(3.238.173.209) 您好!臺灣時間:2021/05/12 13:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳柏廷
研究生(外文):Po-TingChen
論文名稱:於雙重表面粗化矽基板之氧化鎳奈米片製備及其於pH感測器之應用研究
論文名稱(外文):Fabrication of nickel oxide nanosheets on double-fold roughened silicon substrates and its pH sensing application
指導教授:王水進
指導教授(外文):Shui-Jinn Wang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:微電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:102
中文關鍵詞:濕式化學蝕刻矽角錐金屬輔助化學蝕刻矽奈米線水熱法氧化鎳奈米片酸鹼感測器延伸式閘極場效電晶體
外文關鍵詞:Wet chemical etchingPyramidal conesMetal-asisted chemical etchingSilicon nanowires (SiNWs)Hydrothemal methodNickel oxide (NiO) nanosheetspH sensorsextended-gate field-effect transistor (EGFET)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:33
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文旨在利用濕式蝕刻法與金屬輔助蝕刻法於p-Si (100)平面基板(Planar-Si)分別製備矽角錐(Pyramid-Si)與矽奈米線(Silicon nanowires, SiNWs)之單層表面粗化平台,另亦同時結合此二種不同蝕刻法製備出具矽角錐奈米線(SiNWs/Pyramid-Si)之雙重表面粗化平台,以提升矽基板之表面積(Surface area, SA)作為感測材料之成長;另外,亦藉由水熱法(Hydrothermal growth, HTG)分別於Planar-Si、SiNWs與SiNWs/Pyramid-Si平台上磊晶成長氧化鎳奈米片(Nickel oxide nanosheets, NiO NSs)作為感測材料;所製備之感測電極(Sensing electrodes, SEs)亦結合延伸閘極場效電晶體(Extended-gate field-effect transistor, EGFET)之配置應用於高性能pH感測器之開發。藉由雙重粗化SiNWs/Pyramid-Si所提供之高SA作為工作平台,可獲得極大化SA之NiO NSs感測材料成長,以增加感測材料表面之有效活化位址作為pH緩衝液中H+(或OH‒)之吸附鍵結,進而提升pH-EGFET之感測靈敏度。
本論文之研究工作主要分為三部分:第一部分研究旨在以AgNO3 (0.02 M)/HF (5 M)之混合溶液及室溫下於p-Si (100)平面基板上分別進行10、20、30、40與50 min之金屬輔助蝕刻製程以製備具單層粗化結構之SiNWs平台,並探討不同蝕刻時間調變所形成SiNWs之表面形貌及其應用於pH-EGFET感測特性之影響。實驗結果顯示,所製備NWs-type SEs中,40 min蝕刻製程所製備之NWs-type SE因擁有最適化之SiNWs的長度與密度而具有最高之感測SA,因而呈現出最佳之靈敏度(48.55 mV/pH);然而,當蝕刻時間延長至50 min時,雖然所蝕刻出之SiNWs持續增長,但較長之SiNWs較容易受到凡德瓦力之影響而集結成束,使得整體SA下降,進而導致靈敏度呈現降低之趨勢。
第二部分旨在沿用本研究團隊先前已開發之最適化濕式蝕刻製程(0.9 M氫氧化鉀(KOH)與1.2 M異丙醇(IPA)混合溶液於90 oC下蝕刻40 min)所製備之90 oC-KOH-etched Si基板(Pyramid-Si)作為工作平台,並使用與上述相同的金屬輔助蝕刻法分別進行10/ 20/ 30/ 40/ 50 min之蝕刻製程調變,製備出具SiNWs/Pyramid-Si形式之雙重表面粗化矽基板,以探討不同蝕刻時間所形成雙重粗化結構SiNWs/Pyramid-Si之表面形貌及其應用於pH-EGFET感測特性之影響。實驗結果顯示,SiNWs的蝕刻長度與SA隨著蝕刻時間的增加而增大,然而,相較於Planar-Si基板所蝕刻出之單層粗化SiNWs,於Pyramid-Si基板所蝕刻出之SiNWs具有較小SA,主要歸因於KOH-etched Si基板所裸露(111)晶面之蝕刻速率遠小於Planar-Si之(100)晶面;另外,於pH感測靈敏度上,具較小SA之雙重粗化PyNW-type SEs所呈現之pH靈敏度卻優於具較大SA之單層粗化NW-type SEs,可能歸因於p-Si (100)晶面所蝕刻出SiNWs的(110)晶面相較於KOH-etched Si基板的穩定(111)晶面更容易與水溶液反應形成SiO2,因而導致pH感測特性之退化。值得一提的是,於所製備PyNW-type SEs中,於90 °C-KOH-etched Si基板上進行30 min蝕刻SiNWs所製備之PyNW-type SE具有最佳之pH靈敏度(54.77 mV/pH),主要歸因於30 min蝕刻製程可呈現出最適化之SiNWs長度與密度,且仍維持較為完整的角錐體結構;然而,當蝕刻時間延長至40及50 min時,由於SiNWs的過度蝕刻造成大量Ag顆粒結糰於角錐體頂部並破壞角錐體結構的外貌,導致整體SA下降進而使pH靈敏度呈現戲劇性地降低。
