跳到主要內容

臺灣博碩士論文加值系統

(44.212.99.248) 您好!臺灣時間:2023/01/28 12:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡奇廷
研究生(外文):Chi-TingTsai
論文名稱:新型漸進式摻雜載子注入結構與電鍍製備之硫氰酸亞銅薄膜用於多項有機發光二極體應用
論文名稱(外文):Investigation of the innovative graded doped structures and electro-deposited copper(I) thiocyanate (CuSCN) thin films for various organic light-emitting diode applications
指導教授:朱聖緣朱聖緣引用關係
指導教授(外文):Sheng-Yuan Chu
學位類別:博士
校院名稱:國立成功大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:159
中文關鍵詞:有機發光二極體載子注入導納頻譜電鍍硫氰酸亞銅
外文關鍵詞:organic light-emitting diodecharge carrier injectionadmittance spectroscopyelectro-depositionCuSCN
相關次數:
  • 被引用被引用:0
  • 點閱點閱:149
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
有鑒於有機發光二極體 (Organic light-emitting diode, OLED) 領域近數十年來的蓬勃發展,改進相關元件效能與開發相關物理量測技術在領域中目前還充滿研發動力,同時也是未來使用OLED為基礎的產品量產、提升產品品質與功能不可或缺的重要條件。本博士論文主要以提升OLED元件載子注入、傳輸等特性進而提升元件效率、穩定性、甚至使其應用領域更廣為主要研究動機,提出數個與元件中載子注入層相關的研究題目。同時,相關研究成果也為有機電子領域提供研究材料物理特性新的分析手段。
首先,本論文提出數個載子注入結構,透過有機小分子與無機鹽類共摻雜 (electrical doping)的方式,提出『階梯狀摻雜結構 (stepwise)』與『漸進式摻雜結構(graded)』,接得到出色的元件注入效率提升,進而提升OLED元件效率。以上兩個摻雜結構分別使用了NPB:MoO3與MADN:Rb2CO3兩個材料組合。後者更接續被應用在 『倒置式有機發光二極體 (inverted bottom emission organic light-emitting diode, IBOLED) 』結構。
此外,利用『導納頻譜與阻抗頻譜(admittance/impedance spectroscopy) 』技術,有別於一般OLED元件分析手法,只能透過其電壓電流曲線,或元件導通之後的發光行為對元件進行分析,此手法能為我們提供元件中載子行為的寶貴資訊。在元件操作下,可成功觀察包括注入、傳播、堆積、再結合等載子行為。透過不同的元件模型設計,與兩個材料間介面相關的活化能亦能被量化分析。
最後,我們成功結合『電鍍』手法製備的硫氰酸亞銅薄膜於OLED元件。透過調整電鍍時沉積的參數,取得OLED元件需求的薄膜。利用『熱退火』與『UV-O3』的表面處理,有機非晶向薄膜與此無機硫氰酸亞銅之相容性大大提高,元件效能亦得到高度提升。在研究過程中,我們也提供了有機小分子與無機硫氰酸亞銅之介面電物理、光物理、表面能量……等多面向研究成果。
In this thesis, we focus mainly on the processes and factors to improve OLED performance by enhancing the charge carrier injection, transport, and balance. Even though the field has been developed for decades, there is still space for performance improvement for OLEDs. Additionally, new type of carrier injection/transport layer is still drawing much attention for highly efficient, stable OLEDs and also for a wider potential application. It is also crucial to develop different physical analysis models and methodologies. In particular, with OLED device engineering and the development of new device analysis techniques, we provide new way to investigate the carrier behavior in the device under operation to considerably improve the performance of OLEDs and offer the observation and understanding of underlying mechanisms.
First, the several carrier injection layer using electrical doping techneques were proposed. A step-wise hole injection layer using NPB:MoO3 was demostrated. Graded doped n-type electron injection layer using MADN:Rb2CO3 was also prosposed. The J-V-L characteristics of OLEDs indicated that these stepwise/graded injection layers are superior by showing improved device performances on OLEDs. The mechanisms behind the enhancements were studied. In summary, the cascading energy level which efficiently distributed the energy barrier from ITO to carrier transport layer, therefore enhanced both hole injection and transport efficiency and led to better carrier balance and luminance efficiencies in OLEDs. MADN:Rb2CO3 were used for electron injection layer for inverted bottom emission organic light-emitting diode application.
Second, organic analysis techniques based on admittance/impedance spectroscopy were developed. In general, the behavior of charge carriers could only be observed by either the light emitted or the observed current goes through the device. By admittance/impedance spectroscopy, the models provide valuable information about the carrier information in OLEDs under operation, including injection, transport, accumulation, and recombination. Besides, activation energy corresponding to the charge injection energy barrier is also available with this methodology.
