(44.192.66.171) 您好!臺灣時間:2021/05/17 23:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李承浩
研究生(外文):Cheng-HaoLi
論文名稱:以氧化鋅鎵鋁製作之薄膜電晶體及感測器應用
論文名稱(外文):The Application of Thin Film Transistor and Sensors Fabricated by AlGaZnO
指導教授:張守進張守進引用關係
指導教授(外文):Shoou-Jinn Chang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:微電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:106
中文關鍵詞:ZnOGa2O3Al2O3光檢測器pH感測器薄膜電晶體光電晶體
外文關鍵詞:ZnOGa2O3Al2O3photodetectorpH sensorthin film transistorphototransistor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:37
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文利用射頻磁控濺鍍製備氧化鋅鎵鋁之薄膜,研究製程條件對薄膜特性的影響以及其在光電元件的應用以及特性。
第一部分,我們以固定氧化鎵鋁的濺鍍瓦數改變氧化鋅的瓦數製作光檢測器,並以不同退火溫度改變薄膜特性。因為氧化鋅能提供氧空缺且導電率較高,隨著氧化鋅的瓦數增加,感測器的光電流與暗電流都明顯上升,而氧化鋅瓦數增加至70瓦時,感測器的下降時間也因為鋅的特性而大幅增加。接下來將最佳的瓦數比進行退火,發現退火300°C元件特性最好,而退火400°C則因為晶向的出現導致缺陷大幅增加而使元件特性變差。
第二部分,和上一章一樣固定氧化鎵鋁的濺鍍瓦數改變氧化鋅的瓦數沉積酸鹼感測器的感測層,從原子力顯微鏡中可以發現氧化鋅的瓦數為50瓦時,薄膜會有最為粗糙的表面使得元件能夠吸附或解吸附最多的離子而有最高的電位變化。除此之外,氧化鋅是一種兩性化合物,容易和酸或鹼性容易反應和溶解,不過在複合了氧化鎵鋁後,抗酸鹼特性得到顯著的提升並能夠量測極端的酸鹼值。
第三部分,我們以固定氧化鋅的濺鍍瓦數改變氧化鎵鋁的瓦數製作薄膜電晶體,並改變通道層厚度找到最佳參數。我們發現當氧化鎵鋁和氧化鋅的瓦數比為60: 60,厚度為20奈米時,元件特性最好,透過XPS分析可以了解此時缺陷最少且很不導電,其中Vt為0.96 V,載子遷移率為0.04 cm2/Vs,開關比為1.01×107,次臨界擺幅為0.33 V/dec,有著最優良的閘極控制能力。最後將此元件照光延伸至光電晶體的應用,在閘極電壓為-3 V時有最高的拒斥比4.31×104。
In this thesis, radio frequency magnetron sputtering is used to prepare thin films of AlGaZnO, and the effects of process conditions on the characteristics of the thin films and their application in photovoltaic devices are studied.
In the first part, we make photodetectors by fixing the wattage of AlGaO and changing the wattage of ZnO, then alter the film characteristics at different annealing temperatures. Because ZnO can provide oxygen vacancies and carriers, as the wattage of ZnO increases, the photocurrent and dark current of the sensor both increase significantly. When the wattage of ZnO increases to 70 watt, the fall time is greatly increased due to the properties of ZnO. Next, the device with the best wattage ratio is annealed. It is found that when annealing at 300°C, device exhibits best characteristics; while the 400°C annealing temperature causes the defects to increase significantly due to the occurrence of crystallization, which deteriorated the device properties.
In the second part, as in the previous chapter, the AlGaO sputtering wattage is fixed and the zinc oxide wattage is altered to deposit the sensing layer of the pH sensor. From the atomic force microscope, the film will have the roughest surface when the wattage of ZnO is 50 watt, so the device can adsorb or desorb the most ions and have the highest potential variation. In addition, ZnO is an amphoteric compound that easily reacts and dissolves with acids or alkalis. However, after combining AlGaO, the anti-acid properties have been significantly improved and can be used in solution with extreme pH values.
