(18.232.50.137) 您好!臺灣時間:2021/05/07 03:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳宣榕
研究生(外文):Hsuan-JungChen
論文名稱:以區塊鏈技術為基礎之微電網即時能源交易機制
論文名稱(外文):Blockchain-based Real-time Energy-trading Mechanism in a Microgrid
指導教授:楊宏澤楊宏澤引用關係
指導教授(外文):Hong-Tzer Yang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:66
中文關鍵詞:能源交易供給函數產銷者區塊鏈
外文關鍵詞:Energy TradingSupply FunctionProsumersBlockchain Technology
相關次數:
  • 被引用被引用:0
  • 點閱點閱:61
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著針對節能減碳及實現永續發展社會的需求快速增加,各國積極推動再生能源興建,尤其鼓勵終端用戶建置太陽光電,然而大規模的分散式能源併入現有電網後,再生能源發電的不確定性及間歇性將會對現有電力系統造成嚴峻的挑戰。為了多鼓勵用戶能從原本的消費者轉為產銷者,也同時希望能夠減緩再生能源併網問題,故區域型的能源交易成為未來電網中之選項。
本研究提出一個創新且全面性之商業模式應用於微電網中產銷者之即時市場能源交易,藉由供給函數競標縮短最佳化問題運算時間,並結合具有不可篡改、去中心化等特性之區塊鏈技術,使交易過程更加安全且自動化。本研究中考慮不同種類的產銷者,包括太陽光電、電動車及儲能產銷者, 在考慮太陽光電產銷者卸載意願及電動車、儲能電池劣化成本後,分別探討各種產銷者的最佳化排程以及微電網營運者之收益。
最後本研究透過實際電價、太陽光電及負載資料,模擬微電網中即時能源交易之可行性。另亦與Stackelberg game既有方法進行結果及運算速度之比較,模擬結果亦呈現出本研究使用之方法較具效率性。
With the rapidly increasing demand for carbon reduction and need for the realization of a sustainable society, many countries have actively promoted the installation of renewable energy sources, especially for end users. However, the integration of large-scale renewable energy sources may result in significant challenges for the present power system. In order to encourage end users to change from consumers to prosumers and to reduce the impact of large-scale integration, regional energy trading markets have become an important component in the future power grid.
In this thesis, it shortens the computation time by using a supply function bidding framework. This framework is different from the single price/quantity bidding described in previous research. The single price/quantity bidding framework is typically supported by game theory, which is time-consuming and difficult to converge. Blockchain technology, which has the advantages of being decentralized and incorruptible, is used to overcome the security problem in previous research. By using the blockchain technology, the transaction process becomes more secure and can be conducted in real-time. Various categories of prosumers are considered, e.g., photovoltaic (PV), energy storage system (ESS), and electric vehicle (EV) prosumers. After considering curtailment willingness of PV prosumers and the degradation cost incurred by ESS and EV prosumers, we discuss the optimal scheduling of prosumers and the optimal revenue of a microgrid aggregator.
Real data were used in our case studies to simulate the feasibility of the proposed mechanism. We also compare the optimal results and the computation time with an existing method employing a Stackelberg game. Simulation results show that the framework used in this study is more efficient.
摘要 I
ABSTRACT II
致謝 IV
Table of Contents V
List of Figures VIII
List of Tables X
Chapter 1. INTRODUCTION 1
1.1. Background and Motivation 1
1.2. Review of Literature 3
1.3. Research Methods and Contributions 7
1.4. Organization of the Thesis 9
Chapter 2. SYSTEM DESCRIPTION AND MODELING 11
2.1. Overall System Framework 11
2.2. Market Mechanism 13
2.3. Blockchain Technology 14
Chapter 3. PROBLEM FORMULATION 19
3.1. Structure of the Proposed Method 19
3.2. Problem Definitions 22
3.2.1. Revenue Model of Microgrid Aggregator 23
3.2.2. Utility Function of PV Prosumers 26
3.2.3. Objective Function of ESS Prosumers 28
3.2.4. Objective Function of EV Prosumers 30
3.3. DE Solution Method 32
Chapter 4. SIMULATION RESULTS 38
4.1. Simulation System and Related Parameters 38
4.1.1. Electricity Price for Simulation 38
4.1.2. System Parameters of ESS and EV Prosumers 40
4.2. Analysis of Simulation Results 43
4.2.1. Case 1: Different Supply-demand Situations of Microgrid 43
4.2.2. Case 2: Analysis of PV Prosumers with Different Willingness 50
4.2.3. Case 3: Scheduled Results of ESS/EV Prosumers 51
4.2.4. Case 4: Comparison by Using Stackelberg Game 55
Chapter 5. CONCLUSION AND FUTURE PROSPECTS 60
5.1. Conclusion 60
5.2. Future Prospects 61
REFERENCES 62
[1] L. Wang, C. H. Chang, B. L. Kuan, and A. V. Prokhorov, “Stability Improvement of a Two-Area Power System Connected with an Integrated Onshore and Offshore Wind Farm Using a STATCOM, 2016 IEEE Industry Applications Society Annual Meeting, pp.1-9, 2016.
