(3.238.130.97) 您好!臺灣時間:2021/05/15 14:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:柯威弘
研究生(外文):Wei-HungKo
論文名稱:具定頻之漣波控制型單電感雙輸出降壓轉換器
論文名稱(外文):Ripple-Based Control of Constant Frequency Single Inductor Dual Output (SIDO) Buck Converter
指導教授:張簡樂仁
指導教授(外文):Le-Ren Chang-Chien
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:95
中文關鍵詞:單電感雙輸出能量分配機制快速暫態響應自適應關閉時間控制
外文關鍵詞:SIDOPower distribution mechanismFast transient responseAdaptive off-time control(AFT)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:32
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文提出以漣波模式控制之單電感雙輸出降壓型轉換器,漣波模式不僅降低了補償器設計之複雜度,同時也減少了暫態恢復時間。為了利於固定頻率的設計,應用於單電感雙輸出降壓轉換器的漣波控制模型必須詳加定義,因此本文探討操作於連續導通模式之單電感雙輸出降壓轉換器之直流分析;除此之外,此設計附加之相序切換機制可避免能量分配法所帶來之電壓湧升現象。本晶片實現於台灣積體電路公司0.35μm 2P4M 5V混合訊號製程,轉換器輸入及輸出電壓分別設定為5V及1.8V/1.5V,實驗測試所得之切換頻率在輕重載可固定1MHz左右,暫態時間上升與下降分別為12μs與13μs。
This thesis proposes a ripple-based control for a single-inductor dual-output (SIDO) buck converter. The ripple-based control not only reduces the complexity of the compensator design, but also reduces the load transient time. However, the variable frequency operation under different loading conditions can complicate the filter design. In order to understand the variable frequency operation, the ripple-based control model applied to a single-inductor dual-output buck converter must be understood in detail. Therefore, this thesis demonstrates the DC analysis of a SIDO operating in continuous conduction mode. In addition, the phase-sequence interchange mechanism is introduced to this design to avoid the voltage surge caused by the energy distribution method.
To verify the feasibility of the proposed method, the chip-scaled circuit is implemented under the 0.35μm 2P4M 5V mixed signal process of Taiwan Semiconductor Manufacturing Corporation. The input and output voltages of the converter are set to 5V and 1.8V / 1.5V, respectively. The switching frequency can be fixed around 1MHz under heavy or light load condition, and the transient rise and fall times are within 12μs and 13μs, respectively.

Keywords: SIDO, Power distribution mechanism, Fast transient response, Adaptive off-time control(AFT)
目錄
摘要 I
Abstract II
SUMMARY III
INTRODUCTION IV
MATERIALS AND METHODS V
RESULTS AND DISCUSSION IX
CONCLUTION XI
誌謝 XII
目錄 XIII
表目錄 XVII
圖目錄 XVIII
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 2
1.3 本文大綱 5
第二章 單電感多輸出降壓轉換器控制模式以及架構 7
2.1 單電感多輸出架構 7
2.1.1 單電感雙輸出之操作模式 8
2.1.2 線路調節能力及負載調節能力分析 9
2.1.3 暫態響應 9
2.1.4 效率分析 10
2.1.5 交互穩壓效應 11
2.2 降壓轉換器控制模式介紹 12
2.2.1 電壓模式控制(Voltage mode control) 12
2.2.2 電流模式控制(Current mode control) 13
2.2.3 漣波模式控制(Ripple-based control) 15
2.2.3.1 磁滯控制 16
2.2.3.2 固定導通/截止時間控制 17
2.2.3.3 V2控制 20
2.2.4 降壓轉換器控制模式比較 21
2.3 單電感多輸出降壓轉換器的能量分配控制法介紹 22
2.3.1 分時多工分配控制 22
2.3.2 能量保存分配控制 26
2.3.3 順序功率分配控制 28
2.4 設計考量與近期研究比較 30
第三章 單電感雙輸出降壓轉換器的分析與設計 34
3.1 單電感雙輸出降壓轉換器的頻率分析 34
3.1.1 連續導通模式下電壓模式控制的直流模型 35
3.1.2 固定關閉時間產生器的頻率分析 38
3.2 補償器控制模式之交互穩壓問題及分析 41
3.3 漣波控制模式之非同步穩壓問題及分析 42
3.4 電壓湧升現象 44
3.5 相位順序交換(PSI)策略 45
第四章 電路設計與實現 47
4.1 系統架構 47
4.2 控制器之區塊電路設計 50
4.2.1 偏壓電路 50
4.2.2 比較器 51
4.2.3 二級式運算放大器 53
4.2.4 自適應關閉時間產生器(Adaptive off-time Generator) 53
4.2.5 電流感測電路 (Current Sensor) 58
4.2.6 緩啟動電路 59
4.2.7 非重疊相位產生器 60
4.2.8 相序選擇電路 61
4.2.9 能量開關的邏輯控制 62
4.2.10 相位邏輯控制 63
第五章 模擬與實驗結果 65
5.1 模擬結果 65
5.1.1 穩態操作 65
5.1.2 定頻效果 67
5.1.3 暫態響應 69
5.1.4 比較使用PSI和沒有PSI的差異 73
5.2 實驗結果 74
