(44.192.70.216) 您好!臺灣時間:2021/05/09 18:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:唐亞
研究生(外文):YaTang
論文名稱:以同步輻射XRD對常溫合成釩離子穩定δ相及γ相氧化鉍晶體結構之探究
論文名稱(外文):Study of the crystal structure of vanadium doped δ-Bi2O3 and γ-Bi2O3 synthesized at ambient condition by synchrotron radiation XRD
指導教授:吳毓純龔慧貞
指導教授(外文):Yu-chun WuHui-Chen Kung
學位類別:碩士
校院名稱:國立成功大學
系所名稱:資源工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:88
中文關鍵詞:同步輻射XRDδ相及γ相氧化鉍Rietveld refinement晶體結構解析
外文關鍵詞:synchrotron radiation XRDδ-phase and γ-phase bismuth oxideRietveld refinement
相關次數:
  • 被引用被引用:0
  • 點閱點閱:32
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以同步輻射XRD所得之粉末繞射圖譜及Rietveld refinement晶體結構解析,解析摻雜釩離子之δ相及γ相氧化鉍內部結構,欲建立化學沉澱法製程參數對於合成之氧化鉍晶體結構的關聯性。
δ相氧化鉍部分,精修過程中依據前人將釩離子放於鉍離子 (000) 座標,期待得到當釩離子取代鉍離子時,造成晶格內部的變化情形。第一部分,固定相同釩離子價數下,發現當釩離子進入晶格的數量越多,晶格參數縮減至越小,且內部氧空缺的扭曲程度越大。第二部分,固定結構調整劑濃度下,不同價數釩離子由於其離子半徑不同,造成取代鉍離子的難易度不同,且精修結果顯示,價數較大之釩離子僅要少量進入結構中進行取代,即可有相同程度的晶格參數縮減情形,及內部結構扭曲情形。
γ相氧化鉍部分,依循前人於釩離子添加濃度對產生之氧化鉍結構於α相和γ相之間相轉換之研究,進一步討論釩離子進入晶格內部對於結構的影響。研究結果顯示釩離子取代鉍離子時,主要對(312)、(422)、(530)三晶面造成影響,使其晶面強度下降明顯。且釩離子於γ相氧化鉍中有其固溶極限,並主要取代2a site之鉍離子,微量取代24f site 之鉍離子,或造成 24f site之點缺陷。研究最後亦以最小平方法計算,獲得當釩離子於兩取代鉍離子位置時,原子佔有率於兩位置的最佳分配數值。
This work uses the powder diffraction patterns obtained by synchrotron radiation XRD and the Rieltveld method to analyze the crystal structure of δ-phase and γ-phase bismuth oxide doped with vanadium ions. The work is to establish the correlation between the parameters of chemical co- precipitation method and the crystal structure.
In the part of δ-phase bismuth oxide, during the refinement, the vanadium ions are placed in the coordinate of bismuth ions in order to acquire the situation inside the lattice while the replacing occur. Under the same valence, the more the amount of vanadium ions entering the lattice, the smaller the lattice parameter will be. Also, the degree of distortion will be greater. Under the same concentration of [V]/[Bi], vanadium ions with higher valence will replace the bismuth ions easier comparing to lower valence. In the part of γ-phase bismuth oxide, we follow previous studies about the phase transition between α phase and γ phase bismuth oxide caused by adding more amounts of vanadium ions. And we further discuss the influence caused by vanadium ions entering the crystal lattice. The results show there is doping limit for vanadium ions in γ-phase bismuth oxide, and vanadium ions will mainly replace the bismuth ions at 2a site, slightly replace the bismuth ions at 24f site, or cause point defects at 24f site.