Finally, we demonstrate the integration of aqueous electrolyte-based electro-deposited CuSCN with conventional vacuum-deposited OLEDs. By controlling various deposition parameters, we realized the fabrication of CuSCN thin films with an excellent surface roughness that meets the criteria of typical OLED devices. The optical, electrical and material characterizations of these thin films were also investigated. In addition, interfacial energetic evidence obtained by ultraviolet photoelectron spectroscopy (UPS) revealed the mechanisms behind the injection enhancements. For the first time, we successfully incorporated electro-deposited CuSCN into conventional OLEDs, which exhibited notable device performances comparable to the highest reported efficiencies utilizing the identical emitting system. The effect of surface UV-O3 treatment and annealing were well studied.
Abstract i
中文摘要 iii
List of Author’s Journal Paper Publications v
Table of contents vii
List of Figures x
List of Tables xvii
Chapter 1. Introduction 1
1.1. Brief review on organic electronics 1
1.2. The development history and basic of organic light-emitting diodes (OLEDs) 5
1.2.1. History of OLED applications 5
1.2.2. The way of OLEDs to commercialization 9
1.2.3. The challenges remain 12
1.3. Aim and the scope of this thesis 13
1.4. Thesis outline 14
Chapter 2. Theories and background knowledge 15
2.1. Basic of organic semiconductors 15
2.1.1. Molecular orbitals 15
2.1.2. HOMO/LUMO band structure 16
2.2. Design of OLEDs 18
2.2.1. Working principles of OLEDs 18
2.2.2. Device structure classification 20
2.3. Charge carrier injection 21
2.3.1. Ohmic contact 21
2.3.2. Tunneling injection 22
2.4. Doping of organic semiconductors 23
2.4.1. Doping fundamentals 24
2.4.2. Controlling the Fermi level by doping 25
2.4.3. P-type doping and their mechanisms 26
2.5. Admittance/impedance spectroscopy 26
2.6. Ultraviolet photoelectron spectroscopy 27
Chapter 3. Experimental and measurements 31
3.1. Device fabrication 31
3.1.1. Materials and device design 31
3.1.2. Substrate cleaning 36
3.1.3. Thin film deposition 37
3.1.4. Electro-deposition of CuSCN thin film 38
3.2. Treatments to the samples 39
3.2.1. Thermal annealing treatment 39
3.2.2. UV-O3 treatment 40
3.3. Characterization of OLEDs 40
3.3.1. J-V-L and current efficiency 40
3.3.2. Electroluminescence spectra 41
3.3.3. Admittance and impedance spectroscopy 42
3.4. Material, and thin film characterizations 43
3.4.1. Atomic force microscopy 43
3.4.2. Contact angle, surface energy, and polarity 44
3.4.3. Energy dispersive X-ray spectrometer 45
3.4.4. Optical transmittance spectra 45
3.4.5. Secondary ion mass spectrometry 45
3.4.6. Scanning electron microscopy 45
3.4.7. Ultraviolet photoelectron spectroscopy and X-ray photoelectron spectroscopy 46
3.4.8. Variable angle spectroscopic ellipsometry 47
3.4.9. X-ray diffraction 48
Chapter 4. Results and discussion 49
4.1. Topic I. Effects of novel transition metal oxide doped bilayer structure on hole injection and transport characteristics for organic light-emitting diodes 49
4.1.1. Abstract 49
4.1.2. Introduction 50
4.1.3. Results and discussion 51
4.1.4. Conclusion 69
4.2. Topic II. 2-Methyl-9,10-bis(naphthalen-2-yl)anthracene doped rubidium carbonate as an effective electron injecting interlayer on indium-tin oxide cathode in inverted bottom-emission organic light-emitting diodes 70
4.2.1. Abstract 70
4.2.2. Introduction 71
4.2.3. Results and discussion 74
4.2.4. Conclusion 88
4.3. Topic III. Organic Light-Emitting Diodes with an Electro-Deposited Copper(I) Thiocyanate (CuSCN) Hole-Injection Layer Based on Aqueous Electrolyte 89
4.3.1. Abstract 89
4.3.2. Introduction 89
4.3.3. Results and discussion 92
4.3.4. Conclusion 115
4.4. Topic IV. Improvement of OLED performances by applying annealing and surface treatment on electro-deposited CuSCN hole injection layer 116
4.4.1. Abstract 116
4.4.2. Introduction 117
4.4.3. Results and discussion 119
4.4.4. Conclusion 136
Chapter 5. Conclusion 138
Chapter 6. Future work 139
References 140
[1]H. Akamatu, H. Inokuchi, and Y. Matsunaga. Electrical Conductivity of the Perylene-Bromine Complex. Nature, 173(4395):168–169, 1954. doi:10.1038/173168a0.
