|
[1]H. Akamatu, H. Inokuchi, and Y. Matsunaga. Electrical Conductivity of the Perylene-Bromine Complex. Nature, 173(4395):168–169, 1954. doi:10.1038/173168a0. [2]R. McNeill, R. Siudak, J. H. Wardlaw, and D. E. Weiss. Electronic Conduction in Polymers. I. The Chemical Structure of Polypyrrole. Aust. J. Chem., 16(6):1056– 1075, 1963. [3]A. Bernanose. Electroluminescence of organic compounds. Br. J. Appl. Phys., 6(S4): S54, 1955. doi:10.1088/0508-3443/6/S4/319. [4]Sugimoto, Akira, et al. Flexible OLED displays using plastic substrates. IEEE Journal of selected topics in quantum electronics 10.1 (2004): 107-114. [5]Park, Jin-Seong, et al. Thin film encapsulation for flexible AM-OLED: a review. Semiconductor science and technology 26.3 (2011): 034001. [6]MolitonA,‘‘OptoelectronicsofMoleculesandPolymers’’,Springer(2005). [7]Moliton, André, and Roger C. Hiorns. Origin and development of plastic (organic) electronics. (2011). [8]Sano, Mizuka, Martin Pope, and Hartmut Kallmann. Electroluminescence and band gap in anthracene. The Journal of Chemical Physics 43.8 (1965): 2920-2921. [9]Kallmann, H., and M. Pope. Preparation of Thin Anthracene Single Crystals. Review of Scientific Instruments 29.11 (1958): 993-994. [10]Berets, D. J., and D. S. Smith. Electrical properties of linear polyacetylene. Transactions of the Faraday Society 64 (1968): 823-828. [11]Torrance, Jerry B. The difference between metallic and insulating salts of tetracyanoquinodimethone (TCNQ): how to design an organic metal. Accounts of chemical research 12.3 (1979): 79-86. [12]Ferraris, John, et al. Electron transfer in a new highly conducting donor-acceptor complex. Journal of the American Chemical Society 95.3 (1973): 948-949. [13]Chiang, C. K., and C. R. Fincher Jr. Park, YW; Heeger, AJ; Shirakawa, H.; Louis. E. J Phys Rev Lett 39 (1977): 1098. [14]Fincher Jr, C. R., et al. Anisotropic optical properties of pure and doped polyacetylene. Solid State Communications 27.5 (1978): 489-494. [15]Su, W_P, J. R. Schrieffer, and Ao J. Heeger. Solitons in polyacetylene. Physical review letters 42.25 (1979): 1698. [16]Bredas, J. L., R. R. Chance, and R. Silbey. Comparative theoretical study of the doping of conjugated polymers: polarons in polyacetylene and polyparaphenylene. Physical Review B26.10 (1982): 5843. [17]Heeger, Alan J., et al. Solitons in conducting polymers. Reviews of Modern Physics 60.3 (1988): 781. [18]Tang, Ching W., and Steven A. VanSlyke. Organic electroluminescent diodes. Applied physics letters 51.12 (1987): 913-915. [19]Tang, Ching W. Two‐layer organic photovoltaic cell. Applied physics letters 48.2 (1986): 183-185. [20]Pochettino A. (1906), 'Sul comportamento foto-elettrico dell' antracene', Acad. Lincei Rendiconti 15, 355–363. [21]Kondakov, D. Y., et al. Triplet annihilation exceeding spin statistical limit in highly efficient fluorescent organic light-emitting diodes. Journal of Applied Physics 106.12 (2009): 124510. [22]Kido, Junji, Katsutoshi Nagai, and Yutaka Ohashi. Electroluminescence in a terbium complex. Chemistry Letters19.4 (1990): 657-660. [23]Baldo, Marc A., et al. Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 395.6698 (1998): 151-154. [24]Lee, Jonghee, et al. Stable efficiency roll-off in blue phosphorescent organic light-emitting diodes by host layer engineering. Organic Electronics 10.8 (2009): 1529-1533. [25]Endo, Ayataka, et al. Thermally activated delayed fluorescence from Sn4+–porphyrin complexes and their application to organic light emitting diodes—A novel mechanism for electroluminescence. Advanced Materials 21.47 (2009): 4802-4806. [26]Uoyama, Hiroki, et al. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492.7428 (2012): 234-238. [27]M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, and S. R. Forrest, Nature 395, 151 (1998). [28]S.