(3.238.173.209) 您好!臺灣時間:2021/05/15 15:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃培珊
研究生(外文):Pei-ShanHuang
論文名稱:以溶膠凝膠法製備鎂鋯鈦薄膜於氣體感測器之應用
論文名稱(外文):Development of Sol-Gel Processed Magnesium Zirconia Titanate Thin Film for Gas Sensor Applications
指導教授:王永和王永和引用關係
指導教授(外文):Yeong-Her Wang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:微電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:83
中文關鍵詞:氣體感測鎂鋯鈦薄膜溶膠-凝膠法二氧化氮
外文關鍵詞:gas sensormagnesium zirconia titanatethin filmsol-gel methodnitrogen dioxide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:30
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗利用溶膠凝膠法製備鎂鋯鈦薄膜做為氣體感測器之感測材料,並以旋轉塗佈的方式將感測層沉積在鋁指叉電極上。採用溶膠凝膠法可以有效且輕鬆的掌控化學元素,並且薄膜可以擁有更高的氧空缺密度,進而提高氣體感測響應,此外,溶膠凝膠法亦俱備製程簡單, 低溫操作及成本低廉等優點。由FESEM驗證MZT薄膜厚度約62.5奈米,並由EDS mapping鑑定MZT薄膜元素組成比。在氣體感測結果中發現,MZT 薄膜展現出p型特性,且對二氧化氮有較佳的選擇性。本實驗分別在室溫、100°C、150°C和200°C下針對不同濃度的二氧化氮進行量測,結果顯示150°C為最佳操作溫度。在150°C下偵測0.25ppm及5ppm NO2,得到的響應值分別8.64及34.22。在固定溫度下,對不同濃度之NO2進行感測,顯示感測器具有良好的線性特性。
Magnesium zirconia titanate (MZT) thin film developed as a sensing layer on Al interdigitated electrodes was demonstrated using the sol-gel spin-coating method. The prepared MZT thin film has advantages including ease of fabrication, low temperature applications, and relative cost effectiveness. The field emission scanning electron microscope (SEM) image shows the formation of the film, which is 62.5 nm thick. Energy dispersive spectrometer (EDS) mapping confirmed the element composition of the MZT thin film. The gas sensing tests of the MZT/Al/SiO2/Si structure for NO2 were discussed. The sensing material was a p-type semiconductor gas sensor. The sensitivity of the gas sensor was tested at an operating temperature of room temperature, 100°C, 150°C, and 200°C, respectively, which showed that 150°C was the best working temperature for the MZT gas sensor. The sensitivity of the MZT thin film was 8.64 and 34.22 at working temperature of 150°C to 0.25ppm and 5ppm of NO2 gas molecules, respectively. The gas sensor also exhibited good repeatability and selectivity for NO2. The linear fitting curve showed that the MZT gas sensor has good linearity when the working temperature was fixed in terms of detecting different concentrations of NO2. These results indicate the potential applications of the MZT-based gas sensor in the sensing field.