第三部分旨在利用水熱法以Ni(NO3)2·6H2O (70 mM)與C6H12N4(70 mM)混合溶液及90 oC於上述最適化蝕刻製程所製備單層粗化SiNWs (蝕刻40 min)/ Planar-Si與雙重粗化SiNWs (蝕刻30 min)/pyramid-Si基板進行2/ 3/ 4/ 5/ 6 h之NiO NSs磊晶成長,以探討不同HTG時間所成長NiO NSs感測材料表面形貌變化及其應用於pH-EGFET感測特性之影響。實驗結果顯示,於相同HTG時間製程,相較於單層粗化SiNWs/Planar-Si平台,於雙重粗化SiNWs/pyramid-Si基板上成長NiO NSs所製備PyNW-NiO-type SEs之感測特性皆有明顯提升,主要歸因於90 °C-KOH-etched Si基板具有相對較大之粗化結構面積增益,可提供較多位址作為HTG NiO NSs之成核與成長,使其呈現出較高之NiO NSs密度與SA,進而使感測靈敏度提升約3‒11%。值得一提的是,於所製備NiO NSs/NWs/Pyramid-type SEs元件中,HTG-5 h於SiNWs/Pyramid-Si雙重粗化結構基板上所成長NiO NSs具有最大SA (6,406 m2),進而展現出最佳靈敏度(56.50 mV/pH);當水熱時間延長至HTG-6 h製程,所成長NiO NSs逐漸達到飽和,可能由於多重表面粗化結構所提供大面積之成核點,使生長之NiO NSs於較短時間即可達到飽和,於角錐頂端之NSs稍微出現反蝕刻之現象,於此SiNW表面粗化結構所能提供之效益逐漸消失,因此所計算出之SA呈現略微下降趨勢,使整體SA (6,302 m2)與pH感測靈敏度(56.11 mV/pH)相較HTG-5 h製程略微下降。於可靠度之遲滯效應與時漂效應探討方面,最佳化結構之元件於緩衝溶液濃度為pH 7→4→7→10→7量測循環中之遲滯電壓為6.71 mV,於緩衝溶液濃度為pH 7之時漂值為1.79 mV,顯示所製備元件具備良好感測特性與優秀之可靠度穩定性。
本論文所提以適化水熱法製程於具雙重表面粗化結構之SiNWs/Pyramid-Si平台上進行高SVR之NiO NSs感測材料成長SE之pH感測器,可藉由Pyramid粗化、SiNWs粗化與NSs所得之SA增益有效改善元件之感測特性,亦具有低成本、製程簡易與大面積製備之優點,預期此元件於未來之pH感測器應用將極具潛力。
In this study, the fabrication of high performance sensing electrodes (SEs) based on nickel oxide (NiO) nanosheets (NSs) on double-fold roughened silicon (Si) substrates is proposed and demonstrated. Using a suitable KOH/IPA chemical etching combined with a AgNO3/HF metal-assisted chemical etching processes to double-fold roughened (pyramidal cones shape and nanowires (NWs)) Si substrates with high surface area (SA), considerably enhancement in the amount of nucleation sites for the growth of sensing material is obtained. Hydrothermal growth (HTG) method was used to synthesize NiO nanosheets (NSs) on the Planar-Si, SiNWs/Planar-Si with single-fold roughening surface structure, and SiNWs/pyramid-Si substrates with double-fold roughening surface structure, respectively. Sensing electrodes with Plan-NiO-type, NW-NiO-type, and PyNW-NiO-type SEs were used for pH sensors application. Enhanced pH sensing performance of the prepared SEs with extended-gate field-effect transistor (EGFET) configuration are measured and studied.
The contents of the present thesis are divided into three parts. In the first part, NW-type SEs based on SiNWs sensing material formed on Planar-Si substrates prepared and their sensing performance is prepared and discussed. To clarify the effect of the etching time on the surface morphology of SiNWs on Planar-Si, p-Si (100) wafers were subjected to a metal-assisted chemical etching using a AgNO3 (0.02 M)/HF (5 M) mixed solution at room temperature for 10, 20, 30, 40 and 50 min, respectively. For NW-type SEs, it is found that the SiNWs etched for 40 min exhibits the best sensitivity of 48.55 mV/pH, which is ascribed to the optimal length and density of SiNWs, thereby increasing its sensing SA to offer the more activation sites for the adsorption of the H+ (or OH‒).
