-2571, 1969.
[24]蕭因秀, ITO蝕刻廢液中銦金屬吸附回收之研究, 碩士, 資源工程學系碩博士班, 國立成功大學, 台南市, 2009. [Online]. Available: https://hdl.handle.net/11296/93py4k
[25]張君偉, 水洗前處理與添加劑對都市垃圾焚化飛灰燒結特性的影響, 碩士, 環境工程研究所, 國立中央大學, 桃園縣, 2000. [Online]. Available: https://hdl.handle.net/11296/xbtrz2
[26]C. C.-Y. Chan, Behaviour of metals in MSW incinerator fly ash during roasting with chlorinating agents, National Library of Canada= Bibliothèque nationale du Canada, 1998.
[27]S. Nagib and K. Inoue, Recovery of lead and zinc from fly ash generated from municipal incineration plants by means of acid and/or alkaline leaching, Hydrometallurgy, vol. 56, no. 3, pp. 269-292, 2000.
[28]Y. J. Park and J. Heo, Vitrification of fly ash from municipal solid waste incinerator, Journal of Hazardous Materials, vol. 91, no. 1-3, pp. 83-93, 2002.
[29]S. Kocaoba and G. Akcin, Removal and recovery of chromium and chromium speciation with MINTEQA2, Talanta, vol. 57, no. 1, pp. 23-30, 2002.
[30]A. Ugurlu, Leaching characteristics of fly ash, Environmental Geology, vol. 46, no. 6-7, pp. 890-895, 2004.
[31]W. T. Fonseca, L. A. Ribeiro, L. A. Pradela-Filho, R. M. Takeuchi, and A. L. Santos, Voltammetric Determination of Zn2+ in Antiseptic Dusting Powder and Multivitamins Using a Carbon Paste Electrode Modified with Bi Anchored on Amberlite® IR120, Journal of the Brazilian Chemical Society, vol. 29, no. 12, pp. 2466-2474, 2018.
[32]D. Schwertfeger and W. Hendershot, Ion exchange technique (IET) for measuring Cu2+, Ni2+ and Zn2+ activities in soils contaminated with metal mixtures, Environ. Chem, vol. 14, p. 55, 2017.
[33]D. Kołodyńskaa, P. Rudnickib, and Z. Hubickia, New approach to Cu (II), Zn (II) and Ni (II) ions removal at high NaCl concentration on the modified chelating resin, 2017.
[34]A. Bazargan, T.-H. Shek, C.-W. Hui, and G. McKay, Optimising batch adsorbers for the removal of zinc from effluents using a sodium diimidoacetate ion exchange resin, Adsorption, vol. 23, no. 4, pp. 477-489, 2017.
[35]A. Azimi, A. Azari, M. Rezakazemi, and M. Ansarpour, Removal of heavy metals from industrial wastewaters: a review, ChemBioEng Reviews, vol. 4, no. 1, pp. 37-59, 2017.
[36]G. Pashkov, S. Saikova, and M. Panteleeva, Reactive ion exchange processes of nonferrous metal leaching and dispersion material synthesis, Theoretical Foundations of Chemical Engineering, vol. 50, no. 4, pp. 575-581, 2016.
[37]V. Ogorodnikov, L. Shcherbina, and I. Bydkute, Adsorption Activity of Materials Derived from Copolymers of Acrylonitrile with Various Acid Comonomers, Fibre Chemistry, vol. 48, no. 4, pp. 329-335, 2016.
[38]A.-A. S. Aboul-Magd, S. A.-R. Al-Husain, and S. A. Al-Zahrani, Batch adsorptive removal of Fe (III), Cu (II) and Zn (II) ions in aqueous and aqueous organic–HCl media by Dowex HYRW2-Na Polisher resin as adsorbents, Arabian Journal of Chemistry, vol. 9, pp. S1-S8, 2016.
[39]P. E. Franco et al., Nickel (II) and zinc (II) removal using Amberlite IR-120 resin: Ion exchange equilibrium and kinetics, Chemical Engineering Journal, vol. 221, pp. 426-435, 2013.
[40]M. V. Dinu and E. S. Dragan, Heavy metals adsorption on some iminodiacetate chelating resins as a function of the adsorption parameters, Reactive and Functional Polymers, vol. 68, no. 9, pp. 1346-1354, 2008.
[41]M. Jafarli and A. Abbasov, ION-EXCHANGE PROPERTIES OF IONITES WITH VARIOUS FUNCTIONAL GROUPS, Journal of the Turkish Chemical Society Section A: Chemistry, vol. 4, no. 1, pp. 449-462.
[42]R. D. Alorro, N. Hiroyoshi, M. Ito, and M. Tsunekawa, Recovery of heavy metals from MSW molten fly ash by CIP method, Hydrometallurgy, vol. 97, no. 1-2, pp. 8-14, 2009.
[43]W. Yu et al., A low-emission strategy to recover lead compound products directly from spent lead-acid battery paste: Key issue of impurities removal, Journal of cleaner production, vol. 210, pp. 1534-1544, 2019.
[44]Q. Li et al., Extraction of manganese and zinc from their compound ore by reductive acid leaching, Transactions of Nonferrous Metals Society of China, vol. 27, no. 5, pp. 1172-1179, 2017.
[45]M. Izquierdo and X. Querol, Leaching behaviour of elements from coal combustion fly ash: an overview, International Journal of Coal Geology, vol. 94, pp. 54-66, 2012.
[46]J. Chang, Thermal plasma solid waste and water treatments: A critical review, Int. J. Plasma Environ. Sci. Technol, vol. 3, no. 2, pp. 67-84, 2009.
[47]T. Praharaj, M. Powell, B. Hart, and S. Tripathy, Leachability of elements from sub-bituminous coal fly ash from India, Environment international, vol. 27, no. 8, pp. 609-615, 2002.
[48]D. Feng and J. Van Deventer, The role of heavy metal ions in gold dissolution in the ammoniacal thiosulphate system, Hydrometallurgy, vol. 64, no. 3, pp. 231-246, 2002.
[49]葉宇珊, 水洗垃圾焚化爐飛灰可行性之研究, 2012.
[50]M.-S. Ko, Y.-L. Chen, and P.-S. Wei, Recycling of municipal solid waste incinerator fly ash by using hydrocyclone separation, Waste management, vol. 33, no. 3, pp. 615-620, 2013.
[51]P. Zhang et al., Extraction of metals from saprolitic laterite ore through pressure hydrochloric-acid selective leaching, Hydrometallurgy, vol. 157, pp. 149-158, 2015.
[52]M. Şahin and M. Erdem, Cleaning of high lead-bearing zinc leaching residue by recovery of lead with alkaline leaching, Hydrometallurgy, vol. 153, pp. 170-178, 2015.
[53]F. Jiao, L. Zhang, Z. Dong, T. Namioka, N. Yamada, and Y. Ninomiya, Study on the species of heavy metals in MSW incineration fly ash and their leaching behavior, Fuel Processing Technology, vol. 152, pp. 108-115, 2016.
[54]T. A. Pozdniakova, L. P. Mazur, R. A. Boaventura, and V. J. Vilar, Brown macro-algae as natural cation exchangers for the treatment of zinc containing wastewaters generated in the galvanizing process, Journal of Cleaner Production, vol. 119, pp. 38-49, 2016.
[55]G. Weibel et al., Extraction of heavy metals from MSWI fly ash using hydrochloric acid and sodium chloride solution, Waste Management, vol. 76, pp. 457-471, 2018.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