Contents
摘要 I
Abstract II
誌謝 IV
Contents V
Figure Captions VIII
Table Caption XI
Chapter 1 Introduction 1
1.1 Background 1
1.2 Motivation 3
1.3 Organization of the thesis 7
Chapter 2 Literature Survey 8
2.1 Introduction of gas sensor 8
2.2 Types of gas sensors 9
2.2.1 Catalytic combustion gas sensors 9
2.2.2 Electrochemical gas sensors 10
2.2.3 Hot wire semiconductor gas sensors 12
2.2.4 Infrared gas sensors 13
2.2.5 Metal oxide semiconductor gas sensors 14
2.3 Metal Oxide Semiconductor Gas Sensor 16
2.3.1 Performance properties 16
2.3.2 Sensing mechanism 17
2.3.3 Factors influencing the sensor response 19
2.3.3.1 Grain size 19
2.3.3.2 Additives 20
2.3.3.3 Temperature 21
2.3.3.4 Humidity 21
Chapter 3 Experiment 23
3.1 Fabrication equipment 23
3.1.1 Radio Frequency Sputtering (RF Sputtering) 23
3.1.2 Hot plate/Magnetic stirrer 24
3.1.3 Spin coater 24
3.1.4 Oven 25
3.1.5 Mask aligner 25
3.2 Material analysis equipment 28
3.2.1 Scanning electron microscopy (SEM) 28
3.2.2 Transmission Electron Microscopy (TEM) 29
3.2.3 X-ray diffraction (XRD) 30
3.2.4 X-ray photoelectron spectroscopy (XPS) 31
3.2.5 Energy-dispersive spectroscopy (EDS) 32
3.2.6 Atomic force microscopy (AFM) 33
3.3 Gas detection system 34
3.4 Sol-gel process 36
3.4.1 Principle of the Sol-gel method 36
3.4.2 Experimental materials 38
3.4.3 Solution fabrication 41
3.5 MZN-based gas sensor fabrication 43
3.5.1 Substrate cleaning 43
3.5.2 Interdigitated electrode deposition 44
3.5.3 MZN sensing film deposition 45
Chapter 4 Results and Discussion 46
4.1 Structure of the interdigitated electrodes 46
4.2 Physical properties of the MZT thin film 47
4.2.1 Scanning Electron Microscope (SEM) analysis 47
4.2.2 Transmission Electron Microscopy (TEM) analysis 48
4.2.3 X-ray diffraction (XRD) analysis 49
4.2.4 X-ray Photoelectron Spectroscopy (XPS) analysis 50
4.2.5 Energy dispersive spectroscopy (EDS) analysis 52
4.2.6 Atomic force microscopy analysis 53
4.3 Gas sensing performance 55
4.3.1 Sensitivity 55
4.3.2 Response and recovery time 63
4.3.3 Linear fitting analysis 64
4.3.4 Repeatability and selectivity 66
4.3.5 Stability 67
4.3.6 Humidity effect 68
4.3.7 Gas sensing mechanism 70
Chapter 5 Conclusions and Future prospects 71
5.1 Conclusions 71
5.2 Future prospects 72
References 74
Figure Captions
Fig. 2.1. Structure of a catalytic combustion gas sensor [19]. 10
Fig. 2.2. Diagram of the Wheatstone-Bridge circuit [20]. 10
Fig. 2.3. Structure of an electrochemical sensor [24]. 12
Fig. 2.4. The sensing mechanism of an electrochemical sensor used for detecting CO gas [23]. 12
Fig. 2.5. Structure of a hot wire semiconductor gas sensor [25]. 13
Fig. 2.6. Structure of an infrared gas sensor [27]. 14
Fig. 2.7. Structure of a metal oxide semiconductor gas sensor [32]. 15
Fig. 2.8. Schematic diagram of the sensing mechanism in the presence of reducing and oxidative gas sensors (a) n-type metal oxide semiconductors and (b) p-type metal oxide semiconductors [39]. 19
Fig. 2.9. Three mechanisms for grain size dependence on conductance in semiconductor gas sensing materials (a) D ≫ 2L, grain boundary control (b) D = 2L, neck control (c) D 〈 2L, and grain control [40]. 20
Fig. 2.10. Effects of operating temperature on the response of a sensor at different concentrations of C2H5OH [45]. 21
Fig. 2.11. Response of a CuO-based sensor to 0.1ppb H2S in different RH environments [50] 22
Fig. 3.1. Sputtering system used in this work 26
Fig. 3.2. Hot plate/magnetic stirrer used in this work. 26
Fig. 3.3. Spin coater used in this work. 27
Fig. 3.4. Oven used in this work. 27
Fig. 3.5. Mask aligner used in this work. 28
Fig. 3.6. Schematic of SEM [51]. 29
Fig. 3.7. Schematic of TEM [52]. 30
Fig. 3.8. Schematic of Bragg’s Law [53]. 31
Fig. 3.9. Principle of XPS [54]. 32
Fig. 3.10. Schematic of EDS [55]. 33
Fig. 3.11. Schematic of AFM [56]. 34
Fig. 3.12. Schematic of the gas detection system. 35