摘要I
Abstract II
誌謝 XIV
目錄 XV
表目錄 XVIII
圖目錄 XX
第一章 緒論 1
1.1 前言 1
1.2 研究背景與目的 2
第二章 文獻回顧 3
2.1 燃料電池簡介 3
2.2 燃料電池的種類 4
2.3 固態氧化物燃料電池工作原理及電解質特性 5
2.4 氧化鉍之晶體結構 7
2.4.1 α相氧化鉍 10
2.4.2 β與γ相氧化鉍 10
2.4.3 δ相氧化鉍 10
2.5 氧化鉍基氧化物 11
2.5.1 摻雜二價元素之氧化鉍 12
2.5.2 摻雜三價釔及鑭系元素之氧化鉍 13
2.5.3 摻雜五價過渡元素之氧化鉍 14
2.6 δ相及γ相氧化鉍晶體結構前人之研究 15
第三章 實驗方法與步驟 18
3.1 δ相及γ相氧化鉍粉末製備 18
3.2 同步輻射X光源 19
3.3 Rietveld refinement 結構精算 21
3.4 GSAS 程式擬合過程 22
第四章 實驗結果與討論 21
4.1 結構調整劑濃度對δ相氧化鉍結構的影響 23
4.1.1 A1及A2樣品化學沉澱法製成探討 23
4.1.2 兩樣品原始XRD圖譜分析 23
4.1.3 Rietveld refinement精修結果分析 28
4.1.4 精修結果影響因素探討 33
4.2 釩離子價數對δ相氧化鉍結構的影響 35
4.2.1 A1及A3樣品化學沉澱法製成探討 35
4.2.2 兩樣品原始XRD圖譜分析 36
4.2.3 Rietveld refinement精修結果分析 39
4.2.4 精修結果影響因素探討 43
4.2.5 晶體結構模擬 45
4.3 γ相氧化鉍晶體結構探討 49
4.3.1 B1及B2樣品化學沉澱法製成探討 49
4.3.2 兩樣品原始XRD圖譜分析 52
4.3.3 Rietveld refinement精修結果分析 58
4.3.4 精修結果影響因素探討 59
4.3.5 釩離子比例分配與晶面強度探討 65
第五章 總結論 70
5.1 結論 70
5.2 材料研救困難度及未來方向建議 71
參考文獻 72
附錄圖片 80
參考文獻
[1] A. Cabot, A. Marsal, J. Arbiol, and J.R. Morante, “Bi2O3 as a selective sensing material for NO detection, Sensors and Actuators B, 99, 74-89 (2004).
[2] L. Zhang, W. Z. Wang, J. Yang, Z. G. Chen, W. Q. Zhang, L. Zhou and S. W.
Liu, “Sonochemical synthesis of nanocrystallite Bi2O3 as a visible-light-driven photocatalyst, Applied Catalysis A, 308, 105-110 (2006).
[3] H. A. Harwig and A. G. Gerards, “The polymorphism of Bismuth sesquioxide, Thermochimica Acta, 28, 121-131 (1979).
[4] N. M. Sammes, G. A. Tompsett, H. Nafe, and F. Aldinger, “Bismuth based oxide Electrolytes-Structure and Ionic Conductivity, European Ceramic Society, 19, 1801-1826 (1999).
[5] G. Mairesse, “In fast ion transport in solids, Ed. B. Scrosati, Kluver, Amsterdam, p.271 (1993).
[6] R. K. Datta and J. P. Meehan, “The System Bi2O3–R2O3 (R=Y, Gd), Zeitschrift fuÈr Anorganishe und Allgemeine Chemie, 383, 328 (1971).
[7] T. Takahashi and H. Iwahara, “Oxide ion conductors based on bismuthsesquioxide, Mater. Res. Bull., 13, 1447 (1978).
[8] T. Takahashi, T Esaka, and H. Iwahara, “Conduction in Bi2O3-based oxide
ion conductors under low oxygen pressure. I. Current blackening of the
Bi2O3-Y2O3 electrolyte, J. Appl. Electrochem., 7, 299 (1977).
[9] W. N. Lawless and S. L. Swartz, “Thermal properties of a Bi2O3:Y2O3 oxygen conductor at low temperatures, Phy. Rev. B28, 2125 (1983).
[10] A. V. Joshi, S. Kulkarni, J. Nachlas, J. Diamond and N. Weber, “Phase stability and oxygen transport characteristics of yttria- and niobia-stabilized bismuth oxide, J. Mate. Sci., 25, 1237 (1990).