In the second part, the PyNW-type SEs based on SiNWs obtained from 90°C-KOH-etched Si (pyramid-Si) substrates are fabricated and pH sensing performance presented and discussed. To clarify the effect of the etching time on the surface morphology of SiNWs on pyramid-Si, the 90°C-KOH-etched Si substrate were subjected to a metal-assisted chemical etching using a AgNO3 (0.02 M)/HF (5 M) mixed solution at room temperature for 10, 20, 30, 40 and 50 min, respectively. To examine the influence of etching time for the formation of SiNWs on pH sensing performance, the SEs based on SiNWs with different etching times (10, 20, 30, 40 and 50 min) on the pyramid-Si (PyNW-type SEs) were also prepared and investigated. For PyNW-type SEs, the SiNWs etched for 30 min exhibits the best sensitivity of 54.77 mV/pH, which is attributred to the 30 min etching process that can show the optimal length and density of SiNWs, and still maintain a relatively complete pyramid structure. However, as the etching time was extended to 40 and 50 min, enlengthening etching causes a high degree of Ag particle agglomeration on the top of the pyramid and distort the surface morphology of the pyramid structure, resulting in a decrease in the overall SA and a dramatic decrease in pH sensitivity.
In the third part, the PyNW-NiO-type SEs based on NiO NSs synthesized on SiNWs/pyramid-Si (etching 30 min) using HTG technique were prepared and discussed. To elucidate the effect of HTG time on the morphology of NiO NSs and its pH sensing performance, the SiNWs/pyramid-Si (etching 30 min) was subjected to a chemical solution with 70 mM of Ni(NO3)2·6H2O and 70 mM of C6H12N4 at 90 °C for 2, 3, 4, 5 and 6 h, respectively. Thermal annealing was conducted in air at 400 °C for 40 min to transform the as-grown Ni(OH)2 NSs to NiO NSs. The experimental results reveal that, the PyNW-NiO 5 h exhibits the best pH sensitivity (56.50 mV/pH), which mainly due to the largest SA (6,406 μm2) of NiO NSs was obtained from the HTG-5 h process. However, as the hydrothermal time was extended to the 6 h, saturation in the growth of NiO NSs is found. It might be due to there is too much growth sites on the PyNW substrate, intense growth of NiO NSs make the exhaust of a solution quickly. The NSs at the top of the pyramid show a slight anti-etching phenomenon, where the benefit provided by the rough structure of the SiNW surface decreased. It is seen that both the SA (6,302 μm2) and pH sensing sensitivity (56.11 mV/pH) are slightly lower than that of the HTG-5 h process. In terms of the hysteresis effect and drift effect of reliability, the hysteresis voltage of the PyNW-NiO 5 h SE of 6.71 mV and drift voltage of 1.79 mV in pH 7 buffer solution were achieved. It shows that the prepared device has good sensing performance and excellent reliability and stability.
In this thesis, the SiNWs/Pyramid-Si substrate with double-fold roughened has been used to prepare the pH sensor of NiO NSs SE by a hydrothermal method. The high surface area gain obtained from the structure of the pyramid, SiNWs and NSs has been shown to be very effective in improving pH Sensing performance. It is expected that the double-fold roughening scheme proposed and experimental results demonstrated in this thesis would be a potential reference for pH sensor applications.
第一章、緒論 1
1-1、pH感測器簡介 1
1-2、pH sensor之發展 2
1-3、矽表面粗化應用於pH感測器 5
1-4、研究動機 6
第二章、pH感測原理簡介與矽平台蝕刻原理 8
2-1、離子感測場效電晶體之原理 8
2-2、吸附鍵結模型 9
2-3、延伸式閘極場效電晶體 13
2-4、濕式蝕刻原理 15
2-5、金屬輔助蝕刻機制 20
2-6、表面積增益之估算法 23
第三章、HTG NiO NSs 於不同表面粗化Si平台之製備及其於pH感測量測方式與材料分析 29
3-1、HTG NiO NSs於多重表面粗化SiNWs/Pyramid-Si之製備與相關材料分析 30
3-1-1、濕式蝕刻法製備Pyramid-Si結構 31
3-1-2、金屬輔助蝕刻法製備SiNWs表面粗化結構 33
3-1-3、水熱法於不同基板上成長NiO NSs之製備 36
3-1-4、NiO之材料分析 38
3-2、pH-EGFET之SEs製備 42
3-3、pH-EGFET之裝置與pH感測特性量測方法 43
3-3-1、pH-EGFET之裝置 43
3-3-2、pH感測特性之量測方法 44
第四章、金屬輔助蝕刻SiNWs於Planar-Si與Pyramid-Si平台之外貌及pH感測特性分析 46
4-1、SiNWs/Planar-Si SEs之外貌及其於pH-EGFET感測特性分析 47
4-2、SiNWs/Pyramid-Si SEs之外貌及其於pH-EGFET感測特性分析 52
第五章、多重粗化奈米結構氧化鎳感測膜之pH感測特性分析 62
5-1、水熱法於Planar-Si基板成長 NiO NSs (Plan-NiO-type SEs)之外貌及其於pH-EGFET感測特性分析 63
5-2、水熱法於SiNWs/Planar-Si基板成長 NiO NSs (NW-NiO-type SEs)之外貌及其於pH-EGFET感測特性分析 68
5-3、水熱法於SiNWs/Pyramid-Si基板成長 NiO NSs (PyNW-NiO-type SEs)之外貌及其於pH-EGFET感測特性分析 73
5-4、遲滯效應(Hysteresis effect)及時漂效應(Drift effect)之探討 80
第六章、結論與未來研究建議 84
6-1 、結論 84
6-2 、未來研究之建議 86
参考資料 89
[1]M. T. Ghoneim, A. Nguyen, N. Dereje, J. Huang, G. C. Moore, P. J. Murzynowski, and C. Dagdeviren, Recent progress in electrochemical pH-sensing materials and configurations for biomedical applications, Chemical Reviews, vol. 119, pp. 5248-5297, 2019.