[2] A. A. Bazmi and G. Zahedi, “Sustainable Energy Systems: Role of Optimization Modeling Techniques in Power Generation and Supply—A Review, Renewable and Sustainable Energy Reviews, vol. 15, pp.3480-3500, 2011.
[3] S. D. Lu, M. T. Kuo, C. C. Wu, M. C. Tsou, and H. Zeng, “Evaluation of the Maximum Allowable Generation Capacity after Offshore Wind Farms are Integrated into the Existing Taipower System—A Case Study in Taiwan, Proceedings 2018 IEEE/IAS 54th Industrial and Commercial Power Systems Technical Conference (I&CPS), Canada, May. 2018.
[4] P. Basak, S. Chowdhury, S. Halder nee Dey, and S. P. Chowdhury, “A Literature Review on Integration of Distributed Energy Resources in the Perspective of Control, Protection and Stability of Microgrid, Renewable and Sustainable Energy Reviews, vol. 16, pp. 5545-5556, 2012.
[5] S. Parhizi, H. Lotfi, A. Khodaei, and S. Bahramirad, “State of the Art in Research on Microgrids: A Review, IEEE Access, vol. 3, pp. 890-925, 2015
[6] E. Mengelkamp, J. Gärttner, K. Rock, S. Kessler, L. Orsini, and C. Weinhardt, “Designing Microgrid Energy Markets: A Case Study: The Brooklyn Microgrid, Applied Energy, vol. 210, pp.870-880, 2018.
[7] C. Zhang, J. Wu, Y. Zhou, M. Cheng, and C. Long, “Peer-to-Peer Energy Trading in a Microgrid, Applied Energy, vol. 220, pp.1-12, 2018.
[8] N. Hatziargyriou, H. Asano, R. Iravani, and C. Marnay, “Microgrids, IEEE Power and Energy Magazine, vol. 5, no. 4, pp. 78-94, July-August 2007.
[9] D. S. Wiyono, S. Stein, and E. H. Gerding, “Novel Energy Exchange Models and a Trading Agent for Community Energy Market, 2016 13th International Conference on the European Energy Market (EEM), Porto, pp. 1-5, 2016.
[10] R. L. Fares and M. E. Webber, “The Impact of Storing Solar Energy in the Home to Reduce Reliance on the Utility, Nature Energy, vol. 2, 2017.
[11] N. Z. Aitzhan and D. Svetinovic, “Security and Privacy in Decentralized Energy Trading through Multi-Signatures, Blockchain and Anonymous Messaging Streams, IEEE Transactions on Dependable and Secure Computing, vol. 15, no. 5, pp. 840-852, September-October 2018.
[12] A. Paudel, K. Chaudhari, C. Long, and H. B. Gooi, “Peer-to-Peer Energy Trading in a Prosumer-Based Community Microgrid: A Game-Theoretic Model, IEEE Transactions on Industrial Electronics, vol. 66, no. 8, pp. 6087-6097, August 2019.
[13] N. Liu, X. Yu, C. Wang, C. Li, L. Ma, and J. Lei, “Energy-Sharing Model with Price-Based Demand Response for Microgrids of Peer-to-Peer Prosumers, IEEE Transactions on Power Systems, vol. 32, no. 5, pp. 3569-3583, September 2017.
[14] N. Liu, X. Yu, C. Wang, and J. Wang, “Energy Sharing Management for Microgrids with PV Prosumers: A Stackelberg Game Approach, IEEE Transactions on Industrial Informatics, vol. 13, no. 3, pp. 1088-1098, June 2017.
[15] A. Fleischhacker, H. Auer, G. Lettner, and A. Botterud, “Sharing Solar PV and Energy Storage in Apartment Buildings: Resource Allocation and Pricing, IEEE Transactions on Smart Grid, vol. 10, no. 4, pp. 3963-3973, July 2019.