Fig. 3.13. Schematic of the stainless steel chamber. 35
Fig. 3.14. The hydrolysis and condensation reaction in the sol-gel process [57]. 37
Fig. 3.15. Chemical structure of glacial acetic acid. 38
Fig. 3.16. Chemical structure of magnesium acetate. 39
Fig. 3.17. Chemical structure of 2-methoxyethanol. 39
Fig. 3.18. Chemical structure of zirconium n-propoxide. 40
Fig. 3.19. Chemical structure of titanium isopropoxide. 40
Fig. 3.20. Chemical structure of acetylacetone. 41
Fig. 3.21. Preparation of the 0.5M MZT solution. 42
Fig. 3.22. Illustration the experimental flow of the MZT/Al/SiO2/Si structure. 45
Fig. 4.1. The pattern of the interdigitated electrodes. 46
Fig. 4.2. SEM image of the fabricated interdigitated electrodes. 46
Fig. 4.3. Cross-section SEM image of the MZT thin film. 47
Fig. 4.4. SEM image of the (a) MTO thin film (b) MZT thin film. 48
Fig. 4.5. Low-magnification TEM image of the MZT thin film. 48
Fig. 4.6. High-magnification TEM image of the MZT thin film. 49
Fig. 4.7. XRD pattern of the MZT thin film/glass. 50
Fig. 4.8. (a) Wide survey XPS spectrum, (b) Mg1s, (c) Zr3d, (d) Ti2p, and (e) O1s spectra of the MZT thin film. 51
Fig. 4.9. EDS image of the MZT thin film. 52
Fig. 4.10. EDS measurement of the MZT thin film with mapping scan mode. (a) TEM image of the MZT thin film (b) The distribution of the Mg atoms (c) the distribution of the Zr atoms (d) The distribution of the Ti atoms (e) The distribution of the O atoms. 53
Fig. 4.11. AFM image of the (a,b) MTO thin film and (c,d) MZT thin film. 54
Fig. 4.12. The response curve of the sensor to different concentrations of NO2 at room temperature. 56
Fig. 4.13. The response value of the sensor to different concentrations of NO2 at room temperature. 57
Fig. 4.14. The response curve of the sensor to different concentrations of NO2 at 100°C. 58
Fig. 4.15. The response value of the sensor to different concentrations of NO2 at 100°C. 58
Fig. 4.16. The response curve of the sensor to different concentrations of NO2 at 150°C. 59
Fig. 4.17. The response value of the sensor to different concentrations of NO2 at 150°C. 60
Fig. 4.18. The response curve of the sensor to different concentrations of NO2 at 200°C. 61
Fig. 4.19. The response value of the sensor to different concentrations of NO2 at 200°C. 61
Fig. 4.20. The response values of the gas sensor with various NO2 concentrations at different operating temperatures. 62
Fig. 4.21. The response values of the gas sensor at different operating temperatures with various NO2 concentrations. 63
Fig. 4.22. The response time and recovery time upon exposure to 2.5 ppm NO2 at 150°C. 63
Fig. 4.23. The linear fitting curve of the sensor at room temperature. 64
Fig. 4.24. The linear fitting curve of the sensor at 100°C. 65
Fig. 4.25. The linear fitting curve of the sensor at 150°C. 65
Fig. 4.26. The linear fitting curve of the sensor at 200°C. 66
Fig. 4.27. Five reversible cycles of the gas sensor to 1ppm NO2 at 150°C. 67
Fig. 4.28. Responses of the sensor toward various target gases at 150°C. 67
Fig. 4.29. The long-term stability of the sensor to 2.5ppm NO2 at 150°C. 68
Fig. 4.30. Current variations with and without water molecules. 69
Fig. 4.31. The response of the gas sensor to 1ppm NO2 at 150°C under a humidity effect. 69
Fig. 4.32. Schematic diagram of the sensing mechanism of the MZT thin film in an NO2 atmosphere. 70


Table Caption
Table 1.2 The physical property, toxicity and threshold limit value (TLV) of environmentally hazardous gases [9]. 6
Table 4.2 The response values of gas sensor with various NO2 concentrations at different operating temperatures 63
Table 4.3 Comparison MZT thin film gas sensor and other published NO2 gas sensors. 71
[1]A. Bielański, J. Dereń, and J. Haber, “Electric conductivity and catalytic activity of semiconducting oxide catalysts, Nature, vol. 179, pp. 668-669, Mar. 1957.