[2]R. McNeill, R. Siudak, J. H. Wardlaw, and D. E. Weiss. Electronic Conduction in Polymers. I. The Chemical Structure of Polypyrrole. Aust. J. Chem., 16(6):1056– 1075, 1963.
[3]A. Bernanose. Electroluminescence of organic compounds. Br. J. Appl. Phys., 6(S4): S54, 1955. doi:10.1088/0508-3443/6/S4/319.
[4]Sugimoto, Akira, et al. Flexible OLED displays using plastic substrates. IEEE Journal of selected topics in quantum electronics 10.1 (2004): 107-114.
[5]Park, Jin-Seong, et al. Thin film encapsulation for flexible AM-OLED: a review. Semiconductor science and technology 26.3 (2011): 034001.
[6]MolitonA,‘‘OptoelectronicsofMoleculesandPolymers’’,Springer(2005).
[7]Moliton, André, and Roger C. Hiorns. Origin and development of plastic (organic) electronics. (2011).
[8]Sano, Mizuka, Martin Pope, and Hartmut Kallmann. Electroluminescence and band gap in anthracene. The Journal of Chemical Physics 43.8 (1965): 2920-2921.
[9]Kallmann, H., and M. Pope. Preparation of Thin Anthracene Single Crystals. Review of Scientific Instruments 29.11 (1958): 993-994.
[10]Berets, D. J., and D. S. Smith. Electrical properties of linear polyacetylene. Transactions of the Faraday Society 64 (1968): 823-828.
[11]Torrance, Jerry B. The difference between metallic and insulating salts of tetracyanoquinodimethone (TCNQ): how to design an organic metal. Accounts of chemical research 12.3 (1979): 79-86.
[12]Ferraris, John, et al. Electron transfer in a new highly conducting donor-acceptor complex. Journal of the American Chemical Society 95.3 (1973): 948-949.
[13]Chiang, C. K., and C. R. Fincher Jr. Park, YW; Heeger, AJ; Shirakawa, H.; Louis. E. J Phys Rev Lett 39 (1977): 1098.
[14]Fincher Jr, C. R., et al. Anisotropic optical properties of pure and doped polyacetylene. Solid State Communications 27.5 (1978): 489-494.
[15]Su, W_P, J. R. Schrieffer, and Ao J. Heeger. Solitons in polyacetylene. Physical review letters 42.25 (1979): 1698.
[16]Bredas, J. L., R. R. Chance, and R. Silbey. Comparative theoretical study of the doping of conjugated polymers: polarons in polyacetylene and polyparaphenylene. Physical Review B26.10 (1982): 5843.
[17]Heeger, Alan J., et al. Solitons in conducting polymers. Reviews of Modern Physics 60.3 (1988): 781.
[18]Tang, Ching W., and Steven A. VanSlyke. Organic electroluminescent diodes. Applied physics letters 51.12 (1987): 913-915.
[19]Tang, Ching W. Two‐layer organic photovoltaic cell. Applied physics letters 48.2 (1986): 183-185.
[20]Pochettino A. (1906), 'Sul comportamento foto-elettrico dell' antracene', Acad. Lincei Rendiconti 15, 355–363.
[21]Kondakov, D. Y., et al. Triplet annihilation exceeding spin statistical limit in highly efficient fluorescent organic light-emitting diodes. Journal of Applied Physics 106.12 (2009): 124510.
[22]Kido, Junji, Katsutoshi Nagai, and Yutaka Ohashi. Electroluminescence in a terbium complex. Chemistry Letters19.4 (1990): 657-660.
[23]Baldo, Marc A., et al. Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 395.6698 (1998): 151-154.
[24]Lee, Jonghee, et al. Stable efficiency roll-off in blue phosphorescent organic light-emitting diodes by host layer engineering. Organic Electronics 10.8 (2009): 1529-1533.
[25]Endo, Ayataka, et al. Thermally activated delayed fluorescence from Sn4+–porphyrin complexes and their application to organic light emitting diodes—A novel mechanism for electroluminescence. Advanced Materials 21.47 (2009): 4802-4806.
[26]Uoyama, Hiroki, et al. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492.7428 (2012): 234-238.
[27]M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, and S. R. Forrest, Nature 395, 151 (1998).
[28]S.-J. Su, Y. Takahashi, T. Chiba, T. Takeda, and J. Kido, Advanced Functional Materials 19, 1260 (2009).
[29]B. X. Mi, P. F. Wang, Z. Q. Gao, C. S. Lee, S. T. Lee, H. L. Hong, X. M. Chen, M. S. Wong, P. F. Xia, K. W. Cheah, C. H. Chen, and W. Huang, Adv. Mater. 21, 339 (2009).