In the third part, thin-film transistors are fabricated by varying the wattage of AlGaO and fixing that of ZnO, then alter the thickness of the channel layer to find the best parameters. We found that when the wattage ratio of AlGaO and zinc oxide is 60: 60, and the thickness is 20 nm, the device characteristics are the best. Through XPS analysis, we can understand that the defects are the least and the resistance is the highest among three devices, where Vt is 0.96 V, the carrier mobility is 0.04 cm2/Vs, the on/off ratio is 1.01×107, the subthreshold swing is 0.33 V/dec. Finally, the best thin film transistor is illuminated, extending its application to phototransistor.
摘要... I
Abstract... III
誌謝... V
Content... VI
Table Captions... IX
Figure Captions... X
Chapter 1 Introduction... 1
1.1 Overview of Ultraviolet Photodetectors... 1
1.2 Overview of pH Sensor... 2
1.3 Overview of Thin Film Transistor... 3
1.4 Organization of This Thesis... 4
Reference... 6
Chapter 2 Relevant Theory and Experimental Equipment... 12
2.1 Experimental Equipment... 12
2.1.1 RF Sputtering System... 12
2.1.2 Thermal Evaporation... 14
2.1.3 Atomic Force Microscope (AFM)... 15
2.1.4 Transmission Electron Microscope (TEM)... 16
2.1.5 Energy-dispersive X-ray spectroscopy (EDS)... 17
2.1.6 X-ray Diffraction (XRD)... 17
2.1.7 X-ray Photoelectron Spectroscopy (XPS)... 18
2.1.9 Measurement Systems... 19
2.2 Relevant Theory... 19
2.2.1 Theory of Photodetector... 19
2.2.2 Responsivity of the Photodetector... 20
2.2.3 Rise Time & Recovery Time of the Photodetector... 21
2.2.4 Rejection ratio of the Photodetector... 21
2.2 Theory of Thin Film Transistor... 21
2.2.1 Threshold Voltage (Vth)... 22
2.2.2 Field-Effect Mobility... 22
2.2.3 On/off Current Ratio (Ion/Ioff)... 23
2.2.4 Subthreshold Swing (SS)... 23
2.2.6 Site-Binding Model Theory... 23
Reference... 25
Chapter 3 Characteristics of AlGaZnO thin film... 27
3.1 Growth of AlGaZnO Thin Film... 27
3.2 Structural Characteristics... 27
3.2.1 X-ray Diffraction (XRD) Analysis... 27
3.2.2 Atomic Force Microscopy (AFM) Analysis... 30
3.2.3 Transmission electron microscope (TEM) Analyses... 32
3.3 Transmittance and Absorption... 34
3.4 Elemental Analyses... 39
3.4.1 X-ray Photoelectron Spectroscopy (XPS)... 39
3.4.2 Energy Dispersive X-ray Spectroscopy (EDS)... 44
Reference... 46
Chapter 4 Fabrication and Characteristics of AlGaZnO Photodetector... 47
4.1 Fabrication of AlGaZnO Photodetector... 47
4.2 Characteristics of AlGaZnO Photodetector... 48
4.2.1 Characteristics of Devices with Different Power Ratios... 48
4.2.2 Characteristics of Devices with Different Annealing Temperature... 58
Reference... 62
Chapter 5 Fabrication and Characteristics of AlGaZnO pH Sensor... 63
5.1 Fabrication and Measurement Set up of AlGaZnO pH Sensor... 63
5.2 Constant Current and Voltage Mode Measurement of AlGaZnO pH
Sensor... 65
5.3 Retention test of AlGaZnO pH Sensor... 76
Reference... 79
Chapter 6 Fabrication and Characteristics of AlGaZnO Thin Film Transistor... 80
6.1 Fabrication and Measurement of AlGaZnO Thin Film Transistor... 80
6.2 Characteristics of the AlGaZnO Transistors with Different Power... 82
6.3 Characteristics of the AlGaZnO Transistor with Different Thickness... 89
6.4 Characteristics of the AlGaZnO Phototransistor... 95
Reference... 101
Chapter 7 Conclusion and Future work... 102
7.1 Conclusion... 102
7.2 Future Work... 103
Reference... 105
Chapter 1
[1] Omnès, Franck, et al. Wide bandgap UV photodetectors: A short review of devices and applications. Gallium Nitride Materials and Devices II. Vol. 6473. International Society for Optics and Photonics, 2007.