-J. Su, Y. Takahashi, T. Chiba, T. Takeda, and J. Kido, Advanced Functional Materials 19, 1260 (2009). [29]B. X. Mi, P. F. Wang, Z. Q. Gao, C. S. Lee, S. T. Lee, H. L. Hong, X. M. Chen, M. S. Wong, P. F. Xia, K. W. Cheah, C. H. Chen, and W. Huang, Adv. Mater. 21, 339 (2009). [30]S. J. Su, T. Chiba, T. Takeda, and J. Kido, Adv. Mater. 20, 2125 (2008). [31]Z. Q. Gao, M. Luo, X. H. Sun, H. L. Tam, M. S. Wong, B. X. Mi, P. F. Xia, K. W. Cheah, and C. H. Chen, Adv. Mater. 21, 688 (2009). [32]K. R. Choudhury, J. Lee, N. Chopra, A. Gupta, X. Jiang, F. Amy, and F. So, Advanced Functional Materials 19, 491 (2009). [33]M. G. Helander, Z.-B. Wang, M. T. Greiner, Z.-W. Liu, J. Qiu, and Z.-H. Lu, Adv. Mater. 22, 2037 (2010). [34]Z. W. Liu, M. G. Helander, Z. B. Wang, and Z. H. Lu, Appl. Phys. Lett. 94, 113305 (2009). [35] Tsujimura, Takatoshi. OLED display fundamentals and applications. John Wiley & Sons, 2017. [35]Tsutsui, Tetsuo. Progress in electroluminescent devices using molecular thin films. Mrs Bulletin 22.6 (1997): 39-45. [36]Yue, Qingyang, et al. Enhancing the out-coupling efficiency of organic light-emitting diodes using two-dimensional periodic nanostructures. Advances in Materials Science and Engineering2012 (2012). [37]https://poetryinphysics.wordpress.com/2019/02/09/the-organic-chemistry-lie/ [38]https://brilliant.org/wiki/sigma-and-pi-bonds [39]Organic Light-Emitting Diodes (OLEDS) Universal Display Corporation, Ewing, NJ, USA e-mail: rma@universaldisplay.com # Springer-Verlag Berlin Heidelberg 2016 J. Chen et al. (eds.), Handbook of Visual Display Technology, DOI 10.1007/978-3-642-35947-7_79-2 [40]Walzer et al., Chem. Rev. 107, 1233 (2007). [41]Egusa, Syun. Organic electroluminescent device. U.S. Patent No. 5,093,698. 3 Mar. 1992. [42]S. Tokito, K. Noda, Y. Taga, Metal oxides as a hole injecting layer for organic electroluminescent devices, J. Phys. D Appl. Phys. 29 (11), 1996: 2750. [43]H. Ikeda, J. Sakata, M. Hayakawa, T. Aoyama, T. Kawakami, K. Kamata, Y. Iwaki, S. Seo, Y. Noda, R. Nomura, S. Yamazaki, P-185: Low-Drive-Voltage OLEDs with a Buffer Layer Having Molybdenum Oxide, SID Symp. Dig. Tech. Papers 2006: 923. [44]D.-S. Leem, H.-D. Park, J.-W. Kang, J.-H. Lee, J.W. Kim, J.-J. Kim, Low driving voltage and high stability organic light-emitting diodes with rhenium oxide-doped hole transporting layer, Appl. Phys. Lett. 91, 2007: 011113. [45]R. Krause, F. Steinbacher, G. Schmid, J.H. Wemken, A. Hunze, Cheap p- and n-doping for highly efficient organic devices, J. Photon. Energy 1, 2011: 011022–1. [46]C.-C. Chang, M.-T. Hsieh, J.-F. Chen, S.-W. Hwang, C.H. Chen, Highly power efficient organic light-emit- ting diodes with a p-doping layer, Appl. Phys. Lett. 89, 2006: 253504. [47]M.-T. Hsieh, C.-C. Chang, J.-F. Chen, C.H. Chen, Study of hole concentration of 1,4-bis[N-(1-naphthyl)- N′-phenylamino]-4,4′diamine doped with tungsten oxide by admittance spectroscopy, Appl. Phys. Lett. 89, 2006: 103510. [48]Hertz, Heinrich. Ueber einen Einfluss des ultravioletten Lichtes auf die electrische Entladung. Annalen der Physik 267.8 (1887): 983-1000. [49]Einstein, Albert. Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Annalen der physik 322.6 (1905): 132-148. [50]Gaspar, Daniel J., and Evgueni Polikarpov, eds. OLED fundamentals: materials, devices, and processing of organic light-emitting diodes. CRC press, 2015. [51]C. Chappaz-Gillot, R. Salazar, S. Berson, V. Ivanova, Electrochemistry Communications 2012, 24, 1. [52]Z. Zhong, Y. Jiang, The surface properties of treated ITO substrates effect on the performance of OLEDs, The European Physical Journal Applied Physics, 34 (2006) 173-177. [53]D. P.