[30]S. J. Su, T. Chiba, T. Takeda, and J. Kido, Adv. Mater. 20, 2125 (2008).
[31]Z. Q. Gao, M. Luo, X. H. Sun, H. L. Tam, M. S. Wong, B. X. Mi, P. F. Xia, K. W. Cheah, and C. H. Chen, Adv. Mater. 21, 688 (2009).
[32]K. R. Choudhury, J. Lee, N. Chopra, A. Gupta, X. Jiang, F. Amy, and F. So, Advanced Functional Materials 19, 491 (2009).
[33]M. G. Helander, Z.-B. Wang, M. T. Greiner, Z.-W. Liu, J. Qiu, and Z.-H. Lu, Adv. Mater. 22, 2037 (2010).
[34]Z. W. Liu, M. G. Helander, Z. B. Wang, and Z. H. Lu, Appl. Phys. Lett. 94, 113305 (2009). [35] Tsujimura, Takatoshi. OLED display fundamentals and applications. John Wiley & Sons, 2017.
[35]Tsutsui, Tetsuo. Progress in electroluminescent devices using molecular thin films. Mrs Bulletin 22.6 (1997): 39-45.
[36]Yue, Qingyang, et al. Enhancing the out-coupling efficiency of organic light-emitting diodes using two-dimensional periodic nanostructures. Advances in Materials Science and Engineering2012 (2012).
[37]https://poetryinphysics.wordpress.com/2019/02/09/the-organic-chemistry-lie/
[38]https://brilliant.org/wiki/sigma-and-pi-bonds
[39]Organic Light-Emitting Diodes (OLEDS) Universal Display Corporation, Ewing, NJ, USA e-mail: rma@universaldisplay.com # Springer-Verlag Berlin Heidelberg 2016 J. Chen et al. (eds.), Handbook of Visual Display Technology, DOI 10.1007/978-3-642-35947-7_79-2
[40]Walzer et al., Chem. Rev. 107, 1233 (2007).
[41]Egusa, Syun. Organic electroluminescent device. U.S. Patent No. 5,093,698. 3 Mar. 1992.
[42]S. Tokito, K. Noda, Y. Taga, Metal oxides as a hole injecting layer for organic electroluminescent devices, J. Phys. D Appl. Phys. 29 (11), 1996: 2750.
[43]H. Ikeda, J. Sakata, M. Hayakawa, T. Aoyama, T. Kawakami, K. Kamata, Y. Iwaki, S. Seo, Y. Noda, R. Nomura, S. Yamazaki, P-185: Low-Drive-Voltage OLEDs with a Buffer Layer Having Molybdenum Oxide, SID Symp. Dig. Tech. Papers 2006: 923.
[44]D.-S. Leem, H.-D. Park, J.-W. Kang, J.-H. Lee, J.W. Kim, J.-J. Kim, Low driving voltage and high stability organic light-emitting diodes with rhenium oxide-doped hole transporting layer, Appl. Phys. Lett. 91, 2007: 011113.
[45]R. Krause, F. Steinbacher, G. Schmid, J.H. Wemken, A. Hunze, Cheap p- and n-doping for highly efficient organic devices, J. Photon. Energy 1, 2011: 011022–1.
[46]C.-C. Chang, M.-T. Hsieh, J.-F. Chen, S.-W. Hwang, C.H. Chen, Highly power efficient organic light-emit- ting diodes with a p-doping layer, Appl. Phys. Lett. 89, 2006: 253504.
[47]M.-T. Hsieh, C.-C. Chang, J.-F. Chen, C.H. Chen, Study of hole concentration of 1,4-bis[N-(1-naphthyl)- N′-phenylamino]-4,4′diamine doped with tungsten oxide by admittance spectroscopy, Appl. Phys. Lett. 89, 2006: 103510.
[48]Hertz, Heinrich. Ueber einen Einfluss des ultravioletten Lichtes auf die electrische Entladung. Annalen der Physik 267.8 (1887): 983-1000.
[49]Einstein, Albert. Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Annalen der physik 322.6 (1905): 132-148.
[50]Gaspar, Daniel J., and Evgueni Polikarpov, eds. OLED fundamentals: materials, devices, and processing of organic light-emitting diodes. CRC press, 2015.
[51]C. Chappaz-Gillot, R. Salazar, S. Berson, V. Ivanova, Electrochemistry Communications 2012, 24, 1.
[52]Z. Zhong, Y. Jiang, The surface properties of treated ITO substrates effect on the performance of OLEDs, The European Physical Journal Applied Physics, 34 (2006) 173-177.
[53]D. P.-K. Tsang, T. Matsushima, and C. Adachi, Scientific reports 6, 22463 (2016).