[2] Monroy, E., et al. High-performance GaN pn junction photodetectors for solar ultraviolet applications. Semiconductor science and technology 13.9 (1998): 1042.
[3] Kuryatkov, V. V., et al. 247 nm solar-blind ultraviolet p-i-n photodetector. (2006): 096104.
[4] Hetterich, J., et al. Optimized design of plasmonic MSM photodetector. IEEE Journal of Quantum Electronics 43.10 (2007): 855-859.
[5] Yiannoulos, Aristides A. Field-effect photo-transistor. U.S. Patent No. 5,939,742. 17 Aug. 1999.
[6] Diffey, Brian L. Sources and measurement of ultraviolet radiation. Methods 28.1 (2002): 4-13.
[7] Chow, T. Paul, and Ritu Tyagi. Wide bandgap compound semiconductors for superior high-voltage power devices. [1993] Proceedings of the 5th International Symposium on Power Semiconductor Devices and ICs. IEEE, 1993.
[8] Trivedi, Malay, and Krishna Shenai. Performance evaluation of high-power wide band-gap semiconductor rectifiers. Journal of Applied Physics 85.9 (1999): 6889-6897.
[9] Casady, J. B., and R. Wayne Johnson. Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: A review. Solid-State Electronics 39.10 (1996): 1409-1422.
[10] Chow, T. Paul, and Ritu Tyagi. Wide bandgap compound semiconductors for superior high-voltage power devices. [1993] Proceedings of the 5th International Symposium on Power Semiconductor Devices and ICs. IEEE, 1993.
[11] Liu, Kewei, Makoto Sakurai, and Masakazu Aono. ZnO-based ultraviolet photodetectors. Sensors 10.9 (2010): 8604-8634.
[12] Omnès, Franck, et al. Wide bandgap UV photodetectors: A short review of devices and applications. Gallium Nitride Materials and Devices II. Vol. 6473. International Society for Optics and Photonics, 2007.
[13] Walker, D., et al. High-speed, low-noise metal–semiconductor–metal ultraviolet photodetectors based on GaN. Applied physics letters 74.5 (1999): 762-764.
[14] Young, Sheng-Joue, et al. Synthesis of Ga-doped ZnO nanorods by hydrothermal method and their application to ultraviolet photodetector. Inventions 1.1 (2016): 3.
[15] Liu, Yi-Hsing, et al. Ga-doped ZnO nanosheet structure-based ultraviolet photodetector by low-temperature aqueous solution method. IEEE Transactions on Electron Devices 62.9 (2015): 2924-2927.
[16] Inamdar, Sumayya, et al. Effect of the buffer layer on the metal–semiconductor–metal UV photodetector based on Al‐doped and undoped ZnO thin films with different device structures. physica status solidi (a) 212.8 (2015): 1704-1712.
[17] Agrawal, Jitesh, et al. Development of Al Doped ZnO Nanowalls Based Flexible, Ultralow Voltage UV Photodetector. IEEE Sensors Letters 3.9 (2019): 1-4.
[18] Hsu, Cheng-Liang, et al. Transparent gas senor and photodetector based on Al doped ZnO nanowires synthesized on glass substrate. Ceramics International 43.7 (2017): 5434-5440.
[19] Young, Sheng-Joue, and Yi-Hsing Liu. High response of ultraviolet photodetector based on al-doped ZnO nanosheet structures. IEEE Journal of Selected Topics in Quantum Electronics 23.5 (2017): 1-5.
[20] Izumi, Hiroto, et al. Cellular pH regulators: potentially promising molecular targets for cancer chemotherapy. Cancer treatment reviews 29.6 (2003): 541-549.
[21] Raghunand, N., et al. Enhancement of chemotherapy by manipulation of tumour pH. British journal of cancer 80.7 (1999): 1005-1011.
[22] Kobayashi, Shigeki, et al. Dependence pH and proposed mechanism for aggregation of Alzheimer’s disease-related amyloid-β (1–42) protein. Journal of Molecular Structure 1094 (2015): 109-117.