-K. Tsang, T. Matsushima, and C. Adachi, Scientific reports 6, 22463 (2016). [54]S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, Nature 459, 234 (2009). [55]P. J. Jesuraj, R. Parameshwari, K. Kanthasamy, J. Koch, H. Pfnür, and K. Jeganathan, Applied Surface Science 397, 144 (2017). [56]Y. Li, D.-Q. Zhang, L. Duan, R. Zhang, L.-D. Wang, and Y. Qiu, Applied physics letters 90, 012119 (2007). [57]C. E. Small, S. W. Tsang, J. Kido, S. K. So, and F. So, Advanced Functional Materials 22, 3261 (2012). [58]K. Sugiyama, H. Ishii, Y. Ouchi, and K. Seki, Journal of Applied Physics 87, 295 (2000). [59]C. Wu, C. Wu, J. Sturm, and A. Kahn, Applied Physics Letters 70, 1348 (1997). [60]J. A. Bardecker, H. Ma, T. Kim, F. Huang, M. S. Liu, Y. J. Cheng, G. Ting, and A. K. Y. Jen, Advanced Functional Materials 18, 3964 (2008). [61]F. Wang, X. Qiao, T. Xiong, and D. Ma, Organic Electronics 9, 985 (2008). [62]D.-S. Leem, H.-D. Park, J.-W. Kang, J.-H. Lee, J. W. Kim, and J.-J. Kim, Applied physics letters 91, 011113 (2007). [63]T. Matsushima, Y. Kinoshita, and H. Murata, Applied Physics Letters 91, 253504 (2007). [64]J. Meyer, K. Zilberberg, T. Riedl, and A. Kahn, Journal of Applied Physics 110, 033710 (2011). [65]C.-H. Gao, X.-Z. Zhu, L. Zhang, D.-Y. Zhou, Z.-K. Wang, and L.-S. Liao, Applied Physics Letters 102, 61 (2013). [66]K. Zilberberg, S. Trost, J. Meyer, A. Kahn, A. Behrendt, D. Lützenkirchen‐Hecht, R. Frahm, and T. Riedl, Advanced Functional Materials 21, 4776 (2011). [67]H. Riel, S. Barth, T. A. Beierlein, W. Bruetting, S. Karg, P. Mueller, and W. Riess, in Grading interfaces: a new concept to improve device performance in organic multilayer light-emitting diodes, 2001 (International Society for Optics and Photonics), p. 167. [68]M. Baldo, C. Adachi, and S. Forrest, Phys. Rev. B 62, 10967 (2000). [69]J. Y. Lee, Applied physics letters 89, 153503 (2006). [70]J. Lee, H.-F. Chen, T. Batagoda, C. Coburn, P. I. Djurovich, M. E. Thompson, and S. R. Forrest, Nature materials 15, 92 (2016). [71]U. S. Bhansali, H. Jia, I. W. Oswald, M. A. Omary, and B. E. Gnade, Applied Physics Letters 100, 101 (2012). [72]H.-H. Chang, C.-C. Wu, C.-C. Yang, C.-W. Chen, and C.-C. Lee, Applied Physics Letters 78, 574 (2001). [73]Y. Zhang, J. Lee, and S. R. Forrest, Nature communications 5, ncomms6008 (2014). [74]S. H. Kim, J. Jang, and J. Y. Lee, Applied physics letters 90, 203511 (2007). [75]S.-H. Leeb, J. K. Kima, and C. H. Leec, in Role of carrier mobility, exciton diffusion, and their interplay for charge balance and improved properties of organic electrophosphorescent device, 2006, p. 633315. [76]W. Gao, K. Yang, H. Liu, J. Feng, J. Hou, and S. Liu, in Graded doping in active layer for achievement of high brightness and efficiency organic light-emitting devices, 2001, p. 386. [77]D. Ma, J. M. Lupton, R. Beavington, P. L. Burn, and I. D. Samuel, Advanced Functional Materials 12, 507 (2002). [78]H. Yang, Y. Yoon, T. Kim, K. Kwack, J. Kim, J. Seo, and Y. Kim, Solid state communications 137, 87 (2006). [79]S. Ciná, D. Vaufrey, C. Fery, B. Racine, H. Doyeux, A. Bettinelli, and J. C. Martinez, in P‐135: Efficient Electron Injection from PEDOT‐PSS into a Graded‐n‐doped Electron Transporting Layer in an Inverted OLED Structure, 2005 (Wiley Online Library), p. 819. [80]J. Hou, J. Wu, Z. Xie, and L. Wang, Applied Physics Letters 95, 203508 (2009). [81]J.-H. Lee, D.-S. Leem, H.-J. Kim, and J.-J. Kim, Applied Physics Letters 94, 93 (2009). [82]D. Zhang, M. Cai, Y. Zhang, D. Zhang, and L. Duan, ACS applied materials & interfaces 7, 28693 (2015). [83]W.-J. Shin, J.-Y. Lee, J. C. Kim, T.-H. Yoon, T.-S. Kim, and O.-K. Song, Organic Electronics 9, 333 (2008). [84]S. Hamwi, J. Meyer, T. Winkler, T. Riedl, and W. Kowalsky, Applied Physics Letters 94, 174 (2009). [85]J.-P. Yang, Q.-Y. Bao, Y. Xiao, Y.-H. Deng, Y.-Q. Li, S.-T. Lee, and J.