[54]S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, Nature 459, 234 (2009).
[55]P. J. Jesuraj, R. Parameshwari, K. Kanthasamy, J. Koch, H. Pfnür, and K. Jeganathan, Applied Surface Science 397, 144 (2017).
[56]Y. Li, D.-Q. Zhang, L. Duan, R. Zhang, L.-D. Wang, and Y. Qiu, Applied physics letters 90, 012119 (2007).
[57]C. E. Small, S. W. Tsang, J. Kido, S. K. So, and F. So, Advanced Functional Materials 22, 3261 (2012).
[58]K. Sugiyama, H. Ishii, Y. Ouchi, and K. Seki, Journal of Applied Physics 87, 295 (2000).
[59]C. Wu, C. Wu, J. Sturm, and A. Kahn, Applied Physics Letters 70, 1348 (1997).
[60]J. A. Bardecker, H. Ma, T. Kim, F. Huang, M. S. Liu, Y. J. Cheng, G. Ting, and A. K. Y. Jen, Advanced Functional Materials 18, 3964 (2008).
[61]F. Wang, X. Qiao, T. Xiong, and D. Ma, Organic Electronics 9, 985 (2008).
[62]D.-S. Leem, H.-D. Park, J.-W. Kang, J.-H. Lee, J. W. Kim, and J.-J. Kim, Applied physics letters 91, 011113 (2007).
[63]T. Matsushima, Y. Kinoshita, and H. Murata, Applied Physics Letters 91, 253504 (2007).
[64]J. Meyer, K. Zilberberg, T. Riedl, and A. Kahn, Journal of Applied Physics 110, 033710 (2011).
[65]C.-H. Gao, X.-Z. Zhu, L. Zhang, D.-Y. Zhou, Z.-K. Wang, and L.-S. Liao, Applied Physics Letters 102, 61 (2013).
[66]K. Zilberberg, S. Trost, J. Meyer, A. Kahn, A. Behrendt, D. Lützenkirchen‐Hecht, R. Frahm, and T. Riedl, Advanced Functional Materials 21, 4776 (2011).
[67]H. Riel, S. Barth, T. A. Beierlein, W. Bruetting, S. Karg, P. Mueller, and W. Riess, in Grading interfaces: a new concept to improve device performance in organic multilayer light-emitting diodes, 2001 (International Society for Optics and Photonics), p. 167.
[68]M. Baldo, C. Adachi, and S. Forrest, Phys. Rev. B 62, 10967 (2000).
[69]J. Y. Lee, Applied physics letters 89, 153503 (2006).
[70]J. Lee, H.-F. Chen, T. Batagoda, C. Coburn, P. I. Djurovich, M. E. Thompson, and S. R. Forrest, Nature materials 15, 92 (2016).
[71]U. S. Bhansali, H. Jia, I. W. Oswald, M. A. Omary, and B. E. Gnade, Applied Physics Letters 100, 101 (2012).
[72]H.-H. Chang, C.-C. Wu, C.-C. Yang, C.-W. Chen, and C.-C. Lee, Applied Physics Letters 78, 574 (2001).
[73]Y. Zhang, J. Lee, and S. R. Forrest, Nature communications 5, ncomms6008 (2014).
[74]S. H. Kim, J. Jang, and J. Y. Lee, Applied physics letters 90, 203511 (2007).
[75]S.-H. Leeb, J. K. Kima, and C. H. Leec, in Role of carrier mobility, exciton diffusion, and their interplay for charge balance and improved properties of organic electrophosphorescent device, 2006, p. 633315.
[76]W. Gao, K. Yang, H. Liu, J. Feng, J. Hou, and S. Liu, in Graded doping in active layer for achievement of high brightness and efficiency organic light-emitting devices, 2001, p. 386.
[77]D. Ma, J. M. Lupton, R. Beavington, P. L. Burn, and I. D. Samuel, Advanced Functional Materials 12, 507 (2002).
[78]H. Yang, Y. Yoon, T. Kim, K. Kwack, J. Kim, J. Seo, and Y. Kim, Solid state communications 137, 87 (2006).
[79]S. Ciná, D. Vaufrey, C. Fery, B. Racine, H. Doyeux, A. Bettinelli, and J. C. Martinez, in P‐135: Efficient Electron Injection from PEDOT‐PSS into a Graded‐n‐doped Electron Transporting Layer in an Inverted OLED Structure, 2005 (Wiley Online Library), p. 819.
[80]J. Hou, J. Wu, Z. Xie, and L. Wang, Applied Physics Letters 95, 203508 (2009).
[81]J.-H. Lee, D.-S. Leem, H.-J. Kim, and J.-J. Kim, Applied Physics Letters 94, 93 (2009).