[2]N. Taguch, “Gas detecting device, Japanese Patent, no. 45-38200, 1962.
[3]Y. Shimizu, “SnO2 gas sensor, Encyclopedia of Applied Electrochemistry, pp. 1974-1982, Sep. 2014.
[4]X.B. Lou, H.L. Shen, H. Zhang, and B.B. Li, “Optical properties of nanosized ZnO films prepared by sol-gel process, Transactions of Nonferrous Metals Society of China, vol. 17, pp. s814-s817, Sep. 2007.
[5]N. Shakti, and P.S. Gupta, “Structural and optical properties of sol-gel prepared ZnO thin film, Applied Physics Research, vol. 2, no. 1, pp. 19-28, May 2010.
[6]E. Moncada, R. Quijada, and J. Retuert, “Nanoparticles prepared by the sol–gel method and their use in the formation of nanocomposites with polypropylene, Nanotechnology, vol. 18, no. 33, pp. 335606-335613, Jul. 2007.
[7]H.K. Schmidt, E. Geiter, H. Krug, C. Becker, and R.P. Winkler, “The sol-gel process for nano-technologies: new nanocomposites with interesting optical and mechanical properties, Journal of sol-gel science and technology, vol. 13, pp. 397-404, Jan. 1998.
[8]S.M. Attia, J. Wang, G.M. Wu, J. Shen, and J.H. Ma, “Review on Sol Gel derived coatings: process, techniques and optical application, Journal of Materials Science and Technology, vol. 18, no. 3, pp. 211-218, May 2002.
[9]K. Wetchakun, T. Samerjai, N. Tamaekong, C. Liewhiran, C. Siriwong, V. Kruefu, A. Wisitsoraat, A. Tuantranont, and S. Phanichphant, “Semiconducting metal oxides as sensors for environmentally hazardous gases, Sensors and Actuators B: Chemical, vol. 160, no. 1, pp. 580-591, Dec. 2011.
[10]X.J. Huang, X. Yan, H.Y. Wu, Y. Fang, Y.H. Min, W.S. Li, S.Y. Wang, and Z.J. Wu, “Preparation of Zr-doped CaTiO3 with enhanced charge separation efficiency and photocatalytic activity, Transactions of Nonferrous Metals Society of China, vol. 26, no. 2, pp. 464-471, Feb. 2016.
[11]C.C. Hu, C.A. Chiu, C.H. Yu, J.X. Xu, T.Y. Wu, P.W. Sze, C.L. Wu, and Y.H. Wang, “Liquid-phase-deposited high dielectric zirconium oxide for metal-oxide-semiconductor high electron mobility transistors, Vacuum, vol. 118, pp. 142-146, Aug. 2015.
[12]N.S. Mazlan, M.M. Ramil, M.M.A.B. Abdullah, D.S.C. Halin, S.S.M. Isa, L.F.A. Talip, N.S. Danial, and S.A.Z. Murad, “Interdigitated electrodes as impedance and capacitance biosensors: A review, AIP Conference Proceedings, vol. 1885, no. 1, p. 020276, Sep. 2017.