-X. Tang, Organic Electronics 13, 2243 (2012). [86]N. Giebink and S. Forrest, Physical Review B 77, 235215 (2008). [87]S. Höfle, A. Schienle, C. Bernhard, M. Bruns, U. Lemmer, and A. Colsmann, Advanced Materials 26, 5155 (2014). [88]J. Yun, J. Yang, Y. Hong, C. Lee, W. J. Song, and Y. J. Sung, (2008). [89]T.-L. Chiu, P.-Y. Lee, J.-H. Lee, C.-H. Hsiao, M.-K. Leung, C.-C. Lee, C.-Y. Chen, and C.-C. Yang, Journal of Applied Physics 109, 084520 (2011). [90]Z. Wu, L. Wang, G. Lei, and Y. Qiu, Journal of applied physics 97, 103105 (2005). [91]Y.-K. Fang, Y.-T. Chiang, S.-F. Chen, C.-Y. Lin, S.-C. Hou, C.-S. Hung, T.-Y. Tsai, S.-H. Chang, and T.-H. Chou, Journal of Physics and Chemistry of Solids 69, 738 (2008). [92]M. M. Sarjidan, S. Basri, N. Za’Aba, M. Zaini, and W. A. Majid, Bulletin of Materials Science 38, 235 (2015). [93]X. Qiao, J. Chen, X. Li, and D. Ma, Journal of Applied Physics 107, 104505 (2010). [94]P. Jeon, H. Lee, J. Lee, K. Jeong, J. Lee, and Y. Yi, Applied Physics Letters 99, 169 (2011). [95]M.-T. Hsieh, C.-C. Chang, J.-F. Chen, and C. H. Chen, Applied Physics Letters 89, 103510 (2006). [96]M.-T. Hsieh, M.-H. Ho, K.-H. Lin, J.-F. Chen, T.-M. Chen, and C. H. Chen, Applied Physics Letters 95, 033501 (2009). [97]M.-T. Hsieh, M.-H. Ho, K.-H. Lin, J.-F. Chen, T.-M. Chen, and C. H. Chen, Applied Physics Letters 96, 66 (2010). [98]J. Zhao, Y. Cai, J.-P. Yang, H.-X. Wei, Y.-H. Deng, Y.-Q. Li, S.-T. Lee, and J.-X. Tang, Applied Physics Letters 101, 193303 (2012). [99]S. Nowy, W. Ren, J. Wagner, J. A. Weber, and W. Brütting, in Impedance spectroscopy of organic hetero-layer OLEDs as a probe for charge carrier injection and device degradation, 2009 (International Society for Optics and Photonics), p. 74150G. [100]S. Nowy, W. Ren, A. Elschner, W. Lövenich, and W. Brütting, Journal of Applied Physics 107, 054501 (2010). [101]B.W. D'Andrade, S.R. Forrest, Advanced Materials, 16 (2004) 1585-1595. [102]H. Sasabe, J. Kido, Journal of Materials Chemistry C, 1 (2013) 1699-1707. [103]Y. Sun, N.C. Giebink, H. Kanno, B. Ma, M.E. Thompson, S.R. Forrest, Nature, 440 (2006) 908. [104]X. Zhou, M. Pfeiffer, J. Huang, J. Blochwitz-Nimoth, D. Qin, A. Werner, J. Drechsel, B. Maennig, K. Leo, Applied Physics Letters, 81 (2002) 922-924. [105]P. Görrn, F. Ghaffari, T. Riedl, W. Kowalsky, Solid-State Electronics, 53 (2009) 329-331. [106]S.-Y. Chen, T.-Y. Chu, J.-F. Chen, C.-Y. Su, C.H. Chen, Applied physics letters, 89 (2006) 053518. [107]C. Cui-Ran, C. Yu-Huan, Q. Da-Shan, Q. Wei, L. Jin-Suo, Chinese Physics Letters, 27 (2010) 117801. [108]J. Zhao, Y. Zhan, S. Zhang, X. Wang, Y. Zhou, Y. Wu, Z. Wang, X. Ding, X. Hou, Applied physics letters, 84 (2004) 5377-5379. [109]S. Kho, S. Sohn, D. Jung, H. Chae, J. Boo, B. Kim, Journal of the Korean Physical Society, 46 (2005) 1224-1227. [110]L. Liao, L. Hung, W. Chan, X. Ding, T. Sham, I. Bello, C. Lee, S. Lee, Applied physics letters, 75 (1999) 1619-1621. [111]L. Hou, F. Huang, W. Zeng, J. Peng, Y. Cao, Applied Physics Letters, 87 (2005) 153509. [112]S.-W. Park, J.-M. Choi, E. Kim, S. Im, Applied surface science, 244 (2005) 439-443. [113]T. Miyashita, S. Naka, H. Okada, H. Onnagawa, Japanese journal of applied physics, 44 (2005) 3682. [114]C.-W. Chen, C.-L. Lin, C.-C. Wu, Applied physics letters, 85 (2004) 2469-2471. [115]T.-Y. Chu, J.-F. Chen, S.-Y. Chen, C.-J. Chen, C.H. Chen, Applied physics letters, 89 (2006) 053503. [116]R. Zheng, W. Huang, W. Xu, Y. Cao, Synthetic Metals, 162 (2012) 1919-1922. [117]P.-C. Kao, J.-Y. Wang, J.-H. Lin, C.-H. Yang, Thin Solid Films, 527 (2013) 338-343. [118]M.-H. Chen, C.-I. Wu, Journal of Applied Physics, 104 (2008) 113713. [119]T. Xiong, F. Wang, X. Qiao, D. Ma, Applied Physics Letters, 92 (2008) 240. [120]M.-T. Hsieh, M.-H. Ho, K.-H. Lin, J.-F. Chen, T.-M. Chen, C.H. Chen, Applied Physics Letters, 96 (2010) 66. [121]P.