(3.227.0.150) 您好!臺灣時間:2021/05/06 12:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:何佳霖
研究生(外文):Jia-LinHer
論文名稱:碳化矽與導電碳包覆之奈米矽片及其於鋰離子電池陽極之應用
論文名稱(外文):Silicon Carbide and Conductive Carbon Coated Silicon Flake for Application to Anode of Lithium Ion Battery
指導教授:曾永華曾永華引用關係
指導教授(外文):Yon-Hua Tzeng
學位類別:碩士
校院名稱:國立成功大學
系所名稱:微電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:73
中文關鍵詞:鋰離子電池間苯二酚-甲醛樹酯碳化矽陽極材料
外文關鍵詞:Lithium ion batterySiliconResorcinol–formaldehyde (RF) resinsSilicon CarbideAnode
相關次數:
  • 被引用被引用:0
  • 點閱點閱:26
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
科技的進步帶給人們便利生活的同時,能源的需求與儲存議題也逐漸受到重視,不能否認,能源是帶動科技進步的重要推手,然而隨著地球的資源日漸短缺,能源不足的問題日趨嚴峻,加上近年來環保意識抬頭更注重於綠色能源,發展儲電系統便是構建分散能源並提昇離峰時段用電效率的最佳方法,對於間歇性電力來源而言,電池或許是理想的儲存媒介,因為電池充電速度快,能立即開啟或關閉,而且容易擴充,而其中鋰離子電池為現今最有效儲存能源的方式之一,與其他電池相比,鋰電池具有電容量大、安全性高、工作電壓適中、低環境汙染、高能量密度、可快速充放電且循環壽命長等優點,被認為是目前最有效率的能源儲存方式。

本研究主要專注於鋰離子電池陽極(負極)材料的開發,其中石墨陽極在應用上具有充放電周期長的優勢,且在長時間充放電時不會有枝晶鋰產生,是市面上最常使用的鋰電池陽極,然而其理論電容只有372〖 mAh g〗^(-1),所以尋找替代的材料是重之重。其中矽是下一代鋰離子電池(LIB)最有希望的陽極材料,因為它具有4200〖 mAh g〗^(-1)的高理論電容值,然而在充放電期間的大體積變化造成粉末碎裂和低固有電導率妨礙了其電化學性能。因此本研究主要在矽材料上加以改善,使用熱化學氣相沉積法(Thermal Chemical Vapor Deposition, Thermal CVD)在奈米矽片上成長碳化矽及沉積導電碳當作緩衝層,再加上塗佈間苯二酚-甲醛樹酯當作最外層的保護層,以上述所說的兩道製程包覆之矽所製成的陽極,在全充全放下80次循環後,還有1099〖 mAh g〗^(-1)的電容量,而未處理的奈米矽片陽極只剩下50〖 mAh g〗^(-1)的電容量,證明此包覆方法可以幫助矽基陽極材料延長其壽命。
A thermal chemical vapor deposition (CVD) method is used to grow silicon carbide and deposit conductive carbon as a buffer layer on surfaces of the silicon flake, and coating resorcinol–formaldehyde (RF) resins is used as the outermost protective layer. By taking advantage of the high strength and toughness of silicon carbide (SiC), a SiC layer is introduced between the inner silicon and outer carbon layers to inhibit the formation of Li2SiF6. The Si-carbon composite as an anode exhibited the reversible capacity of 1099〖 mAh g〗^(-1) at 500〖 mA g〗^(-1) after 80 cycles.