[13]N.D. Hoa, and S.A. Elsafty, “Synthesis of mesoporous NiO nanosheets for the detection of toxic NO2 gas, Chemistry–A European Journal, vol. 17, no. 46, pp. 12896-12901, Jul. 2011.
[14]S. Pochekailov, J. Nozar, S. Nespurek, J. Rakusan, and M. Karaskova, “Interaction of nitrogen dioxide with sulfonamide-substituted phthalocyanines: towards NO2 gas sensor, Sensors and Actuators B: Chemical, vol. 169, pp. 1-9, Jul. 2012.
[15]A. Altamura, F. Inchingolo, G. Mevoli, and P. Boccadoro, “SAFE: Smart helmet for advanced factory environment, Internet Technology Letters, vol. 2, no. 2, p. e86, Dec. 2019.
[16]P. Hazarika, “Implementation of smart safety helmet for coal mine workers, 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), Jul. 2016.
[17]M. Mardonova, and Y. Choi, “Review of wearable device technology and its applications to the mining industry, Energies, vol. 11, no. 3, p. 547, Mar. 2018.
[18]S.A. Hooker, “Nanotechnology advantages applied to gas sensor development, The nanoparticles 2002 conference proceedings, pp. 1-7, 2002.
[19]“https://www.gastec.co.jp/en/product/detail/id=2205
[20]“https://www.materialsnet.com.tw/DocView.aspx?id=5009
[21]K.I. Tsceng, and M.C. Yang, “Platinum electrodes modified by tin for electrochemical CO sensors, Journal of The Electrochemical Society, vol. 150, no. 7, pp. H156-H160, May 2003.
[22]R. Knake, and P.C. Hauser, “Portable instrument for electrochemical gas sensing, Analytica Chimica Acta, vol. 500, no. 1-2, pp. 145-153, Dec. 2003.
[23]“https://www.figaro.co.jp/en/technicalinfo/principle/electrochemical-type.html
[24]“https://www.emerson.com/documents/automation/white-paper-electrochemical-vs-semiconductor-gas-detection-en-5351114.pdf
[25]“https://www.rikenkeiki.com/cms/riken/img/techinfo/sensor_principle/pdf/04_SH.pdf
[26]“http://www.ndl.org.tw/docs/publication/22_3/pdf/E1.pdf
[27]T.V. Dinh, I.Y. Choi, Y.S. Son, and J.C. Kim, “A review on non-dispersive infrared gas sensors: Improvement of sensor detection limit and interference correction, Sensors and Actuators B: Chemical, vol. 231, pp. 529-538, Aug. 2016.
[28]S.H. Hahn, N. Barsan, U. Weimar, S.G. Ejakov, J.H. Visser, and R.E. Soltis, “CO sensing with SnO2 thick film sensors: role of oxygen and water vapour, Thin Solid Films, vol. 436, no. 1, pp. 17-24, Jul. 2003.
[29]X. He, J. Li, X. Gao, and L. Wang, “NO2 sensing characteristics of WO3 thin film microgas sensor, Sensors and Actuators B: Chemical, vol. 93, no. 1-3, pp. 463-467, Aug. 2003.
[30]G. Korotcenkov, V. Golovanov, and Y. Blinov, “Kinetics of gas response to reducing gases of SnO2 films, deposited by spray pyrolysis, Sensors and Actuators B: Chemical, vol. 98, no. 1, pp. 41-45, Mar. 2004.
[31]S. Bai, D. Li, D. Han, R. Luo, A. Chen, and C.L. Chung, “Preparation, characterization of WO3–SnO2 nanocomposites and their sensing properties for NO2, Sensors and Actuators B: Chemical, vol. 150, no. 2, pp. 749-755, Oct. 2010.
[32]H. Nazemi, A. Joseph, J. Park, and A. Emadi, “Advanced micro-and nano-gas sensor technology: A review, Sensors, vol. 19, no. 6, p. 1285, Mar. 2019.
[33]X. Liu, S. Cheng, H. Liu, S. Hu, D. Zhang, and H. Ning, “A survey on gas sensing technology, Sensors, vol. 12, no. 7, pp. 9635-9665, Jul. 2012.