-C. Kao, C.-W. Lu, J.-H. Lin, Y.-K. Lin, Thin Solid Films, 570 (2014) 510-515. [122]M.-H. Ho, Y.-S. Wu, S.-W. Wen, M.-T. Lee, T.-M. Chen, C.H. Chen, K.-C. Kwok, S.-K. So, K.-T. Yeung, Y.-K. Cheng, Applied physics letters, 89 (2006) 252903. [123]J.H. Seo, K.H. Lee, B.M. Seo, J.R. Koo, S.J. Moon, J.K. Park, S.S. Yoon, Y.K. Kim, Organic Electronics, 11 (2010) 1605-1612. [124]R. Shangguan, G. Mu, X. Qiao, L. Wang, K.-W. Cheah, X. Zhu, C.H. Chen, Organic Electronics, 12 (2011) 1957-1962. [125]C.-H. Tsai, C.-H. Liao, M.-T. Lee, C.H. Chen, Applied Physics Letters, 87 (2005) 243505. [126]D. Zhou, S. Cai, W. Gu, L. Liao, S. Lee, Applied Physics Letters, 97 (2010) 255. [127]G. He, O. Schneider, D. Qin, X. Zhou, M. Pfeiffer, K. Leo, Journal of Applied Physics, 95 (2004) 5773-5777. [128]S. M. Chen, Y. B. Yuan, J. R. Lian, Z. F. Xie, X. Zhou, Light-Emitting Diode Materials and Devices II, International Society for Optics and Photonics, 6828 (2007) pp. 68280O. [129]Y. Lee, J. Kim, S. Kwon, C.-K. Min, Y. Yi, J. Kim, B. Koo, M. Hong, Organic Electronics, 9 (2008) 407-412. [130]K. Walzer, B. Maennig, M. Pfeiffer, and K. Leo, Chemical reviews 107, 1233 (2007). [131]Y.-H. Deng, Y.-Q. Li, Q.-D. Ou, Q.-K. Wang, F.-Z. Sun, X.-Y. Chen, and J.-X. Tang, Organic Electronics 15, 1215 (2014). [132]C.-T. Tsai, Y.-H. Liu, J.-F. Tang, P.-C. Kao, C.-H. Chiang, and S.-Y. Chu, Synthetic Metals 243, 121 (2018). [133]F. Zhang, A. Petr, U. Kirbach, and L. Dunsch, Journal of Materials Chemistry 13, 265 (2003). [134]P. Murgatroyd, Journal of Physics D: Applied Physics, 3 (1970) 151. [135]H. Martens, P. Blom, H. Schoo, Physical review B, 61 (2000) 7489. [136]Y. Xia, O.Y. Wan, K.W. Cheah, Optical Materials Express, 6 (2016) 1905-1913. [137]C.-H. Chang, M.-K. Hsu, S.-W. Wu, M.-H. Chen, H.-H. Lin, C.-S. Li, T.-W. Pi, H.-H. Chang, N.-P. Chen, Physical Chemistry Chemical Physics, 17 (2015) 13123-13128. [138]F. Wang, T. Xiong, X. Qiao, D. Ma, Organic Electronics, 10 (2009) 266-274. [139]S.-W. Wen, M.-T. Lee, C.H. Chen, Journal of display technology, 1 (2005) 90-99. [140]Y. Zhang, S.R. Forrest, Physical Review B, 84 (2011) 241301. [141]N. Wijeyasinghe, T. D. Anthopoulos, Semiconductor Science and Technology 2015, 30, 104002. [142]N. T. Kalyani, S. Dhoble, Renewable and Sustainable Energy Reviews 2012, 16, 2696. [143]Q. Zheng, F. You, J. Xu, J. Xiong, X. Xue, P. Cai, X. Zhang, H. Wang, B. Wei, L. Wang, Organic Electronics, 46 (2017) 7-13. [144]J. Xu, Y. Wang, Q. Chen, Y. Lin, H. Shan, V. Roy, Z. Xu, Journal of Materials Chemistry C, 4 (2016) 7377-7382. [145]L. Zheng, J. Xu, Y. Feng, H. Shan, G. Fang, Z.-X. Xu, Journal of Materials Chemistry C, 6 (2018) 11471-11478. [146]Y. Feng, J. Xu, H. Shan, L. Dong, X. Sun, Q. Hu, Y. Wang, V. Roy, Z.-X. Xu, Organic Electronics, 51 (2017) 257-263. [147]A. Facchetti, T. Marks, Transparent electronics: from synthesis to applications, John Wiley & Sons, 2010. [148]N. Wijeyasinghe, F. Eisner, L. Tsetseris, Y. H. Lin, A. Seitkhan, J. Li, F. Yan, O. Solomeshch, N. Tessler, P. Patsalas, Advanced Functional Materials 2018, 1802055. [149]X.-D. Gao, X.-M. Li, W.-D. Yu, J.-J. Qiu, X.-Y. Gan, Thin Solid Films 2008, 517, 554. [150]W. Wu, Z. Jin, Z. Hua, Y. Fu, J. Qiu, Electrochimica acta 2005, 50, 2343. [151]N. Wijeyasinghe, A. Regoutz, F. Eisner, T. Du, L. Tsetseris, Y. H. Lin, H. Faber, P. Pattanasattayavong, J. Li, F. Yan, Advanced Functional Materials 2017, 27. [152]P. Pattanasattayavong, V. Promarak, T. D. Anthopoulos, Advanced Electronic Materials 2017, 3. [153]M. Kim, S. Park, J. Jeong, D. Shin, J. Kim, S. H. Ryu, K. S. Kim, H. Lee, Y. Yi, The journal of physical chemistry letters 2016, 7, 2856. [154]J. Sohn, Y. Kwon, C. Lee, P‐139: Improved Power Efficiency of Organic Light‐Emitting Diodes using Solution‐Processed CuSCN Hole Injection Layer, presented at SID Symposium Digest of Technical Papers, 2015. [155]L.