[23] Lauks, I., P. Chan, and D. Babic. The extended gate chemically sensitive field effect transistor as multi-species microprobe. Sensors and Actuators 4 (1983): 291-298.
[24] Mokhtarifar, Naser, Frank Goldschmidtboeing, and Peter Woias. Development of an Extended Gate Field Effect Transistor (EGFET) based low-cost pH-sensor. MikroSystemTechnik 2017; Congress. VDE, 2017.
[25] Batista, P. D., and M. Mulato. ZnO extended-gate field-effect transistors as p H sensors. Applied Physics Letters 87.14 (2005): 143508.
[26] Bergveld, Piet. Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE Transactions on Biomedical Engineering 1 (1970): 70-71.
[27] Bausells, Joan, et al. Ion-sensitive field-effect transistors fabricated in a commercial CMOS technology. Sensors and Actuators B: Chemical 57.1-3 (1999): 56-62.
[28] Ali, Ghusoon M., H. Dhaher Ra'ad, and Ali A. Abdullateef. pH sensing characteristics of EGFET based on Pd-doped ZnO thin films synthesized by sol-gel method. 2015 Third International Conference on Technological Advances in Electrical, Electronics and Computer Engineering (TAEECE). IEEE, 2015.
[29] Chiang, Jung-Lung, and Chia-Yu Kuo. Study on the characterizations and applications of the pH-Sensor with GZO/glass extended-gate FET. 2013 IEEE 5th International Nanoelectronics Conference (INEC). IEEE, 2013.
[30] Chiang, Jung-Lung, Sui-Chu Tsai, and Ming-Cheng Kao. The pH sensitivity and characteristics of AZO nanorods based on the extended-gate field-effect transistor. Journal of Computational and Theoretical Nanoscience 12.5 (2015): 825-831.
[31] Wang, Jyh-Liang, et al. pH-sensing characteristics of hydrothermal Al-doped ZnO nanostructures. Journal of Nanomaterials 2013 (2013).
[32] Tsai, You-Ting, et al. Fast Detection and Flexible Microfluidic pH Sensors Based on Al-Doped ZnO Nanosheets with a Novel Morphology. ACS omega 4.22 (2019): 19847-19855.
[33] Nomura, Kenji, et al. Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor. Science 300.5623 (2003): 1269-1272.
[34] Nomura, Kenji, et al. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. nature 432.7016 (2004): 488-492.
[35] Sung, Yoo-Chang, and Oh-Kyong Kwon. Low-cost TFT-LCDs with pre-emphasis driving method for large-size and high-definition TVs. IEEE Transactions on Consumer Electronics 53.4 (2007): 1674-1681.
[36] Lee, Jae Sang, et al. High-Performance a-IGZO TFT With $hbox {ZrO} _ {2} $ Gate Dielectric Fabricated at Room Temperature. IEEE electron device letters 31.3 (2010): 225-227.
[37] Thornton, John A., and James L. Lamb. Sputter-deposited Pt-Al2O3 selective absorber coatings. Thin Solid Films 83.4 (1981): 377-385.
[38] Fortunato, Elvira MC, et al. Fully transparent ZnO thin‐film transistor produced at room temperature. Advanced Materials 17.5 (2005): 590-594.
[39] Sheraw, C. D., et al. Organic thin-film transistor-driven polymer-dispersed liquid crystal displays on flexible polymeric substrates. Applied physics letters 80.6 (2002): 1088-1090.
[40] Lee, Sungsik, and Arokia Nathan. Subthreshold Schottky-barrier thin-film transistors with ultralow power and high intrinsic gain. Science 354.6310 (2016): 302-304.
[41] Bae, H. S., et al. Photodetecting properties of ZnO-based thin-film transistors. Applied Physics Letters 83.25 (2003): 5313-5315.
[42] Li, Jyun-Yi, et al. High responsivity MgZnO ultraviolet thin-film phototransistor developed using radio frequency sputtering. Materials 10.2 (2017): 126.

Chapter 2
[1] Manufacture, Sales, and Repair Of magnetic Seals (vacuum Rotary Feedthroughs with Ferrofluid)
https://en.rigaku-mechatronics.com/case/sputtering-systems.html
[2] Seshan, Krishna. Handbook of thin film deposition processes and techniques. William Andrew, 2001.