摘要 I
Abstract II
致謝 VIII
圖目錄 XII
表目錄 XVIII
第一章 緒論 1
第二章 文獻回顧 3
2.1 鋰離子電池工作原理 3
2.2 鋰離子電池陽極材料介紹 4
2.3 矽作為鋰離子電池陽極之優勢與面對的挑戰 5
2.4 改善矽應用在鋰離子電池陽極之方法 – 矽奈米結構 7
2.4.1 零維矽奈米結構 8
2.4.2 一維矽奈米結構 10
2.4.3 二維矽奈米結構 12
2.4.4 三維矽奈米結構 13
2.5 改善矽應用在鋰離子電池陽極之方法 – 矽碳複合材料 15
2.5.1 石墨烯 (graphene) 與矽的複合材料應用於鋰電池陽極 15
2.5.2 奈米碳管 (carbon nanotube,CNT) 與矽的複合材料應用於鋰電池陽極 17
2.5.3 間苯二酚/甲醛(Resorinol / Formaldehyde, RF) 20
2.5.4 碳化矽(silicon carbide, SiC) 21
第三章 實驗方法與步驟 22
3.1 實驗流程 22
3.2 矽包覆間苯二酚/甲醛(Resorcinol / Formaldehyde, RF)之製備 23
3.3 矽包覆碳化矽(Silicon carbide, SiC):碳之製備 24
3.4 粉末特性量測機台介紹 26
3.4.1 拉曼光譜分析儀(Raman Spectrum System) 26
3.4.2 掃描式電子顯微鏡 (Scanning Electron Microscope, SEM) 28
3.4.3 高溫二維X-ray廣角繞射儀(2D X-ray Diffractometer, XRD) 29
3.4.4 傅立葉轉換紅外光光譜儀(Fourier-transform infrared spectroscopy, FTIR) 30
3.4.5 高解析穿透電子顯微鏡(Transmission Electron Microscope, HR-TEM) 31
3.5 鋰離子二次半電池組裝 32
3.5.1 攪漿料及陽極極片製作流程 32
3.5.2 半電池封裝流程 34
3.6 充放電量測系統與分析 36
第四章 實驗結果與討論 38
4.1 矽碳複合材料 38
4.1.1 矽碳複合材料製備及電子顯微鏡分析 38
4.1.2 粉末簡易導電度量測 45
4.1.3 拉曼光譜儀分析 46
4.1.4 傅立葉轉換紅外光光譜儀(FTIR)分析 48
4.1.5 X-ray廣角繞射儀(XRD)分析 52
4.1.6 高解析穿透電子顯微鏡(HR-TEM)分析 56
4.2 半電池之電化學性質分析 57
4.2.1 原始矽粉以及包覆RF碳層與成長碳化矽:碳之電池性能 57
4.2.2 奈米矽片結合RF碳層與成長碳化矽:碳之電池性能 61
第五章 結論與未來展望 67
第六章 參考文獻 69
[1]P. o. W. R. A. M. P. Ltd. Global Lithium-Ion Battery Market: by Type (Lithium Nickel Manganese Cobalt, Lithium Iron Phosphate, Lithium Cobalt Oxide, Lithium Titanate Oxide, Lithium Manganese Oxide, and Lithium Nickel Cobalt Aluminum Oxide) Forecast till 2023 [Online]. Available: https://www.marketresearchfuture.com/reports/lithium-ion-battery-market-979.
[2]M. D. Bhatt and C. O'Dwyer, Recent progress in theoretical and computational investigations of Li-ion battery materials and electrolytes, Physical Chemistry Chemical Physics, vol. 17, no. 7, pp. 4799-4844, 2015.
[3]R. Marom, S. F. Amalraj, N. Leifer, D. Jacob, and D. Aurbach, A review of advanced and practical lithium battery materials, Journal of Materials Chemistry, vol. 21, no. 27, pp. 9938-9954, 2011.
[4]R. Liu, J. Duay, and S. B. Lee, Heterogeneous nanostructured electrode materials for electrochemical energy storage, Chemical Communications, vol. 47, no. 5, pp. 1384-1404, 2011.
[5]R. A. Huggins, Lithium alloy negative electrodes, Journal of Power Sources, vol. 81, pp. 13-19, 1999.
[6]W.-J. Zhang, A review of the electrochemical performance of alloy anodes for lithium-ion batteries, Journal of Power Sources, vol. 196, no. 1, pp. 13-24, 2011.
[7]J. W. Kim, J. H. Ryu, K. T. Lee, and S. M. Oh, Improvement of silicon powder negative electrodes by copper electroless deposition for lithium secondary batteries, Journal of Power sources, vol. 147, no. 1-2, pp. 227-233, 2005.