-J. Xu, X. Zhang, J.-Y. Wang, Z.-N. Chen, Journal of Materials Chemistry C 2016, 4, 1787. [156]P. Pattanasattayavong, N. Yaacobi‐Gross, K. Zhao, G. O. N. Ndjawa, J. Li, F. Yan, B. C. O'Regan, A. Amassian, T. D. Anthopoulos, Advanced Materials 2013, 25, 1504. [157]S. Ye, W. Sun, Y. Li, W. Yan, H. Peng, Z. Bian, Z. Liu, C. Huang, Nano letters 2015, 15, 3723. [158]J. W. Jung, C. C. Chueh, A. K. Y. Jen, Advanced Energy Materials 2015, 5. [159]G. Wyatt-Moon, D. G. Georgiadou, J. Semple, T. D. Anthopoulos, ACS applied materials & interfaces 2017, 9, 41965. [160]H.-P. Lin, X.-J. Lin, D.-C. Perng, Applied Physics Letters 2018, 112, 021107. [161]J. E. Jaffe, T. C. Kaspar, T. C. Droubay, T. Varga, M. E. Bowden, G. J. Exarhos, The Journal of Physical Chemistry C 2010, 114, 9111. [162]P. Pattanasattayavong, G. O. N. Ndjawa, K. Zhao, K. W. Chou, N. Yaacobi-Gross, B. C. O'Regan, A. Amassian, T. D. Anthopoulos, Chemical Communications 2013, 49, 4154. [163]X. Zhang, S. Yoshioka, N. Loew, M. Ihara, ECS Transactions 2014, 64, 1. [164]S. Ito, S. Tanaka, H. Vahlman, H. Nishino, K. Manabe, P. Lund, ChemPhysChem 2014, 15, 1194. [165]S. Hatch, J. Briscoe, S. Dunn, Thin Solid Films 2013, 531, 404. [166]Y. Liao, T. Fukuda, N. Kamata, physica status solidi (RRL)–Rapid Research Letters, 8 (2014) 154-157. [167]T. Fukuda, K. Suzuki, N. Yoshimoto, Y. Liao, Organic Electronics, 33 (2016) 32-39. [168]C. Chappaz-Gillot, R. Salazar, S. Berson, V. Ivanova, Electrochimica Acta 2013, 110, 375. [169]A. Perumal, H. Faber, N. Yaacobi‐Gross, P. Pattanasattayavong, C. Burgess, S. Jha, M. A. McLachlan, P. N. Stavrinou, T. D. Anthopoulos, D. D. Bradley, Advanced Materials 2015, 27, 93. [170]M. Auer-Berger, V. Tretnak, F.-P. Wenzl, J. R. Krenn, E. J. List-Kratochvil, Optical Engineering 2017, 56, 097102. [171]M. Auer-Berger, V. Tretnak, F.-P. Wenzl, J. Krenn, E. J. List-Kratochvil, Tuning of the emission color of organic light emitting diodes via smartly designed aluminum plasmonics, presented at Organic Photonic Materials and Devices XIX, 2017. [172]S. Logothetidis, Handbook of flexible organic electronics: Materials, manufacturing and applications, Elsevier, 2014. [173]J.-D. You, S.-R. Tseng, H.-F. Meng, F.-W. Yen, I.-F. Lin, S.-F. Horng, Organic Electronics 2009, 10, 1610. [174]S. Höfle, M. Pfaff, H. Do, C. Bernhard, D. Gerthsen, U. Lemmer, A. Colsmann, Organic Electronics 2014, 15, 337. [175]Y. Ni, Z. Jin, Y. Fu, Journal of the American Ceramic Society 2007, 90, 2966. [176]C. Chappaz-Gillot, R. Salazar, S. Berson, V. Ivanova, Electrochemistry Communications 2012, 24, 1. [177]D. Volz, Journal of Photonics for Energy 2016, 6, 020901. [178]A. Köhnen, M.C. Gather, N. Riegel, P. Zacharias, K. Meerholz, Applied Physics Letters, 91 (2007) 113501. [179]M. Thomschke, S. Hofmann, S. Olthof, M. Anderson, H. Kleemann, M. Schober, B. Lüssem, K. Leo, Applied Physics Letters 2011, 98, 44. [180]Y. Liu, X. Wu, Z. Xiao, J. Gao, J. Zhang, H. Rui, X. Lin, N. Zhang, Y. Hua, S. Yin, Applied Surface Science 2017, 413, 302. [181]R. Komatsu, H. Sasabe, S. Inomata, Y.-J. Pu, J. Kido, Synthetic Metals 2015, 202, 165. [182]L. Duan, L. Hou, T.-W. Lee, J. Qiao, D. Zhang, G. Dong, L. Wang, Y. Qiu, Journal of Materials Chemistry 2010, 20, 6392. [183]J. Zhao, Y. Cai, J.-P. Yang, H.-X. Wei, Y.-H. Deng, Y.-Q. Li, S.-T. Lee, J.