5.2.1 測量環境 74
5.2.2 比較使用PSI和沒有PSI的差異 76
5.2.3 定頻效果 77
5.2.4 穩態操作 80
5.2.5 暫態響應 82
第六章 結論 88
6.1 結論 88
6.2 未來研究方向 89
參考文獻 90
參考文獻
[1]S. Gangopadhyay A 32-nm Embedded, Fully-Digital, Phase-Locked Low Dropout Regulator for Fine Grained Power Management in Digital Circuits, IEEE JSSC, 2014
[2]Ping, L., Z. Shaowei, W. Junxi, Y. Kang, L. Pengfei, and Z. Xiaohui, Digital Assistant Power Integrated Technologies for PMU in Scaling CMOS Process. IEEE Transactions on Power Electronics, vol. 29, pp. 3798-3807, 2014
[3]M. Alioto , E. Consoli and J.M. Rabaey EChO reconfigurable power management unit for energyreduction in sleep-active transitions, IEEE Journal of Solid-State Circuits, vol. 48, no. 8, pp.1921 -1932 2013
[4]S.-Y. Lee, C.-H. Hsieh and C.-M. Yang Wireless front-end with power management for an implantable cardiac microstimulator, IEEE Trans. Biomed. Circuits Syst., vol. 6, no. 1, pp.28 -38 2012
[5]C. Wei-Chung, et al., Single-Inductor Quad-Output Switching Converter With Priority-Scheduled Program for Fast Transient Response and Unlimited Load Range in 40 nm CMOS Technology, IEEE Journal of Solid-State Circuits, vol. 50, pp. 1525-1539, 2015.
[6]X. Wu, L. Tian, and Y. Liang, “Single inductor, multiple output dc-dc converter, May 25 2017, US Patent App. 15/256,575.
[7]J. Chen, V. Mayega, D. W. Evans, and J. L. Krug, “Single inductor dual output buck converter, May 29 2007, US Patent 7,224,085.
[8]C.-S. Huang, D. Chen, and K. H. Liu, “Mix-voltage conversion for single-inductor dual-output buck converters, in Energy Conversion Congress and Exposition, 2009. ECCE 2009. IEEE. IEEE, 2009, pp. 639–646.
[9]D. Kwon and G. A. Rincon-Mora, “Single-inductor–multiple-output switching dc–dc converters, IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 56, no. 8, pp. 614–618, 2009.
[10]O. Ray, A. P. Josyula, S. Mishra, and A. Joshi, “Integrated dual-output converter, IEEE Transactions on Industrial Electronics, vol. 62, no. 1, pp. 371–382, 2015.
[11]P. Patra, J. Ghosh, and A. Patra, “Control scheme for reduced crossregulation in single-inductor multiple-output dc–dc converters, IEEE Transactions on Industrial Electronics, vol. 60, no. 11, pp. 5095–5104, 2013.
[12]J. D. Dasika, B. Bahrani, M. Saeedifard, A. Karimi, and A. Rufer, “Multivariable control of single-inductor dual-output buck converters, IEEE Transactions on Power Electronics, vol. 29, no. 4, pp. 2061–2070, 2014.
[13]B. Wang, V. R. K. Kanamarlapudi, L. Xian, X. Peng, K. T. Tan, and P. L. So, “Model predictive voltage control for single-inductor multiple-output dc–dc converter with reduced cross regulation, IEEE Transactions on Industrial Electronics, vol. 63, no. 7, pp. 4187–4197, 2016.
[14]M.-Y. Jung, S.-H. Park, J.-S. Bang, and G.-H. Cho, “An error-based controlled single-inductor 10-output dc-dc buck converter with high efficiency under light load using adaptive pulse modulation, IEEE Journal of Solid-State Circuits, vol. 50, no. 12, pp. 2825–2838, 2015.
[15]D. Ma, W.-H. Ki, and C.-Y. Tsui, P. K. T. Mok, “Single-Inductor Multiple-Output Switching Converters with Time-Multiplexing Control in Discontinuous Conduction Mode, IEEE J. Solid-State Circuits, vol. 38, no. 1, pp. 89-100, Jan. 2003.
[16]D. Ma, W.-H. Ki, and C.-Y. Tsui, “A Pseudo-CCM/DCM SIMO Switching Converter with Freewheel Switching, IEEE J. Solid-State Circuits, vol. 38, no. 6, pp. 1007-1014, Jun 2003.