[16] S. Cui, Y. Wang, J. Xiao, and N. Liu, “A Two-Stage Robust Energy Sharing Management for Prosumer Microgrid, IEEE Transactions on Industrial Informatics, vol. 15, no. 5, pp. 2741-2752, May 2019.
[17] B. Celik, R. Roche, D. Bouquain, and A. Miraoui, “Coordinated Neighborhood Energy Sharing Using Game Theory and Multi-agent Systems, 2017 IEEE Manchester PowerTech, Manchester, pp. 1-6, 2017.
[18] Y. Zhou, Z. Wei, G. Sun, K. W. Cheung, H. Zang, and S. Chen, “A Robust Optimization Approach for Integrated Community Energy System in Energy and Ancillary Service Markets, Energy, vol. 148, pp. 1-15, 2018.
[19] M. C. Hu, S. Y. Lu, and Y. H. Chen, “Stochastic Programming and Market Equilibrium Analysis of Microgrids Energy Management Systems, Energy, vol. 113, pp. 662-670, 2016.
[20] W. Huang and J. A. Abu Qahouq, “Energy Sharing Control Scheme for State-of-Charge Balancing of Distributed Battery Energy Storage System, IEEE Transactions on Industrial Electronics, vol. 62, no. 5, pp. 2764-2776, May 2015.
[21] M. A. Quddus, O. Shahvari, M. Marufuzzaman, J. M. Usher, and R. Jaradat, “A Collaborative Energy Sharing Optimization Model among Electric Vehicle Charging Stations, Commercial Buildings, and Power Grid, Applied Energy, vol. 229, pp. 841-857, 2018.
[22] W. Tushar et al., “Energy Storage Sharing in Smart Grid: A Modified Auction-Based Approach, IEEE Transactions on Smart Grid, vol. 7, no. 3, pp. 1462-1475, May 2016.
[23] N. Li, L. Chen, and M. A. Dahleh, “Demand Response Using Linear Supply Function Bidding, IEEE Transactions on Smart Grid, vol. 6, no. 4, pp. 1827-1838, July 2015.
[24] Y. Chen, S. Mei, F. Zhou, S. H. Low, W. Wei, and F. Liu, “An Energy Sharing Game with Generalized Demand Bidding: Model and Properties, IEEE Transactions on Smart Grid, vol. 11, no. 3, pp. 2055-2066, May 2020.
[25] A. Hirsch, Y. Parag, and J. Guerrero, “Microgrids: A Review of Technologies, Key Drivers, and Outstanding Issues, Renewable and Sustainable Energy Reviews, vol. 90, pp. 402-411, 2018.
[26] M. L. D. Silvestre, S. Favuzza, E. R. Sanseverino, and G. Zizzo, “How Decarbonization, Digitalization and Decentralization are Changing Key Power Infrastructures, Renewable and Sustainable Energy Reviews, vol. 93, pp. 483-498, 2018.
[27] N. Soares, A. G. Martins, A. L. Carvalho, C. Caldeira, C. Du, É. Castanheira, E. Rodrigues, G. Oliveira, G. I. Pereira, J. Bastos, J. P. Ferreira, L. A. Ribeiro, N. C. Figueiredo, N. Šahović, P. Miguel, and R. Garcia, “The Challenging Paradigm of Interrelated Energy Systems Towards a More Sustainable Future, Renewable and Sustainable Energy Reviews, vol. 95, pp. 171-193, 2018.
[28] M. Mylrea and S. N. G. Gourisetti, “Blockchain for Smart Grid Resilience: Exchanging Distributed Energy at Speed, Scale and Security, 2017 Resilience Week (RWS), Wilmington, DE, pp. 18-23, 2017.
[29] Z. Li, J. Kang, R. Yu, D. Ye, Q. Deng, and Y. Zhang, “Consortium Blockchain for Secure Energy Trading in Industrial Internet of Things, IEEE Transactions on Industrial Informatics, vol. 14, no. 8, pp. 3690-3700, August 2018.
[30] E. Mengelkamp, B. Notheisen, C. Beer, et al. “A Blockchain-based Smart Grid: Towards Sustainable Local Energy Markets, Computer Science-Research and Development, vol. 33, pp. 207–214, 2018.
[31] A. Ahl, M. Yarime, K. Tanaka, and D. Sagawa, “Review of Blockchain-based Distributed Energy: Implications for Institutional Development, Renewable and Sustainable Energy Reviews, vol. 107, pp. 200-211, 2019.