[2]X. D. Wang and O. S. Wolfbeis, fiber-optic chemical sensors and biosensors (2015−2019), Chemical Reviews, vol. 92, pp. 397-403, 2020.
[3]J. G. Ibanez, M. E. Rincon, S. G. Granados, M. Chahma, O. A. J. Quintero, and B. A. F. Uribe, Conducting polymers in the fields of energy, environmental remediation, and chemical−chiral sensors, Chemical Rreviews, vol. 118, pp. 4731-4816, 2018.
[4]G. Xu, W. Shen, and X. Wang, Applications of wireless sensor networks in marine environment monitoring: A survey, Sensors, vol. 14, pp. 16932-16954, 2014.
[5]M. Yuqing, C. Jianrong, and F. Keming, New technology for the detection of pH, Journal of Biochemical and Biophysical Methods, vol. 63, no. 1, pp. 1-9, 2005.
[6]S. Kalu, M. Koirala, U. R. Khadka, and K. C. Anup, Soil quality assessment for different land use in the panchase area of western nepal, International Journal of Environmental Protection, vol. 5, no. 1, pp. 38-43, 2015.
[7]G. Urban, G. Jobst, F. Keplinger, E. Aschauer, O. Tilado, R. Fasching, and F. Kohl, Miniaturized multi-enzyme biosensors integrated with pH sensors on flexible polymer carriers for in vivo applications, Biosensors and Bioelectronics, vol. 7, pp. 733-739, 1992.
[8]D. M. Kim, S. J. Cho, C. H. Cho, K. B. Kim, M. Y. Kim, and Y. B. Shim, Disposable all-solid-state pH and glucose sensors based on conductive polymer covered hierarchical AuZn oxide, Biosensors and Bioelectronics, vol. 79, pp. 165-172, 2016.
[9]M. Futagawa, T. Iwasaki, H. Murata, M. Ishida, and K. Sawada, A miniature integrated multimodal sensor for measuring pH, EC and temperature for precision agriculture, Sensors, vol. 12, no. 6, pp. 8338-8354, 2012.
[10]P. Jiang, H. Xia, Z. He, and Z. Wang, Design of a water environment monitoring system based on wireless sensor networks, Sensors, vol. 9, no. 8, pp. 6411-6434, 2009.
[11]C. Toumazou, L. M. Shepherd, S. C. Reed, G. I. Chen, A. Patel, D. M. Garner et al., Simultaneous DNA amplification and detection using a pH-sensing semiconductor system, Nature Methods, vol. 10, no. 7, pp. 641-648, 2013.
[12]A. Eftekhari, pH sensor based on deposited film of lead oxide on aluminum substrate electrode, Sensors and Actuators, vol. 88, pp. 234-238, 2003.
[13]O. Korostynska, K. Arshak, E. Gill, and A. Arshak, Review on state-of-the-art in polymer based pH sensors, Sensors, vol. 7, pp. 3027-3042, 2007.
[14]C. H. Lu, T. H. Hou, and T. M. Pan, High-performance double-gate α-InGaZnO ISFET pH sensor using a HfO2 gate dielectric, IEEE Transactions on Electron Devices, vol. 65, no. 1, pp. 237-242, 2018.
[15]K. B. Parizi, X. Xu, A. Pal, X. Hu, and H. S. P. Wong, ISFET pH sensitivity: counter-ions play a key role, Scientific Reports, vol. 7, no. 10, pp. 1-10, 2017.
[16]H. Cho, K. Kim, J. S. Yoon, T. Rim, M. Meyyappan, and C. K. Baek, Optimization of signal to noise ratio in silicon nanowire ISFET sensors, IEEE Sensors Journal, vol. 17, no. 9, pp. 2792-2796, 2017.
[17]D. Abubakar, N. M. Ahmed, and S. Mahmud, The Study on the effect of wet and dry oxidation of nickel thin film on sensitivity of EGFET based pH sensor, In Solid State Phenomena, vol. 290, pp. 199-207, 2019.
[18]S. A. Pullano, C. D. Critello, I. Mahbub, N. T. Tasneem, S. Shamsir, S. K. Islam, M. Greco, and A. S. Fiorillo, EGFET-based sensors for bioanalytical applications: A review, Sensors, vol. 18, pp. 1-24, 2018.
[19]N. M. Ahmed, E. A. Kabaa, M. S. Jaafar, and A. F. Omar, Characteristics of extended-gate field-effect transistor (EGFET) based on porous n-type (111) silicon for use in pH sensors, Journal of Electronic Material, vol. 46, no. 10, pp. 5804-5813, 2017.