[17]C.-W. Leng, C.-H. Yang, and C.-H. Tsai, “Digital PWM Controller for SIDO Switching Converter with Time-Multiplexing Scheme, in Proc. Int. Symp. VLSI Design Autom. Test, pp. 52-55, Apr. 2009.
[18]H.-P. Le, C.-S. Chae, K.-C. Lee, S.-W. Wang, G.-H. Cho, and G.-H. Cho, “A single-inductor switching dc–dc converter with five output and ordered power-distributive control, IEEE J. Solid-State Circuits, vol. 42, no. 12, pp. 2706–2714, Dec. 2007.
[19]W. Xu, Y. Li, X. Gong, Z. Hong, and D. Killat, “A Dual-Mode Single-Inductor Dual-Output Switching Converter With Small Ripple, IEEE Trans. Power Electron, vol. 25, no. 3, pp. 614-623, Mar. 2010.
[20]Y.-H. Lee, Y.-Y. Yang, S.-J. Wang, K.-H. Chen, Y.-H. Lin, Y.-K. Chen, and C.-C. Huang, “Interleaving energy-conservation mode (IECM) control in single-inductor dual-output (SIDO) step-down converters with 91% peak efficiency, IEEE J. Solid-State Circuits, vol. 46, no. 4, pp. 904–915, Mar. 2011.
[21]R. Redl and J. Sun , Ripple-based control of switching regulators—An overview , IEEE Trans. Power Electron. , vol. 24 , no. 12 , pp.2669 -2680 , 2009.
[22]K. Y. Cheng , F. Yu , P. Mattavelli and F. C. Lee , Characterization and performance comparison of digital V2-type constant on-time control for buck converters , Proc. IEEE 12th Workshop on Control and Modeling for Power Electronics , pp.1 -6 , 2010.
[23]J. Sun , Characterization and performance comparison of ripple-based control for voltage regulator modules , IEEE Trans. Power Electron. , vol. 21 , no. 2 , pp.346 -353 , 2006.
[24]F. Yu and F. C. Lee, Design oriented model for constant on-time V2 control , Proc. IEEE Energy Conversion Congr. and Exposition , pp.3115 -3122 , 2010.
[25] Lee, Y.H., S.Y. Peng, C.C. Chiu, A.C.H. Wu, K.H. Chen, Y.H. Lin, S.W. Wang, T.Y. Tsai, C.C. Huang, and C.C. Lee, A Low Quiescent Current Asynchronous Digital-LDO With PLL-Modulated Fast-DVS Power Management in 40 nm SoC for MIPS Performance Improvement. IEEE J. Solid-State Circuits,vol. 48, pp. 1018-1030, 2013
[26]H. C. Lin, B. C. Fung, and T. Y. Chang, A current mode adaptive on-time control scheme for fast transient DC-DC converters, in Proc. IEEE Symp. Circuits and Systems, May 2008, pp. 2602–2605.
[27]B. Sahu, and G. A. Rincon-Mora, An accurate, low-voltage, CMOS switching power supply with adaptive on-time pulse-frequency modulation (PFM) control, IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 54, no. 2, pp. 312–321, Feb. 2007.
[28]C.-H. Tsai, S.-M. Lin, and C.-S. Huang, A fast-transient quasi-V2 switching buck regulator using AOT control with a load current correction (LCC) technique, IEEE Trans. Power Electron., vol. 28, no. 8, pp. 3949–3957, Aug. 2013.
[29]Y. H. Lee, T. C. Huang, Y. Y. Yang, W. S. Chou, K. H. Chen, C. C. Huang, et al., Minimized Transient and Steady-State Cross Regulation in 55-nm CMOS Single-Inductor Dual-Output (SIDO) Step-Down DC-DC Converter, IEEE Journal of Solid-State Circuits, vol. 46, pp. 2488-2499, 2011.
[30]D. Kwon and G. A. Rincon-Mora, Single-Inductor Multiple-Output Switching DC-DC Converters, IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 56, pp. 614-618, 2009.
[31]D. S. Ma, W. H. Ki, and C. Y. Tsui, A Pseudo-CCM/DCM SIMO Switching Converter with Freewheel Switching, IEEE Journal of Solid-State Circuits, vol. 38, pp. 1007-1014, 2003.
[32]Y. Zhang, R. Bondade, D. S. Ma, and S. Abedinpour, An Integrated SIDO Boost Power Converter with Adaptive Freewheel Switching Technique, in 2010 IEEE Energy Conversion Congress and Exposition, 2010, pp. 3516-3522.
[33]Y. H. Lee, Y. Y. Yang, S. J. Wang, K. H. Chen, Y. H. Lin, Y. K. Chen, et al., Interleaving Energy-Conservation Mode (IECM) Control in Single-Inductor Dual-Output (SIDO) Step-Down Converters With 91% Peak Efficiency, IEEE Journal of Solid-State Circuits, vol. 46, pp. 904-915, 2011.
