(3.238.173.209) 您好!臺灣時間:2021/05/16 21:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳勇廷
研究生(外文):Yung-TingChen
論文名稱:具有可偵測倍頻訊號的2.4 GHz獵能標籤設計
論文名稱(外文):2.4 GHz RF Energy Harvesting Tag with Detectable Harmonic signal
指導教授:黃尊禧
指導教授(外文):Tzuen-Hsi Huang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:74
中文關鍵詞:射頻無線傳能獵能接收器物件位置偵測功率調整電路射頻標籤
外文關鍵詞:Radio-FrequencyWireless Power TransferEnergy Harvesting ReceiverObject Location Detection TechniqueSecond-order Harmonic Enhanced CircuitRF Tag
相關次數:
  • 被引用被引用:0
  • 點閱點閱:29
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  傳統諧波雷達標籤系統整合天線和一個整流二極體。透過整合二極體的半波整流特性導致諧波雷達標籤「產生二次諧波」並透過天線的回傳效應,將二次諧波送回雷達系統加以解調以辨識目標物。另一方面,傳統射頻獵能標籤系統之接收端則是整合天線,匹配電流、整流器以達直流電壓之輸出以供後續負載電路之效能。前者強調二次諧波之反射以便於雷達系統的定位功能,但並無法達到整流之功能;後者則是具有整流的功能,但不具定位功能之設計。但綜觀二者電路皆有二極體之元件,是以本論文嘗試設計一個具有諧波偵測功能的整流器電路,以便將來應用於射頻獵能器之定位功能。
  本論文探討關於一個2.4 GHz獵能標籤整流電路之相關設計。首先是對於2.4 GHz頻帶無線獵能系統不可或缺的指向性天線設計。再者是探討無線獵能系統端直流輸出電路設計於傳能端對獵能標籤定位後之二倍頻輸出功率的調整。二個研究主題均使用介質厚度為1.6 mm之FR4玻璃纖維電路板及離散式元件實現。
  接收與發射天線設計使用貼片天線的設計技巧與利用其特性以達到增強收發能量密度的效果。此論文所研究之獵能標籤以接收2.4 GHz頻帶的訊號源以達整流效果並有效傳送4.8 GHz頻帶訊號至發送端,以利諧波定位之功能。本次設計接收天線之操作頻率訂於2.4 GHz,發射天線之操作頻率訂於4.8 GHz。實際量測得接收天線之中心頻率為2.43 GHz,反射損耗值為40.4 dB,頻寬為53 MHz且最大的天線輻射增益3.77 dB;發射天線之中心頻率為4.95 GHz,反射損耗值為31.9 dB,頻寬為129 MHz與最大的天線輻射增益6 dB。
  整流濾波器透過蕭特基二極體整流,並從非線性特性產生的諧波中。擷取二倍頻作為射頻輸出訊號以提供獵能標籤的定位訊號。整流後的訊號經濾波後輸出以提供後續負載使用。本次設計輸入端的共振頻率為2.4 GHz,射頻輸出端的共振頻率4.8 GHz。實際量測之整流電路轉換效率雖僅為2.02 %,但因為我們主要目的是想証明「利用共振腔電路的開關」以提供強弱不同的二次諧波,以利獵能標籤的定位辨識,所以我們並未最佳化設計轉換效率。經實際量測結果未儲能狀態(初始)與就緒狀態(達穩定整流輸出)之射頻二次諧波輸出功率相差為18.9 dB。
In this thesis, a switchable second harmonic identification circuit design in an energy harvester receiver refered as RF energy harvest tag, is proposed for object location detection technique. The 2.4 GHz energy harvester is used to provide DC power for a load and the circuit are impementation on FR4 printed circuit board.
The first part of this research work is the design of two patch antennas. To implement this harmonic tag, we need two antennas for power transfer. One is receiving fundamental power; another is transferring harmonic power. The center frequency of the designed antenna for fundamental power is at 2.4 GHz; the measured return loss is -40.4 dBm at 2.43 GHz; the bandwidth is 53 MHz (between 2.406 GHz and 2.459 GHz). The center frequency of the designed antenna for harmonic power is at 4.8 GHz; the measured return loss is around -31.9 dBm at 4.95 GHz; the bandwidth is 129 MHz (between 4.891 GHz and 5.02 GHz).
The second part of this research work is that a switchable harmonic power circuit based on transmission line structure, which contains a passive second harmonic resonator and a low pass filter. The harvester circuit is intergrated with two antennas. The harmonic power load deference between switch ON and OFF states is 34 dB. When the power emitter is doing the beam scan work and the energy harvester does not store enough DC energy, the second-order harmonic generated will be in a stronger state and can be reflected back to the power emitter. According to different reflected power levels of the second-order harmonic, the direction and distance of the energy harvester receiver can be detected and estimated.