[20]A. Fulati, S. M. U. Ali, M. Riaz, G. Amin, O. Nur, and M. Willander, Miniaturized pH sensors based on zinc oxide nanotubes/nanorods, Sensors, vol. 9, pp. 8911-8923, 2009.
[21]J. L. Wang, P. Y. Yang, T. Y. Hsieh, and P. C. Juan, Ionic pH and glucose sensors fabricated using hydrothermal ZnO nanostructures, Japanese Journal of Applied Physics, vol. 55, no. 16, pp. 1-7, 2016.
[22]N. Li, J. Zhang, Y. Tian, J. Zhang, W. Zhan, J. Zhao, Y. Ding, and W. Zuo, Hydrophilic modification of polyvinylidene fluoride membranes by ZnO atomic layer deposition using nitrogen dioxide/diethylzinc functionalization, Journal of Membrane Science, vol. 514, pp. 241-249, 2016.
[23]C. C. Yang, K. Y. Chen, and Y. K. Su, TiO2 nano flowers based EGFET sensor for pH sensing, Coatings, vol. 9, no. 521, pp. 1-7, 2019.
[24]J. Y. Li, S. P. Chang, S. J. Chang, and T. Y. Tsai, Sensitivity of EGFET pH sensors with TiO2 nanowires, ECS Solid State Letters, vol. 3, no. 10, pp. 123-126, 2014.
[25]R. A. Rahman, M. A .Zulkefle, K. A. Yusoff, W. F. H. Abdullah, M. Rusop, and S. H. Herman, Drying temperature dependence of Sol-gel spin coated bilayer composite ZnO/TiO2 thin films for extended gate field effect transistor pH sensor, IOP Conference Series: Materials Science and Engineering, vol. 304, no. 1, pp.1-7, 2018.
[26]H. H. Li, W. S. Dai, J. C. Chou, and H. C. Cheng, An extended-gate field-effect transistor with low-temperature hydrothermally synthesized SnO2 nanorods as pH sensor, IEEE Electron Device Letters, vol. 33, no. 10, pp. 1495-1497, 2012.
[27]L. H. Slewa, T. A. Abbas, and N. M. Ahmed, Effect of Sn doping and annealing on the morphology, structural, optical, and electrical properties of 3D (micro/nano) V2O5 sphere for high sensitivity pH-EGFET sensor, Sensors and Actuators: B, vol. 305, no. 127515, pp. 1-7, 2020.
[28]N. M. A. Alghafour, N. M. Ahmed, Z. Hassan, M. A. Almessiere, M. Bououdina, and N. H. A. Hardan, High sensitivity extended gate effect transistor based on V2O5 nanorods, J Mater Sci: Mater Electron, vol. 28, pp. 1364-1369, 2017.
[29]P. Salazar, F. J. G. Garcia, F. Yubero, J. G. Rostra, and A. R. G. Elipe, Characterization and application of a new pH sensor based on magnetron sputtered porous WO3 thin films deposited at oblique angles, Electrochimica Acta, vol. 193, pp. 24-31, 2016.
[30]C. Y. Kuo, S. J. Wang, R. M. Ko, and H. H. Tseng, Super-nernstian pH sensors based on WO3 nanosheets, Japanese Journal of Applied Physics, vol. 57, no. 4, pp. 1-7, 2018.
[31]Z. H. Ibupoto, K. Khun, and M. Willander, Development of a pH sensor using nanoporous nanostructures of NiO, Journal of Nanoscience and Nanotechnology, vol. 14, pp. 1-5, 2014.
[32]W. L. Tsai, B. T. Huang, P. Y. Yang, K. Y. Wang, C. Hsiao, and H. C. Cheng, Oxygen plasma functionalized multiwalled carbon nanotube thin film as a pH sensing membrane of extended-gate field-effect transistor, IEEE Electron Device Letters, vol. 34, no. 10 , pp. 1307-1309, 2013.
[33]W. L. Tsai, B. T. Huang, P. Y. Yang, K. Y. Wang, C. Hsiao, and H. C. Cheng, Functionalized carbon nanotube thin films as the pH sensing membranes of extended-gate field-effect transistors on the flexible substrates, IEEE Transaction on Nanotechnology, vol. 13, no. 4, pp. 760-766, 2014.
[34]D. Branagan and C. B. Breslin, Electrochemical detection of glucose at physiological pH using gold nanoparticles deposited on carbon nanotubes, Sensors and Actuators B: Chemical, vol. 282, pp. 490-499, 2019.
[35]F. Motahari, M. R. Mozdianfard, F. Soofivand, and M. S. Niasari, NiO nanostructures: synthesis, characterization and photocatalyst application in dye wastewater treatment, RSC Advances, vol. 4, pp. 27654-27660, 2014.
[36]陳璟鋒, P型氧化鎳薄膜之製備與其光性、電性及材料特性之研究, 碩士論文, 材料科學及工程學系碩博士班, 國立成功大學, 2004.