[34]Y. P. Su, C. H. Lin, T. F. Yang, R. Y. Huang, W. C. Chen, K. H. Chen, et al., CCM/GM Relative Skip Energy Control and Bidirectional Dynamic Slope Compensation in a Single-Inductor Multiple-Output DC-DC Converter for Wearable Device Power Solution, IEEE Transactions on Power Electronics, vol. 31, pp. 5871-5884, 2016.
[35]Y. H. Lee, T. C. Huang, Y. Y. Yang, W. S. Chou, K. H. Chen, C. C. Huang, et al., Minimized Transient and Steady-State Cross Regulation in 55-nm CMOS Single-Inductor Dual-Output (SIDO) Step-Down DC-DC Converter, IEEE Journal of Solid-State Circuits, vol. 46, pp. 2488-2499, 2011.
[36]H. P. Le, C. S. Chae, K. C. Lee, S. W. Wang, G. H. Cho, and G. H. Cho, A Single-Inductor Switching DC-DC Converter With Five Outputs and Ordered Power-Distributive Control, IEEE Journal of Solid-State Circuits, vol. 42, pp. 2706-2714, 2007
[37]Yao Wang , Jianping Xu , Member, and Gang Yin, Cross-Regulation Suppression and Stability Analysis of Capacitor Current Ripple Controlled SIDO CCM Buck Converter, IEEE Transactions on Industrial Electronics, vol. 66, NO.3,March 2019.
[38]P. Patra, J. Ghosh, and A. Patra, “Control scheme for reduced cross regulation in single-inductor multiple-output DC–DC converters, IEEE Trans. Ind. Electron., vol. 60, no. 11, pp. 5095–5104, Nov. 2013.
[39]J. J. Chen, “An active current-sensing constant-frequency HCC buck converter using phase-frequency-locked techniques, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 55, no. 4, pp. 761–769, Apr. 2008.
[40]F. Su, W. H. Ki, and C. Y. Tsui, “Ultra fast fixed-frequency hysteretic buck converter with maximum charging current control and adaptive delay compensation forDVS applications, IEEE J. Solid-State Circuits, vol. 43, no. 4, pp. 815–822, Apr. 2008.
[41]Weiwei Xu, Xiaoting Zhu, Zhiliang Hong and Dirk Killat Design of Single-Inductor Dual-Output Switching Converters with Average Current Mode Control APCCAS 2008 - 2008 IEEE Asia Pacific Conference on Circuits and Systems.
[42]Kun-Yu Lin, Chun-Shih Huang, Dan Chen and Kwang H. Liu Modeling and Design of Feedback Loops for a Voltage-Mode Single-Inductor Dual-Output Buck Converter 2008 IEEE Power Electronics Specialists Conference.
[43]Yao Wang , Jianping Xu , Member, IEEE, and Duo Xu, “ Effect of Circuit Parameters on the Stability and Boundaries of Peak Current Mode Single-Inductor Dual-Output Buck Converters IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 65, NO. 7, JULY 2018
[44]Jinping Wang, Jianping Xu, and Bocheng Bao, “ Analysis of Pulse Bursting Phenomenon in Constant-On-Time-Controlled Buck Converter IEEE Transactions on Industrial Electronics ( Volume: 58 , Issue: 12 , Dec. 2011 )
[45]Jinping Wang , Jianping Xu , Fei Zhang , Ming Qin, “ A novel constant on-time bi-frequency control technique for switching dc-dc converters IEEE Conference on Industrial Electronics and Applications, 2010 5th.
[46]Vlad Anghel , Christopher Bartholomeusz , Anca Gabriela Vasilica , Gheorghe Pristavu , Gheorghe Brezeanu, “ Variable Off-Time Control Loop for Current-Mode Floating Buck Converters in LED Driving Applications IEEE Journal of Solid-State Circuits ( Volume: 49 , Issue: 7 , July 2014 )
[47]Yuan-Ta Hsieh ; Jian-Fu Wu ; Chiao-Li Fang ; Hann-Huei Tsai ; Ying-Zong Juang ; Bin-Da Liu, “A dimmable LED driver with an ambient light sensor based on a constant off-time control technique International Conference on Electrical Machines and Systems (ICEMS), 2012 15th.
[48]Guohua Zhou ; Jianping Xu ; Jinping Wang “ Constant-Frequency Peak-Ripple-Based Control of Buck Converter in CCM: Review, Unification, and Duality IEEE Transactions on Industrial Electronics ( Volume: 61 , Issue: 3 , March 2014 ).
[49]Song Qu“ Modeling and design considerations of V/sup 2/ controlled buck regulator APEC 2001. Sixteenth Annual IEEE Applied Power Electronics Conference and Exposition (Cat. No.01CH37181).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top