[32] J. Kang, R. Yu, X. Huang, S. Maharjan, Y. Zhang, and E. Hossain, “Enabling Localized Peer-to-Peer Electricity Trading Among Plug-in Hybrid Electric Vehicles Using Consortium Blockchains, IEEE Transactions on Industrial Informatics, vol. 13, no. 6, pp. 3154-3164, December 2017.
[33] C. Dang, J. Zhang, C. Kwong, and L. Li, “Demand Side Load Management for Big Industrial Energy Users under Blockchain-Based Peer-to-Peer Electricity Market, IEEE Transactions on Smart Grid, vol. 10, no. 6, pp. 6426-6435, November 2019.
[34] S. Noor, W. Yang, M. Guo, K. H. van Dam, and X. Wang, “Energy Demand Side Management within Micro-grid Networks Enhanced by Blockchain, Applied Energy, vol. 228, pp. 1385-1398, 2018.
[35] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis et al, “Hyperledger Fabric: A Distributed Operating System for Permissioned Blockchains, Proceedings of the Thirteenth EuroSys Conference, no. 30, pp.1-15, April 2018.
[36] Hyperledger Fabric, Blockchain network. [Online]. Available: https://hyperledger-fabric.readthedocs.io/en/release-1.4/network/network.html
[37] Hyperledger Fabric 基礎介紹.[Online].
Available: https://ithelp.ithome.com.tw/articles/10196473
[38] Hyperledger Fabric, Membership Service Provider (MSP). [Online]. Available: https://hyperledger-fabric.readthedocs.io/en/release-1.4/membership/membership.html
[39]P. D. Klemperer and M. A. Meyer, “Supply Function Equilibria in Oligopoly under Uncertainty, Econometrica, vol. 57, no. 6, pp.1243-1277, 1989.
[40] N. Li, L. Chen, and M. A. Dahleh, “Demand Response Using Linear Supply Function Bidding, IEEE Transactions on Smart Grid, vol. 6, no. 4, pp. 1827-1838, July 2015.
[41] F. P. Kelly, A. K. Maulloo, and D. K. H. Tan, “Rate Control for Communication Networks: Shadow Prices, Proportional Fairness and Stability, Journal of the Operational Research Society, vol. 49, no. 3, pp. 237-252, 1998.
[42] R. Srikant, “The Mathematics of Internet Congestion Control, Systems & Control: Foundations & Applications. Boston, MA: Birkhauser, 2004.
[43] S. Maharjan, Q. Zhu, Y. Zhang, S. Gjessing, and T. Basar, “Dependable Demand Response Management in the Smart Grid: A Stackelberg Game Approach, IEEE Transactions on Smart Grid, vol. 4, no. 1, pp. 120-132, March 2013.
[44] M. A. Ortega-Vazquez, “Optimal Scheduling of Electric Vehicle Charging and Vehicle-to-grid Services at Household Level Including Battery Degradation and Price Uncertainty, IET Generation, Transmission & Distribution, vol. 8, no. 6, pp. 1007-1016, 2014.
[45] R. Storn and K. Price, “Minimizing the Real Functions of the ICEC'96 Contest by Differential Evolution. in Evolutionary Computation, Proceedings of IEEE International Conference, 1996.
[46] Open Energy Information (OpenEI). [Online]. Available: https://openei.org/doe-opendata/dataset/commercial-and-residential-hourly-load-profiles-for-all-tmy3-locations-in-the-united-states
[47] Ausgrid, Solar home electricity data. [Online]. Available:
https://www.ausgrid.com.au/Industry/Our-Research/Data-to-share/Solar-home-electricity-data
[48] J. Smart and S. Schey, “Battery Electric Vehicle Driving and Charging Behavior Observed Early in the EV Project, Society of Automotive Engineers World Congress 2012, April 2012.
[49] J. H. Jhou, “Energy Management of Electric Vehicle Charging Stations, 2014. [Online]. Available: https://hdl.handle.net/11296/8qaqmn
[50] K. Field, “Lithium-Ion Battery Cell Densities Have Almost Tripled Since 2010, BloombergNEF, February 2020. [Online].
Available: https://cleantechnica.com/2020/02/19/bloombergnef-lithium-ion-battery-cell-densities-have-almost-tripled-since-2010/
[51] T. Basar and G. J. Olsder, “Dynamic Noncooperative Game Theory, vol. 23. Philadelphia, PA, USA: SIAM, 1999.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