[37]Q. Wu, Y. Shen, L. Li, M. Cao, F. Gu, and L. Wang, Morphology and properties of NiO electrodes for p-DSSCs based on hydrothermal method, Applied Surface Science, vol. 276, pp. 411-416, 2013.
[38]B. Zhao, J. S. Tao, F. Peng, L. Zheng, J. Haijiao, and Z. Y. Jiang, Hydrothermal method to prepare porous NiO nanosheet, Materials Letters, vol. 67, pp. 24-27, 2012.
[39]B. A. Reguig, A. Khelil, L. Cattin, M. Morsli, and J. C. Berne`de, Properties of NiO thin films deposited by intermittent spray pyrolysis process, Applied Surface Science, vol. 253, pp. 4330-4334, 2007.
[40]W. J. Nam, Z. Gray, J. Stayancho, V. Plotnikov, D. Kwon, S. Waggoner et al., ALD NiO thin films as a hole transport-electron blocking layer material for photo-detector and solar cell devices, ECS Transactions, vol. 66, no. 1, pp. 275-279, 2015.
[41]K. E. Petersen, Silicon as a mechanical material, Proceedings of The IEEE, vol. 70, no. 5, pp. 420-457, 1982.
[42]D. Zhuang and J. Edgar, Wet etching of GaN, AlN and SiC: A review, Materials Science and Engineering: Reports, vol. 48, no. 1, pp. 1-46, 2005.
[43]H. Mackel, H. Holst, M. L ohmann, E. Wefringhaus, and P. P. Altermatt, Detailed analysis of random pyramid surfaces with ray tracing and image processing, IEEE Journal of Photovoltaics, vol. 6, no. 6, pp. 1456-1465, 2016.
[44]P. K. Singh, R. Kumar, M. Lal, S. N. Singh, and B. K. Das, Effectiveness of anisotropic etching of silicon in aqueous alkaline solutions, Solar Energy Materials & Solar Cells, vol. 70, pp. 103-113, 2001.
[45]T. Qiu, X. L. Wu, G. G. Sui, and P. K. Chu, Intergrowth mechanism of silicon nanowires and silver dendrites, Journal of Electronic Materials, vol. 35, no. 10, pp. 1879-1884, 2006.
[46]C. Y. Chen, C. S. Wu, C. J. Chou, and T. J. Yen, Morphological control of single-crystalline silicon nanowire arrays near room temperature, Advanced Materials, vol.20, pp. 3811-3815, 2008.
[47]H. A. Chaliyawala, A. Ray, R. K. Pati, and I. Mukhopadhyay, Strong light absorption capability directed by structured profile of vertical Si nanowires, Optical Materials, vol. 73, pp. 449-458, 2017.
[48]J. Yin, X. Qi, L. Yang, G. Hao, Jun Li, and J. Zhong, A hydrogen peroxide electrochemical sensor based on silver nanoparticles decorated silicon nanowire arrays, Electrochimica Acta, vol. 56, pp. 3884-3889, 2011.
[49]J. Y. Oha, H. J. Jang, W. J. Cho, and M. S. Islam, Highly sensitive electrolyte-insulator-semiconductor pH sensors enabled by silicon nanowires with Al2O3/SiO2 sensing membrane, Sensors and Actuators B: Chemical, vol. 171, pp. 238-243, 2012.
[50]K. Zhou, Z. Zhao, L. Pan, and Z. Wang, Silicon nanowire pH sensors fabricated with CMOS compatible sidewall mask technology, Sensors and Actuators B: Chemical, vol. 27, pp. 111-121, 2019.
[51]F. Peng, Y. Su, Y. Zhong, C. Fan, S. T. Lee, and Y. He, Silicon nanomaterials platform for bioimaging, biosensing, and cancer therapy, Accounts of Chemical Research, vol. 47, no. 2, pp. 612-623, 2014.
[52]F. Gasparyan, I. Zadorozhnyi, H. Khondkaryan, A. Arakelyan, and S. Vitusevich, Photoconductivity, pH sensitivity, noise, and channel length effects in Si nanowire FET sensors, Nanoscale Research Letters, vol. 13, no. 87, pp. 1-9, 2018.
[53]J. Chen, T. Subramani, Y. Sun, W. Jevasuwan, and N. Fukata, Efficiency enhancement of silicon nanowire solar cells by using UV/Ozone treatments and micro-grid electrode, Applied Surface Science, vol. 439, pp. 1057-1064, 2018.
[54]C. Zhang, L. Chen, Y. Zhu, and Z. Guan, Fabrication of 20.19% efficient single crystalline silicon solar cell with inverted pyramid microstructure, Nanoscale Research Letters, vol. 13, pp. 91-98, 2018.
[55]N. Zin, K. McIntosh, S. Bakhshi, A. V. Guardado, T. Kho, K. Fong et al., Polyimide for silicon solar cells with double-sided textured pyramids, Solar Energy Materials and Solar Cells, vol. 183, pp. 200-204, 2018.