[82]D. Zhang, M. Cai, Y. Zhang, D. Zhang, and L. Duan, ACS applied materials & interfaces 7, 28693 (2015).
[83]W.-J. Shin, J.-Y. Lee, J. C. Kim, T.-H. Yoon, T.-S. Kim, and O.-K. Song, Organic Electronics 9, 333 (2008).
[84]S. Hamwi, J. Meyer, T. Winkler, T. Riedl, and W. Kowalsky, Applied Physics Letters 94, 174 (2009).
[85]J.-P. Yang, Q.-Y. Bao, Y. Xiao, Y.-H. Deng, Y.-Q. Li, S.-T. Lee, and J.-X. Tang, Organic Electronics 13, 2243 (2012).
[86]N. Giebink and S. Forrest, Physical Review B 77, 235215 (2008).
[87]S. Höfle, A. Schienle, C. Bernhard, M. Bruns, U. Lemmer, and A. Colsmann, Advanced Materials 26, 5155 (2014).
[88]J. Yun, J. Yang, Y. Hong, C. Lee, W. J. Song, and Y. J. Sung, (2008).
[89]T.-L. Chiu, P.-Y. Lee, J.-H. Lee, C.-H. Hsiao, M.-K. Leung, C.-C. Lee, C.-Y. Chen, and C.-C. Yang, Journal of Applied Physics 109, 084520 (2011).
[90]Z. Wu, L. Wang, G. Lei, and Y. Qiu, Journal of applied physics 97, 103105 (2005).
[91]Y.-K. Fang, Y.-T. Chiang, S.-F. Chen, C.-Y. Lin, S.-C. Hou, C.-S. Hung, T.-Y. Tsai, S.-H. Chang, and T.-H. Chou, Journal of Physics and Chemistry of Solids 69, 738 (2008).
[92]M. M. Sarjidan, S. Basri, N. Za’Aba, M. Zaini, and W. A. Majid, Bulletin of Materials Science 38, 235 (2015).
[93]X. Qiao, J. Chen, X. Li, and D. Ma, Journal of Applied Physics 107, 104505 (2010).
[94]P. Jeon, H. Lee, J. Lee, K. Jeong, J. Lee, and Y. Yi, Applied Physics Letters 99, 169 (2011).
[95]M.-T. Hsieh, C.-C. Chang, J.-F. Chen, and C. H. Chen, Applied Physics Letters 89, 103510 (2006).
[96]M.-T. Hsieh, M.-H. Ho, K.-H. Lin, J.-F. Chen, T.-M. Chen, and C. H. Chen, Applied Physics Letters 95, 033501 (2009).
[97]M.-T. Hsieh, M.-H. Ho, K.-H. Lin, J.-F. Chen, T.-M. Chen, and C. H. Chen, Applied Physics Letters 96, 66 (2010).
[98]J. Zhao, Y. Cai, J.-P. Yang, H.-X. Wei, Y.-H. Deng, Y.-Q. Li, S.-T. Lee, and J.-X. Tang, Applied Physics Letters 101, 193303 (2012).
[99]S. Nowy, W. Ren, J. Wagner, J. A. Weber, and W. Brütting, in Impedance spectroscopy of organic hetero-layer OLEDs as a probe for charge carrier injection and device degradation, 2009 (International Society for Optics and Photonics), p. 74150G.
[100]S. Nowy, W. Ren, A. Elschner, W. Lövenich, and W. Brütting, Journal of Applied Physics 107, 054501 (2010).
[101]B.W. D'Andrade, S.R. Forrest, Advanced Materials, 16 (2004) 1585-1595.
[102]H. Sasabe, J. Kido, Journal of Materials Chemistry C, 1 (2013) 1699-1707.
[103]Y. Sun, N.C. Giebink, H. Kanno, B. Ma, M.E. Thompson, S.R. Forrest, Nature, 440 (2006) 908.
[104]X. Zhou, M. Pfeiffer, J. Huang, J. Blochwitz-Nimoth, D. Qin, A. Werner, J. Drechsel, B. Maennig, K. Leo, Applied Physics Letters, 81 (2002) 922-924.
[105]P. Görrn, F. Ghaffari, T. Riedl, W. Kowalsky, Solid-State Electronics, 53 (2009) 329-331.
[106]S.-Y. Chen, T.-Y. Chu, J.-F. Chen, C.-Y. Su, C.H. Chen, Applied physics letters, 89 (2006) 053518.
[107]C. Cui-Ran, C. Yu-Huan, Q. Da-Shan, Q. Wei, L. Jin-Suo, Chinese Physics Letters, 27 (2010) 117801.