A second harmonic enhancement circuit which is composed of a resonator and a switch is used in this work. When the capacitor connected at the output of rectifier did not be sufficiently charged, the switch will stay at the on state. After sensing the DC level of the stored capacitor, the switch will be turned OFF and the harmonic enhancement will be disable. And thus the energy harvester will be simply served as a harvester with a better conversion efficiency.
誌謝 VII
目錄 IX
表目錄 XII
圖目錄 XIII
第一章 緒論 1
1.1 獵能與研究背景 1
1.2 研究動機 2
1.3文獻回顧 3
1.4 論文架構概述 8
第二章 射頻標籤天線之設計與分析 9
2.1 天線之基本參數 9
2.2 天線的輻射效率、品質因數和頻寬 12
2.3 天線結構 14
2.4 ISM Band 2.4 GHz指向性天線之設計 15
2.4.1 微帶天線的基本參數 15
2.4.2 設計貼片大小 16
2.4.3 槽孔與阻抗匹配設計 18
2.4.4 實驗及量測結果 20
2.5 4.8 GHz指向性天線之設計 23
2.5.1 微帶天線的基本參數 23
2.5.2 設計貼片大小 23
2.5.3 槽孔與阻抗匹配設計 25
2.5.4 實驗及量測結果 25
第三章 整合直流輸出之4.8 GHz開關諧振器設計 31
3.1 電感和電容之串聯諧振電路設計 31
3.1.1 理想之串聯諧振與並聯諧振電路介紹 32
3.1.2 被動元件所組成之濾波器設計與模擬結果 33
3.2 作為電路元件的傳輸線 34
3.3 微帶線諧振腔參數分析 36
3.3.1 有效介電常數、特性阻抗公式 36
3.3.2 λ/4長之微帶線設計 37
3.3.3 短路λ/4線之微帶線諧振腔模擬結果 37
3.3.4 開路λ/4線之微帶線模擬結果 38
3.4 二倍頻調整電路的操作原理 40
3.4.1 50 Ω天線並聯開路半波長傳輸線 41
3.4.2 50 Ω天線並聯開路四分之一波長傳輸線 41
3.5 二倍頻調整電路的架構設計 42
3.5.1 使用串連共振電路改變輸入阻抗 42
3.5.2 在傳輸線上的低通濾波器與負載 44
3.6 二倍頻調整電路的特性分析 45
3.6.1 導通開關( ON )的等效阻抗 45
3.6.2 關閉開關( OFF )的等效阻抗 46
3.7 二倍頻調整電路的模擬結果 46
3.7.1 射頻輸出端的模擬結果 48
3.7.2 直流輸出端的模擬結果 48
第四章 量測結果 51
4.1 整體電路量測結果 51
4.1.1 導通開關( ON )的量測結果 54
4.1.2 關閉開關( OFF )的量測結果 59
4.1.3 獵能標籤端電路效能 63
第五章 結論與未來規劃 65
5.1 結論 65
5.1.1 比較表 65
5.2 未來規劃 66
附錄A:傳輸路徑損耗量測結果 68
參考文獻 71
[1]J. A. Paradiso and T. Starner, Energy scavenging for mobile and wireless electronics, IEEE Pervasive Computing, vol. 4, pp. 18-27, 2005.
[2]H. Sun, Far-Field Wireless Power Transmission and Ambient RF Energy Harvesting: Conscepts, Designs, Applications, 1 ed. San Bernardino: Scholars's Press, 2016.
[3]D. Allane, G. A. Vera, Y. Duroc, R. Touhami, and S. Tedjini, Harmonic Power Harvesting System for Passive RFID Sensor Tags, IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 7, pp. 2347-2356, 2016.
[4]S. Mondal, D. Kumar, S. Karuppuswami, and P. Chahal, A Harmonic RF Phase-Shifter Based Wireless pH Sensor, in 2018 IEEE 68th Electronic Components and Technology Conference (ECTC), 2018, pp. 796-801.
[5]B. D. V. Veen and K. M. Buckley, Beamforming: a versatile approach to spatial filtering, IEEE ASSP Magazine, vol. 5, no. 2, pp. 4-24, 1988.
[6]陳俊承, 應用於諧波雷達之物件偵測電路, 碩士, 電機工程系碩士班, 國立成功大學, 臺南市, 2016.
[7]S. Yang, T. Huang, C. Chen, C. Lu, and P. Chung, Beamforming power emitter design with 2x2 antenna array and phase control for microwave/RF-based energy harvesting, presented at the Wireless Power Transfer Conference (WPTC2015), 2015.
[8]S. Yang, C. Chen, T. Huang, C. Lu, and P. Chung, Design of a 2x2 antenna-array RF power emitter with object detection function for sensor location idenitification, presented at the 2015 International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO 2015), 2015.