[56]D. Zhiqiang, L. Meicheng, and T. M. Chonto, Effective light absorption using the double-sided pyramid gratings for thin film silicon solar cell, Nanoscale Research Letters, vol. 13, pp. 192-199, 2018.
[57]S. Panchanan, S. Dutta, K. Mallem, S. Sanyal, J. Park, M. Ju et al., A brief study on the fabrication of III-V/Si based tandem solar cells, Current Photovoltaic Research, vol. 6, no. 4, pp. 109-118, 2018.
[58]O. Hohn, N. Tucher, and B. Blasi, Theoretical study of pyramid sizes and scattering effects in silicon photovoltaic module stacks, Optices Express, vol. 26, no. 6, pp. 320-330, 2018.
[59]Y. J. Peng, H. X. Huang, and H. Xie, Rapid fabrication of antireflective pyramid structure on polystyrene film used as protective layer of solar cell, Solar Energy Materials and Solar Cells, vol. 171, pp. 98-105, 2017.
[60]W. Zhu, X. Wu, W. Sun, L. Sun, K. Guo, M. Tang, and P. Zhou, A simple effective method to improve light out-coupling in organic light-emitting diodes by introducing pyramid-based texture structure, Organic Electronics, vol. 15, pp. 1113-1119, 2014.
[61]N. H. A. Hardan, M. A. A. Hamid, N. M. Ahmed, A. Jalar, R. Shamsudin, N. K. Othman et al., High sensitivity pH sensor based on porous silicon (PSi) extended gate field-effect transistor, Sensors, vol. 16, pp. 839-851, 2016.
[62]R. Ahmad, T. Mahmoudi, M. S. Ahn, and Y. B. Hahn, Recent advances in nanowires-based field-effect transistors for biological sensor applications, Biosensors and Bioelectronics, vol. 100, pp. 321-325, 2018.
[63]P. Bergveld, Development of an ion-sensitive solid-state device for neurophysiological measurements, IEEE Transactions on Biomedical Engineering, vol. 1, pp. 70-71, 1970.
[64]C. D. Fung, P. W. Cheung, and W. H. Ko, A generalized theory of an electrolyte-insulator-semiconductor field-effect transistor, IEEE Transactions on Electron Devices, vol. 33, no. 1, pp. 8-18, 1986.
[65]D. E. Yates, S. Levine, and T. W. Healy, Site-binding model of the electrical double layer at the oxide/water interface, Journal of The Chemical Society, vol. 70, pp. 1807-1818, 1974.
[66]R. Hunter and H. Wright, The dependence of electrokinetic potential on concentration of electrolyte, Journal of Colloid and Interface Science, vol. 37, no. 3, pp. 564-580, 1971.
[67]I. Lauks, P. Chan, and D. Babic, The extended gate chemically sensitive field effect transistor as multi-species microprobe, Sensors and Actuators, vol. 4, pp. 291-298, 1983.
[68]L. L. Chi, J. C. Chou, W. Y. Chung, T. P. Sun, and S. K. Hsiung, Study on extended gate field effect transistor with tin oxide sensing membrane, Materials Chemistry and Physics, vol. 63, no. 1, pp. 19-23, 2000.
[69]J. R. Siqueira, E. G. R. Fernandes, O. N. Oliveira, and V. Zucolotto, Biosensors based on field-effect devices, In Nanobioelectrochemistry: Springer, pp. 67-86, 2013.
[70]J. L. Chiang, J. C. Chou, and Y. C. Chen, Study of the pH-ISFET and EnFET for biosensor applications, Journal of Medical and Biological Engineering, vol. 21, no. 3, pp. 135-146, 2001.
[71]L. T. Yin, J. C. Chou, W. Y. Chung, T. P. Sun, and S. K. Hsiung, Study of indium tin oxide thin film for separative extended gate ISFET, Materials Chemistry and Physics, vol. 70, no. 1, pp. 12-16, 2001.
[72]J. C. Chou and C. W. Chen, Fabrication and application of ruthenium-doped titanium dioxide films as electrode material for ion-sensitive extended-gate FETs, IEEE Sensors Journal, vol. 9, no. 3, pp. 277-284, 2009.
[73]P. D. Batista and M. Mulato, Polycrystalline fluorine-doped tin oxide as sensoring thin film in EGFET pH sensor, Journal of Materials Science, vol. 45, no. 20, pp. 5478-5481, 2010.
[74]B. D. Cullity, Element of X-ray Diffraction, (2nd ed.), Addison-Wesley Publishing Co, MA, USA, 1978.
[75]S. M. Sze and K. K. Ng, Physics of semiconductor devices, John wiley & sons, 2006.
[76]H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgärtel, Anisotropic etching of crystalline silicon in alkaline solutions I. Orientation dependence and behavior of passivation layers, Journal of The Electrochemical Society, vol. 137, no. 11, pp. 3612-3626, 1990.
[77]H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgärtel, Anisotropic etching of crystalline silicon in alkaline solutions II. Influence of dopants, Journal of The Electrochemical Society, vol. 137, no. 11, pp. 3626-3632, 1990.