[108]J. Zhao, Y. Zhan, S. Zhang, X. Wang, Y. Zhou, Y. Wu, Z. Wang, X. Ding, X. Hou, Applied physics letters, 84 (2004) 5377-5379.
[109]S. Kho, S. Sohn, D. Jung, H. Chae, J. Boo, B. Kim, Journal of the Korean Physical Society, 46 (2005) 1224-1227.
[110]L. Liao, L. Hung, W. Chan, X. Ding, T. Sham, I. Bello, C. Lee, S. Lee, Applied physics letters, 75 (1999) 1619-1621.
[111]L. Hou, F. Huang, W. Zeng, J. Peng, Y. Cao, Applied Physics Letters, 87 (2005) 153509.
[112]S.-W. Park, J.-M. Choi, E. Kim, S. Im, Applied surface science, 244 (2005) 439-443.
[113]T. Miyashita, S. Naka, H. Okada, H. Onnagawa, Japanese journal of applied physics, 44 (2005) 3682.
[114]C.-W. Chen, C.-L. Lin, C.-C. Wu, Applied physics letters, 85 (2004) 2469-2471.
[115]T.-Y. Chu, J.-F. Chen, S.-Y. Chen, C.-J. Chen, C.H. Chen, Applied physics letters, 89 (2006) 053503.
[116]R. Zheng, W. Huang, W. Xu, Y. Cao, Synthetic Metals, 162 (2012) 1919-1922.
[117]P.-C. Kao, J.-Y. Wang, J.-H. Lin, C.-H. Yang, Thin Solid Films, 527 (2013) 338-343.
[118]M.-H. Chen, C.-I. Wu, Journal of Applied Physics, 104 (2008) 113713.
[119]T. Xiong, F. Wang, X. Qiao, D. Ma, Applied Physics Letters, 92 (2008) 240.
[120]M.-T. Hsieh, M.-H. Ho, K.-H. Lin, J.-F. Chen, T.-M. Chen, C.H. Chen, Applied Physics Letters, 96 (2010) 66.
[121]P.-C. Kao, C.-W. Lu, J.-H. Lin, Y.-K. Lin, Thin Solid Films, 570 (2014) 510-515.
[122]M.-H. Ho, Y.-S. Wu, S.-W. Wen, M.-T. Lee, T.-M. Chen, C.H. Chen, K.-C. Kwok, S.-K. So, K.-T. Yeung, Y.-K. Cheng, Applied physics letters, 89 (2006) 252903.
[123]J.H. Seo, K.H. Lee, B.M. Seo, J.R. Koo, S.J. Moon, J.K. Park, S.S. Yoon, Y.K. Kim, Organic Electronics, 11 (2010) 1605-1612.
[124]R. Shangguan, G. Mu, X. Qiao, L. Wang, K.-W. Cheah, X. Zhu, C.H. Chen, Organic Electronics, 12 (2011) 1957-1962.
[125]C.-H. Tsai, C.-H. Liao, M.-T. Lee, C.H. Chen, Applied Physics Letters, 87 (2005) 243505.
[126]D. Zhou, S. Cai, W. Gu, L. Liao, S. Lee, Applied Physics Letters, 97 (2010) 255.
[127]G. He, O. Schneider, D. Qin, X. Zhou, M. Pfeiffer, K. Leo, Journal of Applied Physics, 95 (2004) 5773-5777.
[128]S. M. Chen, Y. B. Yuan, J. R. Lian, Z. F. Xie, X. Zhou, Light-Emitting Diode Materials and Devices II, International Society for Optics and Photonics, 6828 (2007) pp. 68280O.
[129]Y. Lee, J. Kim, S. Kwon, C.-K. Min, Y. Yi, J. Kim, B. Koo, M. Hong, Organic Electronics, 9 (2008) 407-412.
[130]K. Walzer, B. Maennig, M. Pfeiffer, and K. Leo, Chemical reviews 107, 1233 (2007).
[131]Y.-H. Deng, Y.-Q. Li, Q.-D. Ou, Q.-K. Wang, F.-Z. Sun, X.-Y. Chen, and J.-X. Tang, Organic Electronics 15, 1215 (2014).
[132]C.-T. Tsai, Y.-H. Liu, J.-F. Tang, P.-C. Kao, C.-H. Chiang, and S.-Y. Chu, Synthetic Metals 243, 121 (2018).
[133]F. Zhang, A. Petr, U. Kirbach, and L. Dunsch, Journal of Materials Chemistry 13, 265 (2003).
[134]P. Murgatroyd, Journal of Physics D: Applied Physics, 3 (1970) 151.
[135]H. Martens, P. Blom, H. Schoo, Physical review B, 61 (2000) 7489.
[136]Y. Xia, O.Y. Wan, K.W. Cheah, Optical Materials Express, 6 (2016) 1905-1913.