[8]H. Wu and Y. Cui, Designing nanostructured Si anodes for high energy lithium ion batteries, Nano today, vol. 7, no. 5, pp. 414-429, 2012.
[9]L. Liu, J. Lyu, T. Li, and T. Zhao, Well-constructed silicon-based materials as high-performance lithium-ion battery anodes, Nanoscale, vol. 8, no. 2, pp. 701-722, 2016.
[10]E. Roduner, Size matters: why nanomaterials are different, Chemical Society Reviews, vol. 35, no. 7, pp. 583-592, 2006.
[11]A. S. Arico, P. Bruce, B. Scrosati, J.-M. Tarascon, and W. Van Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices, in Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group: World Scientific, 2011, pp. 148-159.
[12]X. H. Liu, L. Zhong, S. Huang, S. X. Mao, T. Zhu, and J. Y. Huang, Size-dependent fracture of silicon nanoparticles during lithiation, ACS nano, vol. 6, no. 2, pp. 1522-1531, 2012.
[13]H. Kim, M. Seo, M. H. Park, and J. Cho, A critical size of silicon nano‐anodes for lithium rechargeable batteries, Angewandte Chemie International Edition, vol. 49, no. 12, pp. 2146-2149, 2010.
[14]X. Su et al., Silicon‐based nanomaterials for lithium‐ion batteries: a review, Advanced Energy Materials, vol. 4, no. 1, p. 1300882, 2014.
[15]C. Li, T. Shi, D. Li, H. Yoshitake, and H. Wang, Dependence of thermal stability of lithiated Si on particle size, Journal of Power Sources, vol. 335, pp. 38-44, 2016.
[16]Y. Yao et al., Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life, Nano letters, vol. 11, no. 7, pp. 2949-2954, 2011.
[17]C. K. Chan, R. N. Patel, M. J. O’connell, B. A. Korgel, and Y. Cui, Solution-grown silicon nanowires for lithium-ion battery anodes, ACS nano, vol. 4, no. 3, pp. 1443-1450, 2010.
[18]B. Laik, L. Eude, J.-P. Pereira-Ramos, C. S. Cojocaru, D. Pribat, and E. Rouvière, Silicon nanowires as negative electrode for lithium-ion microbatteries, Electrochimica Acta, vol. 53, no. 17, pp. 5528-5532, 2008.
[19]H. T. Nguyen et al., Highly interconnected Si nanowires for improved stability Li‐ion battery anodes, Advanced Energy Materials, vol. 1, no. 6, pp. 1154-1161, 2011.
[20]C. K. Chan et al., High-performance lithium battery anodes using silicon nanowires, Nature nanotechnology, vol. 3, no. 1, pp. 31-35, 2008.
[21]Z. Favors et al., Towards scalable binderless electrodes: carbon coated silicon nanofiber paper via Mg reduction of electrospun SiO 2 nanofibers, Scientific reports, vol. 5, p. 8246, 2015.
[22]Z. Du, S. Zhang, Y. Liu, J. Zhao, R. Lin, and T. Jiang, Facile fabrication of reticular polypyrrole–silicon core–shell nanofibers for high performance lithium storage, Journal of Materials Chemistry, vol. 22, no. 23, pp. 11636-11641, 2012.
[23]D. J. Lee et al., Electrospun three-dimensional mesoporous silicon nanofibers as an anode material for high-performance lithium secondary batteries, ACS applied materials & interfaces, vol. 5, no. 22, pp. 12005-12010, 2013.
[24]H. Jung, M. Park, S. H. Han, H. Lim, and S.-K. Joo, Amorphous silicon thin-film negative electrode prepared by low pressure chemical vapor deposition for lithium-ion batteries, Solid State Communications, vol. 125, no. 7-8, pp. 387-390, 2003.
[25]J. R. Szczech and S. Jin, Nanostructured silicon for high capacity lithium battery anodes, Energy & Environmental Science, vol. 4, no. 1, pp. 56-72, 2011.
[26]S. Ohara, J. Suzuki, K. Sekine, and T. Takamura, A thin film silicon anode for Li-ion batteries having a very large specific capacity and long cycle life, Journal of Power Sources, vol. 136, no. 2, pp. 303-306, 2004.