[11] M. J. Verkerk, K. Keizer, and A. J. Burggraaf, “High oxygen ion conduction in sintered oxides of the Bi2O3- Er2O3 system, J. Appl. Electrochem., 10, 81 (1980).
[12] K. Keizer, M. J. Verkerk, and A. J. Burggraaf, “Preparation and properties of
new oxygen ion conductors for use at low temperatures, Ceram.
International, 5, 143-147 (1979).
[13] H. J. M. Bouwmeester, H. Kruidhof, A. J. Burggraaf, and P. J. Gellings, “Oxygen semipermeability of erbia-stabilized bismuth oxide, Solid State
Ionics, 53, 460 (1992).
[14] I. C. Vinke, J. L. Bakiewicz, B. A. Boukamp, K. J. DeVries, and A. J. Burggraaf, “Oxygen transport and transfer properties of erbia-stabilized bismuth oxide, Solid State Ionics, 40/41, 886 (1990).
[15] K. Buse, “Light-induced charge transport processes in photorefractive crystals II: Materials, Appl. Phys. B, v.64, p.391 (1997).
[16] Masatomo Yashima, Daiju Ishimura, “Crystal structure and disorder of the fast oxide-ion conductor cubic Bi2O3, Chemical Physics Letters, 378, 395-399 (2003).
[17] Von G. Gattow, and H. Schroder, “About bismuth oxides. III. The crystal structure of the high-temperature modification of bismuth (III) oxide (δ-Bi2O3), Journal of inorganic and General Chemistry, 318, 176-189 (1962).
[18] H. A. Harwig, “On the Structure of Bismuth sesquioxide: the α, β, γ, and δ-Phase, Journal of inorganic and General Chemistry, 444, 151-166 (1978).
[19] Stephen Hull, Stefan T. Norberg, Matthew, G. Tucker, Sten G. Eriksson, Chris E. Mohn and Svein Stølen, “Neutron total scattering study of the δ and β phases of Bi2O3, Dalton Trans, 40, 8737-8745 (2009).
[20] Dilpuneet S. Aidhy, Susan B. Sinnott, Eric D. Wachsman, Simon R. Phillpot and Juan C. Nino, “Structure of δ- Bi2O3 from density functional theory: A systematic crystallographic analysis, Journal of Solid State Chemistry, 182, 1222-1228 (2009).
[21] Chris E. Mohn, Svein Stølen, Stefan T. Norberg and Stephen Hull, “Oxide-ion disorder within the high temperature delta phase of Bi2O3, Phys Rev Lett, 102, 155502 (2009).
[22] 楊蕙瑜 (2013),「以室溫共沉法製備Bi2-xVxO3+x粉末應用於固態電解質之研究」,國立成功大學資源工程系碩士論文。
[23] 黃鎮江,燃料電池,滄海書局 (2008)。
[24] C. K. Lee and C. S. Ong, “Synthesis and characterization of rare earth
substituted bismuth vanadate solid electrolytes, Solid State Ionics, 117,
301-310 (1999).
[25]https://zh.wikipedia.org/wiki/%E5%9B%BA%E6%85%8B%E6%B0%A7%E5%8C%96%E7%89%A9%E7%87%83%E6%96%99%E9%9B%BB%E6%B1%A0
[26] N. Laosiripojan, “Reviews on solid oxide fuel cell technology, Engineering
Journal, 67-68 (2009).
[27] B. Aurivillius, and L. G. Sillen, “Polymorphy of bismuth trioxide, Nature
155, 305 (1945).
[28] C. N. R. Rao, G. V. S. Rao, and S. Ramdas, “Phase Transformations and Electrical Properties of Bismuth Sesquioxide, The Journal of Physical Chemistry, 73, 672 (1969).
[29] R. Matsuzaki, H. Masumizu, and Y. Saeki, “The phase transition of bismuth (III) oxide prepared by the thermal decomposition of bismuth sulfate, Bulletin of the Chemical Society of Japan, 48, 3397 (1975).