[3] Francis, Lorraine F. Materials processing: a unified approach to processing of metals, ceramics and polymers. Academic Press, 2015.
[4] Lakhtakia, Akhlesh, and Raúl José Martín-Palma, eds. Engineered biomimicry. Newnes, 2013.
[5] Enam, FM Tahzib, et al. GROWTH OF P-TYPE CdZnTe THIN FILMS AS PROSPECTIVE ABSORBER LAYER FOR PHOTOVOLTAIC APPLICATION.
[6] 多功能掃描式探針顯微鏡
https://researchoutput.ncku.edu.tw/zh/equipments/multi-functional-scanning-probe-microscope-dimension-icon
[7] DeGarmo, Ernest Paul, et al. Materials and process in manufacturing. Upper Saddle River: Prentice Hall, 1997. 223
[8] Meyers, H. P., and H. P. Myers. Introductory solid state physics. CRC press, 1997.
[9] Mattox, Donald M. Handbook of physical vapor deposition (PVD) processing. William Andrew, 2010.
[10] Yates, David E., Samuel Levine, and Thomas W. Healy. Site-binding model of the electrical double layer at the oxide/water interface. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases 70 (1974): 1807-1818.
[11] Fung, Clifford D., Peter W. Cheung, and Wen H. Ko. A generalized theory of an electrolyte-insulator-semiconductor field-effect transistor. IEEE Transactions on Electron Devices 33.1 (1986): 8-18

Chapter 3
[1] Cha, Jae-Hyeok, et al. Photoluminescence characteristics of nanocrystalline ZnGa2O4 phosphors obtained at different sintering temperatures. Molecular Crystals and Liquid Crystals 499.1 (2009): 85-407.
[2] Panigrahy, Bharati, M. Aslam, and D. Bahadur. Controlled optical and magnetic properties of ZnO nanorods by Ar ion irradiation. Applied Physics Letters 98.18 (2011): 183109.
[3] Major, S., et al. Effect of hydrogen plasma treatment on transparent conducting oxides. Applied Physics Letters 49.7 (1986): 394-396.
[4] Kushwaha, Ajay, and M. Aslam. Hydrogen-incorporated ZnO nanowire films: stable and high electrical conductivity. Journal of Physics D: Applied Physics 46.48 (2013): 485104.

Chapter 4
[1] Lee, Jong Hoon, et al. Effects of Mg incorporation by co-sputtering into the ZnO channel layer of thin-film transistors. Journal of the Korean Physical Society 62.6 (2013): 937-941.
[2] Becerril, M., et al. Aluminum-doped ZnO polycrystalline films prepared by co-sputtering of a ZnO-Al target. Revista mexicana de física 60.1 (2014): 27-31.
[3] Moore, James C., and Cody V. Thompson. A phenomenological model for the photocurrent transient relaxation observed in ZnO-based photodetector devices. Sensors 13.8 (2013): 9921-9940.

Chapter 5
[1] Chou, Kan-Sen, Tzy-Kuang Lee, and Feng-Jiin Liu. Sensing mechanism of a porous ceramic as humidity sensor. Sensors and Actuators B: Chemical 56.1-2 (1999): 106-111.
[2] Tai, Weon-Pil, and Jae-Hee Oh. Humidity sensing behaviors of nanocrystalline Al-doped ZnO thin films prepared by sol–gel process. Journal of Materials Science: Materials in Electronics 13.7 (2002): 391-394.
[3] Lee, Chang-Hung, et al. A printable humidity sensing material based on conductive polymer and nanoparticles composites. Japanese Journal of Applied Physics 52.5S1 (2013): 05DA08.
[4] Tsai, You-Ting, et al. Fast Detection and Flexible Microfluidic pH Sensors Based on Al-Doped ZnO Nanosheets with a Novel Morphology. ACS omega 4.22 (2019): 19847-19855.
[5] Chiang, Jung-Lung, and Chia-Yu Kuo. Study on the characterizations and applications of the pH-Sensor with GZO/glass extended-gate FET. 2013 IEEE 5th International Nanoelectronics Conference (INEC). IEEE, 2013.