[34]J. Huang, and Q. Wan, “Gas sensors based on semiconducting metal oxide one-dimensional nanostructures, Sensors, vol. 9, no. 12, pp. 9903-9924, Dec. 2009.
[35]S.R. Morrison, “Mechanism of semiconductor gas sensor operation, Sensors and Actuators, vol. 11, no. 3, pp. 283-287, Apr. 1987.
[36]M. Paulose, O.K. Varghese, G.K. Mor, C.A. Grimes, and K.G. Ong, “Unprecedented ultra-high hydrogen gas sensitivity in undoped titania nanotubes, Nanotechnology, vol. 17, no. 2, p. 398, Dec. 2005.
[37]Z. Li, Z. Lin, N. Wang, Y. Huang, J. Wang, W. Liu, Y. Fu, and Z. Wang, “Facile synthesis of α-Fe2O3 micro-ellipsoids by surfactant-free hydrothermal method for sub-ppm level H2S detection, Materials & Design, vol. 110, pp. 532-539, Nov. 2016.
[38]Z. Li, Y. Huang, S. Zhang, W. Chen, Z. Kuang, D. Ao, W. Liu, and Y. Fu, “A fast response & recovery H2S gas sensor based on α-Fe2O3 nanoparticles with ppb level detection limit, Journal of hazardous materials, vol. 300, pp. 167-174, Dec. 2015.
[39]Z.U. Abideen, J.H. Kim, J.H. Lee, J.Y. Kim, A. Mirzaei, H.W. Kim, and S.S. Kim, “Electrospun metal oxide composite nanofibers gas sensors: a review, Journal of the Korean Ceramic Society, vol. 54, no. 5, pp. 366-379, Sep. 2017.
[40]A. Dey, “Semiconductor metal oxide gas sensors: A review, Materials Science and Engineering: B, vol. 229, pp. 206-217, Mar. 2018.
[41]S. Ahlers, G. Müller, and T. Doll, “Factors influencing the gas sensitivity of metal oxide materials, Encyclopedia of sensors, vol. 3, pp. 413-447, 2006.
[42]A. Ruiz, J. Arbiol, A.Cirera, A. Cornet, and J.R. Morante, “Surface activation by Pt-nanoclusters on titania for gas sensing applications, Materials Science and Engineering: C, vol. 19, no. 1-2, pp. 105-109, Jan. 2002.
[43]D. Wang, Z. Ma, S. Dai, J. Liu, Z. Nie, M.H. Engelhard, Q. Huo, C. Wang, and R. Kou, “Low-temperature synthesis of tunable mesoporous crystalline transition metal oxides and applications as Au catalyst supports, The Journal of Physical Chemistry C, vol. 112, no. 35, pp. 13499-13509, Aug. 2008.
[44]R. Ghanbari, R. Safaiee, M.H. Sheikhi, M.M. Golshan, and Z.K. Horastani, “Graphene decorated with silver nanoparticles as a low-temperature methane gas sensor, ACS Applied Materials & Interfaces, vol. 11, no. 24, pp. 21795-21806, May 2019.
[45]M. Cao, Y. Wang, T. Chen, M. Antonietti, and M. Niederberger, “A highly sensitive and fast-responding ethanol sensor based on CdIn2O4 nanocrystals synthesized by a nonaqueous sol− gel route, Chemistry of Materials, vol. 20, no. 18, pp. 5781-5786, Aug. 2008.
[46]V.V. Malyshev, and A.V. Pislyakov, “Investigation of gas-sensitivity of sensor structures to hydrogen in a wide range of temperature, concentration and humidity of gas medium, Sensors and Actuators B: Chemical, vol. 134, no. 2, pp. 913-921, Sep. 2008.
[47]Z. Jing, and J. Zhan, “Fabrication and gas‐sensing properties of porous ZnO nanoplates, Advanced Materials, vol. 20, no. 23, pp. 4547-4551, Dec. 2008.