-X. Tang, Applied Physics Letters 2012, 101, 193303. [184]Z. Hongmei, X. Jianjian, H. Wei, Displays 2014, 35, 171. [185]Z. Liu, M. G. Helander, Z. Wang, Z. Lu, The Journal of Physical Chemistry C 2010, 114, 11931. [186]N. C. Erickson, R. J. Holmes, Advanced Functional Materials 2014, 24, 6074. [187]F. Zhang, A. Petr, U. Kirbach, L. Dunsch, Journal of Materials Chemistry 2003, 13, 265. [188]N. Wijeyasinghe, T.D. Anthopoulos, Copper (I) thiocyanate (CuSCN) as a hole-transport material for large-area opto/electronics, Semiconductor Science and Technology, 30 (2015) 104002. [189]P. Pattanasattayavong, N. Yaacobi‐Gross, K. Zhao, G.O.N. Ndjawa, J. Li, F. Yan, B.C. O'Regan, A. Amassian, T.D. Anthopoulos, Hole‐Transporting Transistors and Circuits Based on the Transparent Inorganic Semiconductor Copper (I) Thiocyanate (CuSCN) Processed from Solution at Room Temperature, Advanced Materials, 25 (2013) 1504-1509. [190]A. Perumal, H. Faber, N. Yaacobi‐Gross, P. Pattanasattayavong, C. Burgess, S. Jha, M.A. McLachlan, P.N. Stavrinou, T.D. Anthopoulos, D.D. Bradley, High‐Efficiency, Solution‐Processed, Multilayer Phosphorescent Organic Light‐Emitting Diodes with a Copper Thiocyanate Hole‐Injection/Hole‐Transport Layer, Advanced Materials, 27 (2015) 93-100. [191]N. Wijeyasinghe, F. Eisner, L. Tsetseris, Y.H. Lin, A. Seitkhan, J. Li, F. Yan, O. Solomeshch, N. Tessler, P. Patsalas, p‐Doping of Copper (I) Thiocyanate (CuSCN) Hole‐Transport Layers for High‐Performance Transistors and Organic Solar Cells, Advanced Functional Materials, (2018) 1802055. [192]S. Ye, W. Sun, Y. Li, W. Yan, H. Peng, Z. Bian, Z. Liu, C. Huang, CuSCN-based inverted planar perovskite solar cell with an average PCE of 15.6%, Nano letters, 15 (2015) 3723-3728. [193]J.W. Jung, C.C. Chueh, A.K.Y. Jen, High‐Performance Semitransparent Perovskite Solar Cells with 10% Power Conversion Efficiency and 25% Average Visible Transmittance Based on Transparent CuSCN as the Hole‐Transporting Material, Advanced Energy Materials, 5 (2015). [194]K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, H. Hosono, Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors, Nature, 432 (2004) 488. [195]J.-Y. Kwon, D.-J. Lee, K.-B. Kim, Transparent amorphous oxide semiconductor thin film transistor, Electronic Materials Letters, 7 (2011) 1-11. [196]M. Kabešová, M. Dunaj-Jurčo, M. Serator, J. Gažo, J. Garaj, The crystal structure of copper (I) thiocyanate and its relation to the crystal structure of copper (II) diammine dithiocyanate complex, Inorganica Chimica Acta, 17 (1976) 161-165. [197]J.E. Jaffe, T.C. Kaspar, T.C. Droubay, T. Varga, M.E. Bowden, G.J. Exarhos, Electronic and defect structures of CuSCN, The Journal of Physical Chemistry C, 114 (2010) 9111-9117. [198]P. Pattanasattayavong, V. Promarak, T.D. Anthopoulos, Electronic Properties of Copper (I) Thiocyanate (CuSCN), Advanced Electronic Materials, 3 (2017). [199]B. Ptaszyński, E. Skiba, J. Krystek, Thermal decomposition of alkali metal, copper (I) and silver (I) thiocyanates, Thermochimica acta, 319 (1998) 75-85. [200]P. Pattanasattayavong, G.O.N. Ndjawa, K. Zhao, K.W. Chou, N. Yaacobi-Gross, B.C. O'Regan, A. Amassian, T.D. Anthopoulos, Electric field-induced hole transport in copper (I) thiocyanate (CuSCN) thin-films processed from solution at room temperature, Chemical Communications, 49 (2013) 4154-4156. [201]X. Zhang, S. Yoshioka, N. Loew, M. Ihara, Microstructure control of absorber Sb2S3 and p-type semiconductor CuSCN for semiconductor-sensitized solar cells (TiO2/Sb2S3/CuSCN), ECS Transactions, 64 (2014) 1-13. [202]S. Ito, S. Tanaka, H. Vahlman, H. Nishino, K. Manabe, P. Lund, Carbon‐double‐bond‐free printed solar cells from TiO2/CH3NH3PbI3/CuSCN/Au: structural control and photoaging effects, ChemPhysChem, 15 (2014) 1194-1200. [203]X.-D. Gao, X.-M. Li, W.-D. Yu, J.-J. Qiu, X.-Y. Gan, Room-temperature deposition of nanocrystalline CuSCN film by the modified successive ionic layer adsorption and reaction method, Thin Solid Films, 517 (2008) 554-559. [204]S. Hatch, J. Briscoe, S. Dunn, Improved CuSCN–ZnO diode performance with spray deposited CuSCN, Thin Solid Films, 531 (2013) 404-407. [205]H.-P. Lin, X.-J. Lin, D.