[30] E. M. Levin, C. L. Mc Daniel, and J. Res, “The growth of some gamma bismuth oxide crystals, National Bureau Standards A, 69, 237 (1965).
[31] L. G. Sillen, “Polymorphy of bismuth trioxide, Nature, 155 (3932), 305-306 (1945).
[32] X. L. Chen, and W. Eysel, “The stabilization of β-Bi2O3 by CeO2, Journal of Solid State Chemistry, 128-130 (1996).
[33] L. Zhang, W. Z. Wang, J. Yang, Z. G. Chen, W. Q. Zhang, L. Zhou, and S. W. Liu, “Sonochemical synthesis of nanocrystallite Bi2O3 as a visible-light-driven photocatalyst, Applied Catalysis A, 308, 105-110 (2006).
[34] H. A. Harwig, and A. G. Gerards, “The polymorphism of bismuth sesquioxide, Thermochimica Acta, 28, 121-131 (1979).
[35] M. J. Jabeen Fatima, A. Navaneeth, and S. Sindhu, “Improved carrier mobility and bandgap tuning of zinc doped bismuth oxide, RSC Adv., 5, 2504–2510 (2015).
[36] T. Takahashi, and H. Iwahara, “Oxide ion conductors based on bismuthsesquioxide, Materials Research Bulletin, 13, 1447 (1978).
[37] T. Takahashi, T Esaka, and H. Iwahara, “Conduction in Bi2O3-based oxide ion conductors under low oxygen pressure. I. Current blackening of the Bi2O3- Y2O3 electrolyte, Journal of Applied Electrochemistry, 7, 299 (1977).
[38] https://j.17qq.com/article/goijhibhz.html
[39]韋文誠,固態燃料電池技術,高立圖書 (2014)。
[40] N. Q. Minh and T. Takahashi, “Science and technology of ceramic fuel cells, Elsevier Science B. V., 11, 98-101 (1995).
[41] H. Iwahara, T. Esaka, T. Sato, and T. Takahashi, “Formation of high oxide ion conductive phases in the sintered oxides of the system Bi2O3±Ln2O3 (Ln=La-Yd), Journal of Solid State Chemistry, 39, 173-180 (1981).
[42] K. Kruidhof, K. J. DeVries, A. J. Burggraaf, “Thermochemical stability and nonstoichiometry of yttria-stabilized bismuth oxide solid solutions, Solid State Ionics, 37, 213 (1990).
[43] E.M. Levin and T. L. Waring, J. Res. Nat. Bur. Stand., 66A, 451 (1962).
[44] V. J. Powers, PhD thesis, Ohio State University (1989).
[45] T. Takahashi, H. Iwahara and T. Esaka, “High Oxide Ion Conduction in Sintered Oxide of the System Bi2O3-M2O5, J. Electrochem. Soc., 124, 1563 (1977).
[46] A. Watanabe, “Electrical conductivity of the Li2SO4-Li2WO4 system, Solid State Ionics, 40-41, 89 (1990).
[47] G. Gattow and H. Schroder, “Über Wismutoxide. III. Die Kristallstruktur der Hochtemperaturmodifikation von Wismut(III)‐oxid (δ‐Bi2O3), Z. anorg. allg. Chem., 318, 176 (1962).
[48] L. G. Sillen, Ark. Kemi Mineral. Geol., Almqvist & Wiksell (1937).
[49] B. T. M. Willis, “The anomalous behaviour of the neutron reflexion of fluorite, Acta Crystallographica, 18, 75–76 (1965).
[50] P. D. Battle, C. R. A. Catlow, J. Drennan, and A. D. Murray, “The structural properties of the oxygen conducting δ phase of Bi2O3, J. Phys. C: Solid State Phys., 16, L561–566 (1983).
[51] P. W. M. Jacobs and D. A. Mac D´onaill, “Computational simulations of δ-Bi2O3. I. Disorder, Solid State Ionics, 23, 279–293 (1987).
[52] P. W. M. Jacobs and D. A. Mac D´onaill, “Computational simulation of δ-Bi2O3. II. Charge migration, Solid State Ionics, 23, 295–305 (1987).