[27]W. He, H. Tian, F. Xin, and W. Han, Scalable fabrication of micro-sized bulk porous Si from Fe–Si alloy as a high performance anode for lithium-ion batteries, Journal of Materials Chemistry A, vol. 3, no. 35, pp. 17956-17962, 2015.
[28]H. Park et al., Control of interfacial layers for high-performance porous Si lithium-ion battery anode, ACS applied materials & interfaces, vol. 6, no. 18, pp. 16360-16367, 2014.
[29]J.-H. Lee, W.-J. Kim, J.-Y. Kim, S.-H. Lim, and S.-M. Lee, Spherical silicon/graphite/carbon composites as anode material for lithium-ion batteries, Journal of Power Sources, vol. 176, no. 1, pp. 353-358, 2008.
[30]J. K. Lee, K. B. Smith, C. M. Hayner, and H. H. Kung, Silicon nanoparticles–graphene paper composites for Li ion battery anodes, Chemical communications, vol. 46, no. 12, pp. 2025-2027, 2010.
[31]W. S. Hummers Jr and R. E. Offeman, Preparation of graphitic oxide, Journal of the american chemical society, vol. 80, no. 6, pp. 1339-1339, 1958.
[32]B. J. Landi, M. J. Ganter, C. D. Cress, R. A. DiLeo, and R. P. Raffaelle, Carbon nanotubes for lithium ion batteries, Energy & Environmental Science, vol. 2, no. 6, pp. 638-654, 2009.
[33]B. J. Landi, C. M. Evans, J. J. Worman, S. L. Castro, S. G. Bailey, and R. P. Raffaelle, Noncovalent attachment of CdSe quantum dots to single wall carbon nanotubes, Materials Letters, vol. 60, no. 29-30, pp. 3502-3506, 2006.
[34]J. Shu, H. Li, R. Yang, Y. Shi, and X. Huang, Cage-like carbon nanotubes/Si composite as anode material for lithium ion batteries, Electrochemistry Communications, vol. 8, no. 1, pp. 51-54, 2006.
[35]W. Wang and P. N. Kumta, Nanostructured hybrid silicon/carbon nanotube heterostructures: reversible high-capacity lithium-ion anodes, ACS nano, vol. 4, no. 4, pp. 2233-2241, 2010.
[36]N. Li et al., Sol–gel coating of inorganic nanostructures with resorcinol–formaldehyde resin, Chemical Communications, vol. 49, no. 45, pp. 5135-5137, 2013.
[37]Z. Lu et al., Nonfilling carbon coating of porous silicon micrometer-sized particles for high-performance lithium battery anodes, ACS nano, vol. 9, no. 3, pp. 2540-2547, 2015.
[38]T. S. D. Kumari, D. Jeyakumar, and T. P. Kumar, Nano silicon carbide: a new lithium-insertion anode material on the horizon, RSC advances, vol. 3, no. 35, pp. 15028-15034, 2013.
[39]A. V. Singh, S. Chandra, S. Kumar, and G. Bose, Mechanical and structural properties of RF magnetron sputter-deposited silicon carbide films for MEMS applications, Journal of Micromechanics and Microengineering, vol. 22, no. 2, p. 025010, 2012.
[40]D. T. Ngo, H. T. Le, X.-M. Pham, C.-N. Park, and C.-J. Park, Facile synthesis of Si@ SiC composite as an anode material for lithium-ion batteries, ACS applied materials & interfaces, vol. 9, no. 38, pp. 32790-32800, 2017.
[41]Y. Komura, A. Tabata, T. Narita, and A. Kondo, Influence of gas pressure on low-temperature preparation and film properties of nanocrystalline 3C-SiC thin films by HW-CVD using SiH4/CH4/H2 system, Thin Solid Films, vol. 516, no. 5, pp. 633-636, 2008.
[42]M. Dragomir, M. Valant, M. Fanetti, and Y. Mozharivskyj, A facile chemical method for the synthesis of 3C–SiC nanoflakes, RSC advances, vol. 6, no. 26, pp. 21795-21801, 2016.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