[9]C. Chen, S. Yang, T. Huang, F. Wu, and P. Chung, Chargeable object location identification technique for antenna-arrayed RF power emitter using microcontroller-based harmonic reflection detection circuit, in 2016 IEEE Wireless Power Transfer Conference (WPTC), 2016, pp. 1-3.
[10]Arduino. Introduction ,May/2019 [Online]. Available: https://www.arduino.cc/en/G
uide/Introduction.
[11]H. E. J. Richard C. Johnson, Antenna Engineering Handbook. New York, NY: McGraw-Hill, Inc, 1984.
[12]C. A. Balanis, Antenna Theory: Analysis and Design, 3rd ed. Wiley, 2005.
[13]G. L. Charvat, Small and Short-Range Radar Systems, 1st ed. CRC Press, 2017.
[14]C.-J. Peng, Integration of 915 MHz Second-Harmonic Detection Energy Harvester and Low Power 2.4 GHz Phase Lock Loop for RF Tag Design, Graduate, Electronical Engineering, National Cheng Kung University, 2017.
[15]J. D. Kraus and R. J. Marhefka, Directivity D and Gain G, in Antennas : for all applications 3rd ed. Mc Graw-Hill Companies, 2002, pp. 23-25.
[16]J. D. Kraus and R. J. Marhefka, Antennas : for all applications, 3rd ed. Mc Graw-Hill Companies, 2002.
[17]J. Howell, Microstrip antennas, in 1972 Antennas and Propagation Society International Symposium, 1972, vol. 10, pp. 177-180.
[18]T. Itoh and R. Mittra, Analysis of a Microstrip Disk Resonator, in 1973 3rd European Microwave Conference, 1973, vol. 1, pp. 1-4.
[19]R. Munson, Conformal microstrip antennas and microstrip phased arrays, IEEE Transactions on Antennas and Propagation, vol. 22, no. 1, pp. 74-78, 1974.
[20]K. Carver and J. Mink, Microstrip antenna technology, IEEE Transactions on Antennas and Propagation, vol. 29, no. 1, pp. 2-24, 1981.
[21]L. Duixian, A new directional antenna for ISM applications, in 1997 IEEE 47th Vehicular Technology Conference. Technology in Motion, 1997, vol. 2, pp. 1196-1199 vol.2.
[22]K. Noguchi, M. Ando, N. Goto, M. Hirose, T. Uno, and Y. Kamimura, Directional antenna for portable telephones, in Proceedings of ICUPC '95 - 4th IEEE International Conference on Universal Personal Communications, 1995, pp. 369-372.
[23]A. Bloch, R. G. Medhurst, and S. D. Pool, A new approach to the design of super-directive aerial arrays, Journal of the Institution of Electrical Engineers, vol. 1953, no. 10, pp. 324-326, 1953.
[24]R. Conti, J. Toth, T. Dowling, and J. Weiss, The wire grid microstrip antenna, IEEE Transactions on Antennas and Propagation, vol. 29, no. 1, pp. 157-166, 1981.
[25]I. R. Regulations. What is meant by ISM applications and how are the related frequencies used? [Online]. Available: https://www.itu.int/net/ITU-R/terrestrial/f
aq/index.html#g013.
[26]鄧聖明、蔡慶龍、柏小松, 天線設計與應用—使用ANSYS HFSS模擬器. 鼎茂圖書出版股份有限公司, 2012.
[27]D. K. Cheng, Field and Wave Electromagnetics, 2nd ed. Addison-Wesley, 1989.
[28]D. M. Pozar, Microwave engineering. John Wiley & Sons, Inc, 2011.
[29]A. Technologies. HSMS-2865 High frequency detector diode [Online]. Available: https://www.ic-components.za.com/files/e2/HSMS-2865-BLKG.pdf.
[30]Keysight, PathWave EM Simulations, 2020. [Online]. Available: https://www.keysi
ght.com/tw/zh/assets/7119-1071/ebooks/5992-4245.pdf.
[31]G. Papotto, F. Carrara, and G. Palmisano, A 90-nm CMOS Threshold-Compensated RF Energy Harvester, IEEE Journal of Solid-State Circuits, vol. 46, no. 9, pp. 1985-1997, 2011.
[32]T. Ungan, X. L. Polozec, W. Walker, and L. Reindl, RF energy harvesting design using high Q resonators, in 2009 IEEE MTT-S International Microwave Workshop on Wireless Sensing, Local Positioning, and RFID, 2009, pp. 1-4.
[33]D. Bouchouicha, M. Latrach, F. Dupont, and L. Ventura, An experimental evaluation of surrounding RF energy harvesting devices, in The 40th European Microwave Conference, 2010, pp. 1381-1384.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文