Chapter 6
[1] Jeong, Jun-Kyo, et al. Investigation of atomic-layer-deposited Al-doped ZnO film for AZO/ZnO double-stacked active layer thin-film transistor application. Thin Solid Films 638 (2017): 89-95.
[2] Hong, Yewon, et al. Effects of active layer thickness on the electrical characteristics of solution processed In-Ga-Zn-O TFTs. 2014 21st International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD). IEEE, 2014.
[3] Barquinha, P., et al. Influence of the semiconductor thickness on the electrical properties of transparent TFTs based on indium zinc oxide. Journal of non-crystalline solids 352.9-20 (2006): 1749-1752.
[4] Jang, Kyu-Won, et al. Thermal Analysis and Operational Characteristics of an AlGaN/GaN High Electron Mobility Transistor with Copper-Filled Structures: A Simulation Study. Micromachines 11.1 (2020): 53.
[5] Li, Jyun-Yi, et al. Photo-Electrical Properties of MgZnO Thin-Film Transistors With High-${k} $ Dielectrics. IEEE Photonics Technology Letters 30.1 (2017): 59-62.
[6] Ko, T. K., et al. AlGaN/GaN Schottky-barrier UV-B bandpass photodetectors with ITO contacts and LT-GaN cap layers. Semiconductor science and technology 21.8 (2006): 1064.
[7] Lee, M. L., Jinn-Kong Sheu, and Yung-Ru Shu. Ultraviolet bandpass Al 0.17 Ga 0.83 N∕Ga N heterojunction phototransitors with high optical gain and high rejection ratio. Applied Physics Letters 92.5 (2008): 053506.

Chapter 7
[1] Alpert, Hannah S., et al. Gallium Nitride Photodetector Measurements of UV Emission from a Gaseous CH4/O2 Hybrid Rocket Igniter Plume. 2019 IEEE Aerospace Conference. IEEE, 2019.
[2] Ferguson, I., et al. GaN and AlGaN metal–semiconductor–metal photodetectors. Materials Science and Engineering: B 50.1-3 (1997): 311-314.
[3] Li, Dabing, et al. Influence of threading dislocations on GaN-based metal-semiconductor-metal ultraviolet photodetectors. Applied Physics Letters 98.1 (2011): 011108.
[4] Wang, Jyh-Liang, et al. pH-sensing characteristics of hydrothermal Al-doped ZnO nanostructures. Journal of Nanomaterials 2013 (2013).
[5] Tsai, You-Ting, et al. Fast Detection and Flexible Microfluidic pH Sensors Based on Al-Doped ZnO Nanosheets with a Novel Morphology. ACS omega 4.22 (2019): 19847-19855.
[6] Park, Won Jun, et al. Investigation on doping dependency of solution-processed Ga-doped ZnO thin film transistor. Applied Physics Letters 93.8 (2008): 083508.
[7] Hai-Qin, Huang, et al. Characteristics and time-dependent instability of Ga-doped ZnO thin film transistor fabricated by radio frequency magnetron sputtering. Chinese Physics Letters 28.12 (2011): 128502.
[8] Zou, Xiao, et al. Electrical characteristics of Al-doped ZnO-channel thin-film transistor with high-κ HfON/SiO 2 stack gate dielectric. 2010 IEEE International Conference of Electron Devices and Solid-State Circuits (EDSSC). IEEE, 2010.
[9] Kim, Eom-Ji, Won-Ho Lee, and Sung-Min Yoon. Investigations on the roles of position controlled Al layers incorporated into an Al-doped ZnO active channel during atomic layer deposition for thin film transistor applications. Japanese Journal of Applied Physics 55.3S1 (2016): 03CC03.
[10] Kim, Eom-Ji, et al. Effect of Al concentration on Al-doped ZnO channels fabricated by atomic-layer deposition for top-gate oxide thin-film transistor applications. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 32.4 (2014): 041202.
[11] Jeong, Jun-Kyo, et al. Investigation of atomic-layer-deposited Al-doped ZnO film for AZO/ZnO double-stacked active layer thin-film transistor application. Thin Solid Films 638 (2017): 89-95.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top