[53] P. W. M. Jacobs and D. A. Mac D´onaill, “Computational simulations of δ-Bi2O3. III. A comparative study of static lattice models, Solid State Ionics, 23, 307–318 (1987).
[54] N. I. Medvedeva, V. P. Zhukov, V. A. Gubanov, D. L. Novikov and B. M. Klein, “Electronic structure and chemical bonding in δ-Bi2O3, J. Phys. Chem. Solids, 57, 1243–1250 (1996).
[55] G. Zhong, Y. Wang, Z. Dai, J. Wang and Z. Zeng, “Oxygen vacancy configuration of δ‐Bi2O3: an ab initio study, Phys. Status Solidi B, 246, 97–101 (2009).
[56] J. M. Carlsson, B. Hellsing, H. S. Domingos and P. D. Bristowe, “Theoretical investigation of the pure and Zn-doped α and δ phases of Bi2O3, Phys. Rev. B: Condens. Matter Mater. Phys., 65, 205122 (2002).
[57] A. Walsh, G. W. Watson, D. J. Payne, R. G. Edgell, J. H. Guo, P. A. Glans, T. Learmonth and K. E. Smith, “Electronic structure of the α and δ phases of Bi2O3: A combined ab initio and x-ray spectroscopy study, Phys. Rev. B: Condens. Matter Mater. Phys., 73, 23510 (2006).
[58] I. T. Todorov, N. L. Allan, M.Y. Lavrentiev, C. L. Freeman, C. E. Mohn and J. A. Purton, “Simulation of mineral solid solutions at zero and high pressure using lattice statics, lattice dynamics and Monte Carlo methods, J. Phys.: Condens. Matter, 16, S2751–S2770 (2004).
[59] C. E. Mohn, S. Stølen, S. T. Norberg and S. Hull, “Ab initio molecular dynamics simulations of oxide-ion disorder in the δ-Bi2O3, Phys. Rev. B: Condens. Matter Mater. Phys., 80, 024205 (2009).
[60] E. M. Levin, and R. S. Roth, “Polymorphism of Bismuth Sesquioxide. 1. Pure Bi2O3, J. Res. Nat., Bureau of Standards- A. Physics and Chemistry, v.68 A, n.2, p.189 (1964).
[61] E. M. Levin, R. S. Roth, and J. Res. Nat., Bureau of Standards- A. Physics and Chemistry, v.68A, n.2, p.197 (1964).
[62] H. A. Harwig, “On the Structure of Bismuthsesquioxide: The α, β, γ, and δ‐phase, Z. Anorg., Allg. Chem., 444, 151-166 (1978).
[63] B. Aurivillius and L. G. Sillen, “Polymorphy of Bismuth Trioxide, Nature (London), 155, 305-306 (1945).
[64] W. C. Schumb and E. S. Rittner, “Polymorphism of Bismuth Trioxide,J. Am. Chem. Soc. 65, 1055-1060 (1943).
[65] D. C. Craig and N. S. Stephenson, “Structural studies of some body-centered cubic phases of mixed oxides involving Bi2O3:The structures of Bi25FeO40 and Bi38ZnO60, J. Solid State Chem., 15, 1-8 (1975).
[66] A. Watanabe, H. Kodama and S. Takenouchi, “Nonstoichiometric phase with sillenite-type structure in the system Bi2O3-P2O5, J. Solid State Chem., 85, 76-82 (1990).
[67] A. D. Murray, C. R. A. Catlow, F. Beech, J. Drennan “A neutron powder diffraction study of the low- and high-temperature structures of Bi12PbO19, Journal of Solid State Chemistry, volume 62, issue 3, 290-296 (1986).