[48]Q. Qi, T. Zhang, X. Zheng, H. Fan, L. Liu, R. Wang, and Y. Zeng, “Electrical response of Sm2O3-doped SnO2 to C2H2 and effect of humidity interference, Sensors and Actuators B: Chemical, vol. 134, no. 1, pp. 36-42, Aug. 2008.
[49]Z. Ling, and C. Leach, “The effect of relative humidity on the NO2 sensitivity of a SnO2/WO3 heterojunction gas sensor, Sensors and Actuators B: Chemical, vol. 102, no. 1, pp. 102-106, Sep. 2004.
[50]D. Li, Y. Tang, D. Ao, X. Xiang, S. Wang, and X. Zu, “Ultra-highly sensitive and selective H2S gas sensor based on CuO with sub-ppb detection limit, International Journal of Hydrogen Energy, vol. 44, no. 7, pp. 3985-3992, Feb. 2019.
[51]“https://slideplayer.com/slide/5125532/
[52]“https://warwick.ac.uk/fac/sci/physics/current/postgraduate/regs/mpagswarwick/ex5/techniques/structural/tem/
[53]M. Sowinska, “In-operando hard X-ray photoelectron spectroscopy study on the resistive switching physics of HfO2-based RRAM, Jun. 2014.
[54]Y. Hu, “Two-dimensional (2D) functional molecular networks, Diss. University College London, 2016.
[55]C. Gillet, V. Mary, V.S.G.D.L. Torre, S. Thomine, B.S. Jeunemaitre, “Subcellular localization of metal pools determined by TEM‐EDS in embryo Arabidopsis thaliana mutants, European Microscopy Congress 2016: Proceedings, pp. 121-122, Dec. 2016.
[56]D. H. Agarwal, P.M. Bhatt, and A.M. Pathan, “Development of portable experimental set-up for AFM to work at cryogenic temperature, AIP Conference Proceedings, vol. 1447, no. 1, pp. 531-532, Jun. 2012.
[57]“http://www.tn.ifn.cnr.it/facilities/sol-gel-room/sol-gel-principles
[58]M. Netrvalova, V. Vavrunkova, J. Mullerova, and P. Sutta, “Optical properties of re-crystallized polycrystalline silicon thin films from a-si films deposited by electron beam evaporation, Journal of Electrical Engineering, vol. 60, no. 5, pp. 279-282, Jan. 2009.
[59]D.J. Yang, G.C. Whitfield, N.G. Cho, P.S. Cho, I.D. Kim, H.M. Sailsburg, and H.L. Tuller, “Amorphous InGaZnO4 films: Gas sensor response and stability, Sensors and Actuators B: Chemical, vol. 171, pp. 1166-1171, Aug. 2012.
[60]C.C. Hu, C.A. Chiu, C.H. Yu, J.X. Xu, T.Y. Wu, P.W. Sze, C.L. Wu, Y.H. Wang, “Liquid-phase-deposited high dielectric zirconium oxide for metal-oxide-semiconductor high electron mobility transistors, Vacuum, vol. 118, pp. 142-146, Aug. 2015.
[61]B. Bharti, S. Kumar, H.N. Lee, and R. Kumar, “Formation of oxygen vacancies and Ti 3+ state in TiO2 thin film and enhanced optical properties by air plasma treatment, Scientific reports, vol. 6, p. 32355, Aug. 2016.
[62]L. Mao, H. Zhu, L. Chen, H. Zhou, G. Yuan, and C. Song, “Enhancement of corrosion resistance and biocompatibility of Mg-Nd-Zn-Zr alloy achieved with phosphate coating for vascular stent application, Journal of Materials Research and Technology, vol. 9, no. 3, pp. 6409-6419, May 2020.