-C. Perng, Electrodeposited CuSCN metal-semiconductor-metal high performance deep-ultraviolet photodetector, Applied Physics Letters, 112 (2018) 021107. [206]N. Wijeyasinghe, A. Regoutz, F. Eisner, T. Du, L. Tsetseris, Y.H. Lin, H. Faber, P. Pattanasattayavong, J. Li, F. Yan, Copper (I) Thiocyanate (CuSCN) Hole‐Transport Layers Processed from Aqueous Precursor Solutions and Their Application in Thin‐Film Transistors and Highly Efficient Organic and Organometal Halide Perovskite Solar Cells, Advanced Functional Materials, 27 (2017) 1701818. [207]Y. Ni, Z. Jin, Y. Fu, Electrodeposition of p‐type CuSCN thin films by a new aqueous electrolyte with triethanolamine chelation, Journal of the American Ceramic Society, 90 (2007) 2966-2973. [208]D.J. Gaspar, E. Polikarpov, OLED fundamentals: materials, devices, and processing of organic light-emitting diodes, CRC press, 2015. [209]H.-W. Lu, P.-C. Kao, S.-Y. Chu, Effects of Ultra-Thin Al2O3-Doped ZnO Film as Anode Buffer Layer Grown by Thermal Evaporation for Organic Light-Emitting Diodes, ECS Journal of Solid-State Science and Technology, 6 (2017) R14-R19. [210]A. Eskandari, P. Sangpour, M. Vaezi, Hydrophilic Cu2O nanostructured thin films prepared by facile spin coating method: investigation of surface energy and roughness, Materials Chemistry and Physics, 147 (2014) 1204-1209. [211]D.-J. Yun, S.-W. Rhee, Deposition of Al-doped ZnO thin-films with radio frequency magnetron sputtering for a source/drain electrode for pentacene thin-film transistor, Thin Solid Films, 517 (2009) 4644-4649. [212]C.-T. Wang, C.-C. Ting, P.-C. Kao, S.-R. Li, S.-Y. Chu, Improvement of OLED performance by tuning of silver oxide buffer layer composition on silver grid surface using UV-ozone treatment, Applied Physics Letters, 113 (2018) 051602. [213]L. Sun, Y. Huang, M. A. Hossain, K. Li, S. Adams, & Q. Wang, Fabrication of TiO2/CuSCN bulk heterojunctions by profile-controlled electrodeposition. Journal of The Electrochemical Society, 159 (2012), D323-D327. [214]L. Li, J. Liang, L. Qin, D. Chen, & Y. Huang, In Situ Growth of P-type CuSCN/Cu2O Heterojunction to Enhance Charge Transport and Suppress Charge Recombination. Journal of Materials Chemistry C, (2019). [215]P. Jiang, D. Prendergast, F. Borondics, S. Porsgaard, L. Giovanetti, E. Pach, J. Newberg, H. Bluhm, F. Besenbacher, & M. Salmeron, Experimental and theoretical investigation of the electronic structure of Cu2O and CuO thin films on Cu (110) using x-ray photoelectron and absorption spectroscopy. The Journal of chemical physics, 138 (2013), 024704. [216]D. A. Svintsitskiy, T. Y. Kardash, O. A. Stonkus, E. M. Slavinskaya, A. I. Stadnichenko, S. V. Koscheev, A. P. Chupakhin, A. I. Boronin, In situ XRD, XPS, TEM, and TPR study of highly active in CO oxidation CuO nanopowders. The Journal of Physical Chemistry C, 117 (2013), 14588-14599. [217]S. Liu, H. Hou, X. Liu, J. Duan, Y. Yao, & Q. Liao, High-performance hierarchical cypress-like CuO/Cu 2 O/Cu anode for lithium ion battery. Ionics, 23 (2017), 1075-1082. [218]S. S. Shariffudin, S. S. Khalid, N. M. Sahat, M. S. P. Sarah, & H. Hashim, Preparation and characterization of nanostructured CuO thin films using sol-gel dip coating. In IOP Conference Series: Materials Science and Engineering (2015). IOP Publishing. [219]M. L. Zeggar, F. Bourfaa, A. Adjimi, F. Boutbakh, M. S. Aida, & N. Attaf, CuO thin films deposition by spray pyrolysis: influence of precursor solution properties. International Journal of Mathematical, Computational, Physical, Electrical and Computer Engineering, 9 (2015), 610-13. [220]P. C. Kao, C. W. Lu, J. H. Lin, & Y. K. Lin, Lithium hydroxide doped tris (8-hydroxyquinoline) aluminum as an effective interfacial layer in inverted bottom-emission organic light-emitting diodes. Thin Solid Films, 570 (2014), 510-515.
|