[68]謝行恕、賈成芝,同步輻射X射線顯微成像,聯經出版社 (1995)。
[69] 同步輻射簡介,行政院同步輻射研究中心籌建處 (1993)。
[70]汪建銘,材料分析,中國材料學會 (1998)。
[71] https://www.nsrrc.org.tw/chinese/lightsource.aspx
[72]黃怡婷 (2015),「釩離子穩定δ相氧化鉍奈米粉末常溫合成法及其導電及光催化性質」,國立成功大學資源工程系碩士論文。
[73] Jochen A. H. Dreyer, Suman Pokhrel, Johannes Birkenstock, Miguel G. Hevia, Marco Schowalter, Andreas Rosenauer, Atsushi Urakawa, Wey Yang Teoh and Lutz Mädler, “Decrease of the required dopant concentration for δ-Bi2O3 crystal stabilization through thermal quenching during single-step flame spray pyrolysis, CrystEngComm, 18, 2046-2056 (2016).
[74] Guohua Zhong, Jianglong Wang, and Zhi Zeng,“The doping effects in delta-Bi2O3 oxide ionic conductor, Phys. Stat. Sol., 245, 2737-2742 (2008).
[75] R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Cryst. A32, 751-767 (1976).
[76] M. J. Verkerk, K. Keizer, and A. J. Burggraaf, “High oxygen ion conduction in sintered oxides of the Bi2O3- Er2O3 system, J. Appl. Electrochem.10, 81 (1980).
[77] P. Shuk, H.-D. Wiemhöfer, U. Guth, W. Göpel, M. Greenblatt, “Oxide ion conducting solid electrolytes based on Bi2O3, Solid State Ionics, 89, 179-196 (1996).
[78] Hanggara Sudrajat, “Chemical state and local structure of V species incorporated in δ-Bi2O3 photocatalysts, Journal of Materials Science, volume 53, 1088–1096 (2018).
[79] B. Oprea, T. Radu, and S. Simon, “XPS investigation of atomic environment changes on surface of B2O3–Bi2O3 glasses, Journal of Non-Crystalline Solids,
volume 379, 35-39 (2013).
[80] Hai-Ying Jiang, Peng Li, Guigao liu, Jinhua Ye, and Jun Lin, “Synthesis and
photocatalytic properties of metastable β -Bi2O3 stabilized by surface-coordination effects, J. Mater. Chem. A, 3, 5119 (2015).
[81] Mark C. Biesinger, Leo W. M. Lau, Andrea R. Gerson, and Roger St. C. Smart, “Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn, Applied Surface Science, volume 257, issue 3, 887-898 (2010).
[82] Guangyao Meng, Chusheng Chen, Xing Han, Pinghua Yang and Dingkun Peng, “Conductivity of Bi2O3-based oxide ion conductors with double stabilizers, Solid State Ionics, volumes 28–30, part 1, 533-538 (1988).
[83] Y. C. Wu, Y. C. Chaing, C. Y. Huang, S. F. Wang and H. Y. Yang, “Morphology-controllable Bi2O3 crystals through an aqueous precipitation method and their photocatalytic performance, Dyes and Pigments, 98, 25-30 (2013).
[84] C. Svensson, S. C. Abrahams and J. L. Bernstein, “Laevorotatory Bi12GeO20: Remeasurement of the Structure, Acta Cryst., B35, 2687-2690 (1979).
[85] Aleksandra Dapčević, Dejan Poleti, and Ljiljana Karanović, “Improved structural model of Pb-doped γ-Bi2O3: (Bi23.68Pb0.32)(Bi1.28Pb0.72)O38.48, Powder Diffraction, volume 27, issue 1, 2-7 (2012).
[86] S. C. Abrahams, P. B. Jamieson, and J. L. Bernstein, “Crystal Structure of Piezoelectric Bismuth Germanium Oxide Bi12GeO20, J. Chem. Phys. 47, 4034 (1967).
[87] T. I. Mel’nikova, G. M. Kuz’micheva, V. B. Rybakov, N. B. Bolotina, and A. B. Dubovskii, “Structure of Phases of the Sillenite Family in the Bi2O3–V2O5 System, Crystallography Reports, 56(2) (2011).
[88] T. I. Mel’nikova, G. M. Kuz’micheva, V. B. Rybakov, N. B. Bolotina, and A. B. Dubovskii, “Development of Methods of X-Ray Diffraction Analysis for Determining the Composition and Structure of Sillenite-Family Crystals, Crystallography Reports, 59, 155–159 (2014).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