[63]H. Tan, Z. Zhao, W.B. Zhu, E.N. Coker, B. Li, M. Zheng, W. Yu, H. Fan, and Z. Sun, “Oxygen vacancy enhanced photocatalytic activity of pervoskite SrTiO3, ACS Applied Materials & Interfaces, vol. 6, no. 21, pp. 19184-19190, Oct. 2014.
[64]M.A. Patil, V.V. Ganbavle, K.Y. Rajpure, H.P. Deshmukh, and S.H. Mujawar, “Fast response and highly selective nitrogen dioxide gas sensor based on Zinc Stannate thin films, Materials Science for Energy Technologies, vol. 3, pp. 36-42, 2020.
[65]Z. Li, H. Li, Z. Wu, M. Wang, J. Luo, H. Torun, P. Hu, C. Yang, M. Grundmann, X. Liu, and Y.Q. Fu, “Advances in designs and mechanisms of semiconducting metal oxide nanostructures for high-precision gas sensors operated at room temperature, Materials Horizons, vol. 6, no. 3, pp. 470-506, 2019.
[66]V.L. Patil, S.A. Vanalakar, P.S. Patil, J.H. Kim, “Fabrication of nanostructured ZnO thin films based NO2 gas sensor via SILAR technique, Sensors and Actuators B: Chemical, vol. 239, pp. 1185-1193, Feb. 2017.
[67]Y.H. Navale, S.T. Navale, M. Galluzzi, F.J. Stadler, A.K. Debnath, N.S. Ramgir, S.C. Gadkari. D.K. Aswal, and V.B. Patil, “Rapid synthesis strategy of CuO nanocubes for sensitive and selective detection of NO2, Journal of Alloys and Compounds, vol. 708, pp. 456-463, Jun. 2017.
[68]V.L. Patil, S.A. Vanalakar, S.S. Shendage, S.P. Patil, A.S. Kamble, N.L. Tarwal, K.K. Sharma, J.H. Kim, and P.S. Patil, “Fabrication of nanogranular TiO2 thin films by SILAR technique: Application for NO2 gas sensor, Inorganic and Nano-Metal Chemistry, vol. 49, no. 7, pp. 191-197, Jul. 2019.
[69]Y. Li, Z. Song, Y. Li, S. Chen, S. Li, Y. Li, H. Wang, and Z. Wang, “Hierarchical hollow MoS2 microspheres as materials for conductometric NO2 gas sensors, Sensors and Actuators B: Chemical, vol. 282, pp. 259-267, Mar. 2019.
[70]X. Jiang, H. Tai, Z. Ye, Z. Yuan, C. Liu, Y. Su, and Y. Jiang, “Novel pn heterojunction-type rGO/CeO2 bilayer membrane for room-temperature nitrogen dioxide detection, Materials Letters, vol. 186, pp. 49-52, Jan. 2017.
[71]H.S. Jeong, M.J. Park, S.H. Kwon, H.J. Joo, S.H. Song, and H.I. Kwon, “Low temperature NO2 sensing properties of RF-sputtered SnO-SnO2 heterojunction thin-film with p-type semiconducting behavior, Ceramics International, vol. 44, no. 14, pp. 17283-17289, Oct. 2018.
[72]J.D. Prades, R. Jimenez-Diaz, F. Hernandez-Ramirez, S. Barth, A. Cirera, A. Romano-Rodriguez, S. Mathur, and J.R. Morante, “Equivalence between thermal and room temperature UV light-modulated responses of gas sensors based on individual SnO2 nanowires, Sensors and Actuators B: Chemical, vol. 140, no. 2, pp. 337-341, Jul. 2009.
[73]T.J. Hsueh, and W.T. Hsiao, “Development of semiconductor chip-type gas sensor, Instruments Today, vol. 218, pp. 42-50, Mar. 2019.
[74]S. Ozdemir, T.B. Osburn, and J.L. Gole, “Nanostructure modified gas sensor detection matrix for NO transient conversion of NO to NO2, Journal of the Electrochemical Society, vol. 158, no. 7, pp. J201-J207, May 2011.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top