[78]K. Peng, Y. Yan, S. Gao, and J. Zhu, Dendrite-assisted growth of silicon nanowires in electroless metal deposition, Advanced Functional Materials, vol. 13, no. 2, pp. 127-132, 2003.
[79]汪昇毅, 具雙重粗化奈米結構氧化鎳感測膜之製備及其於pH感測器之應用研究, 碩士論文, 微電子工程研究所, 國立成功大學, 2019.
[80]Z. Huang, N. Geyer, P. Werner, J. D. Boor, and U. Gosele Metal-assisted chemical etching of silicon: A review Advanced Materials, vol. 23, pp. 285-308, 2011.
[81]L. Bousse, S. Mostarshed, B. Schoot, and N. Rooij, Comparison of the hysteresis of Ta2O5 and Si3N4 pH-sensing insulators, Sensors and Actuators B: Chemical, vol. 17, no. 2, pp. 157-164, 1994.
[82]F. Lin, H. Y. Chang, S. H. Hsiao, and H. I. Chen, Preparation and characterization of nickel oxide based EGFET pH sensors, Ninth International Conference on Sensing Technology, vol. 1, pp. 402-405, 2015.
[83]Y. S. Chiu, C. Y. Tseng, and C. T. Lee, Nanostructured EGFET pH sensors with surface-passivated ZnO thin-film and nanorod array, IEEE Sensors Journl vol. 12, no. 5, pp. 930-934, 2012.
[84]H. H. Li, C. E. Yang, C. C. Kei, W. S. Dai, J. K. Tseng, P. Y. Yang et al., Coaxial-structured ZnO/silicon nanowires extended-gate field-effect transistor as pH sensor, Thin Solid Films, vol. 529, pp. 173-176, 2013.
[85]Y. S. Chiua, C. T. Lee, L. R. Lou, S. C. Ho, and C. T. Chuang, Wide linear sensing sensors using ZnO:Ta extended-gate field-effect-transistors, Sensors and Actuators B: Chemical, vol. 118, pp. 944-948, 2013.
[86]J. L. Wang, P. Y. Yang, T. Y. Hsieh, C. C. Hwang, and M. H. Juang, pH-Sensing characteristics of hydrothermal Al-Doped ZnO nanostructures, Journal of Nanomaterials, vol. 10, pp. 1155-1162, 2013.
[87]M. Zhang, R. Wang, Z. Shen, and Y. Ji, Extended gate field effect transistor using GaN/Si hybrids nanostructures for pH sensor, NANO: Brief reports and Reviews, vol. 12, no. 9, pp. 1-5, 2019.
[88]J.-C. Lin, B.-R. Huang, and Y.-K. Yang, IGZO nanoparticle-modified silicon nanowires as extended-gate field-effect transistor pH sensors, Sensors and Actuators B: Chemical, vol. 184, pp. 27-32, 2013.
[89]Y. L. Chin, J. C. Chou, Z. C. Lei, T. P. Sun, W. Y. Chung, and S. K. Hsiung, Titanium nitride membrane application to extended gate field effect transistor pH sensor using VLSI technology, Japanese Journal of Applied Physics, vol. 40, pp. 6311-6315, 2001.
[90]F. A. Sabah, N. M. Ahmeda, Z. Hassanc, and M. A. Almessiered, Influence of CuS membrane annealing time on the sensitivity of EGFET pH sensor, Materials Science in Semiconductor Processing, vol. 71, pp. 217-225, 2017.
[91]R. A. Rahman1, M. A. Zulkefle1, K. A. Yusof, W. F. H. Abdullah, M. Rusop, and S. H. Herman, Layer configurations comparison of Bilayer-films for EGFET pH sensor application, AIP Conference Proceedings, vol. 1963, pp. 1-4, 2018.
[92]K. Singh, J. L. Her, B. S. Lou, S. T. Pang, and T. M. Pan, An extended-gate FET-based pH sensor with an InZnxOy membrane fabricated on a flexible polyimide substrate at room temperature, IEEE Electron Device Letters, vol. 40, no. 5, pp. 804-807, 2019.
[93]N. C. Vieira, E. G. Fernandes, A. D. Faceto, V. Zucolotto, and F. E. Guimarães, Nanostructured polyaniline thin films as pH sensing membranes in FET-based devices, Sensors and Actuators B: Chemical, vol. 160, no. 1, pp. 312-317, 2011.
[94]K. A. Yusof, R. A. Rahman, M. A. Zulkefle, S. H. Herman, and W. F. H. Abdullah, EGFET pH sensor performance dependence on sputtered TiO2 sensing membrane deposition temperature, Journal of Sensors, vol. 2016, pp. 1-9, 2016.
[95]K. Yusof, S. H. Herman, and W. F. H. Abdullah, TiO2-based extended gate FET pH-sensor: Effect of annealing temperature on its sensitivity, hysteresis and stability, In Proceeding of IEEE International Conference on Semiconductor Electronics (ICSE2014), pp. 491-494, 2014.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