[137]C.-H. Chang, M.-K. Hsu, S.-W. Wu, M.-H. Chen, H.-H. Lin, C.-S. Li, T.-W. Pi, H.-H. Chang, N.-P. Chen, Physical Chemistry Chemical Physics, 17 (2015) 13123-13128.
[138]F. Wang, T. Xiong, X. Qiao, D. Ma, Organic Electronics, 10 (2009) 266-274.
[139]S.-W. Wen, M.-T. Lee, C.H. Chen, Journal of display technology, 1 (2005) 90-99.
[140]Y. Zhang, S.R. Forrest, Physical Review B, 84 (2011) 241301.
[141]N. Wijeyasinghe, T. D. Anthopoulos, Semiconductor Science and Technology 2015, 30, 104002.
[142]N. T. Kalyani, S. Dhoble, Renewable and Sustainable Energy Reviews 2012, 16, 2696.
[143]Q. Zheng, F. You, J. Xu, J. Xiong, X. Xue, P. Cai, X. Zhang, H. Wang, B. Wei, L. Wang, Organic Electronics, 46 (2017) 7-13.
[144]J. Xu, Y. Wang, Q. Chen, Y. Lin, H. Shan, V. Roy, Z. Xu, Journal of Materials Chemistry C, 4 (2016) 7377-7382.
[145]L. Zheng, J. Xu, Y. Feng, H. Shan, G. Fang, Z.-X. Xu, Journal of Materials Chemistry C, 6 (2018) 11471-11478.
[146]Y. Feng, J. Xu, H. Shan, L. Dong, X. Sun, Q. Hu, Y. Wang, V. Roy, Z.-X. Xu, Organic Electronics, 51 (2017) 257-263.
[147]A. Facchetti, T. Marks, Transparent electronics: from synthesis to applications, John Wiley & Sons, 2010.
[148]N. Wijeyasinghe, F. Eisner, L. Tsetseris, Y. H. Lin, A. Seitkhan, J. Li, F. Yan, O. Solomeshch, N. Tessler, P. Patsalas, Advanced Functional Materials 2018, 1802055.
[149]X.-D. Gao, X.-M. Li, W.-D. Yu, J.-J. Qiu, X.-Y. Gan, Thin Solid Films 2008, 517, 554.
[150]W. Wu, Z. Jin, Z. Hua, Y. Fu, J. Qiu, Electrochimica acta 2005, 50, 2343.
[151]N. Wijeyasinghe, A. Regoutz, F. Eisner, T. Du, L. Tsetseris, Y. H. Lin, H. Faber, P. Pattanasattayavong, J. Li, F. Yan, Advanced Functional Materials 2017, 27.
[152]P. Pattanasattayavong, V. Promarak, T. D. Anthopoulos, Advanced Electronic Materials 2017, 3.
[153]M. Kim, S. Park, J. Jeong, D. Shin, J. Kim, S. H. Ryu, K. S. Kim, H. Lee, Y. Yi, The journal of physical chemistry letters 2016, 7, 2856.
[154]J. Sohn, Y. Kwon, C. Lee, P‐139: Improved Power Efficiency of Organic Light‐Emitting Diodes using Solution‐Processed CuSCN Hole Injection Layer, presented at SID Symposium Digest of Technical Papers, 2015.
[155]L.-J. Xu, X. Zhang, J.-Y. Wang, Z.-N. Chen, Journal of Materials Chemistry C 2016, 4, 1787.
[156]P. Pattanasattayavong, N. Yaacobi‐Gross, K. Zhao, G. O. N. Ndjawa, J. Li, F. Yan, B. C. O'Regan, A. Amassian, T. D. Anthopoulos, Advanced Materials 2013, 25, 1504.
[157]S. Ye, W. Sun, Y. Li, W. Yan, H. Peng, Z. Bian, Z. Liu, C. Huang, Nano letters 2015, 15, 3723.
[158]J. W. Jung, C. C. Chueh, A. K. Y. Jen, Advanced Energy Materials 2015, 5.
[159]G. Wyatt-Moon, D. G. Georgiadou, J. Semple, T. D. Anthopoulos, ACS applied materials & interfaces 2017, 9, 41965.
[160]H.-P. Lin, X.-J. Lin, D.-C. Perng, Applied Physics Letters 2018, 112, 021107.
[161]J. E. Jaffe, T. C. Kaspar, T. C. Droubay, T. Varga, M. E. Bowden, G. J. Exarhos, The Journal of Physical Chemistry C 2010, 114, 9111.
[162]P. Pattanasattayavong, G. O. N. Ndjawa, K. Zhao, K. W. Chou, N. Yaacobi-Gross, B. C. O'Regan, A. Amassian, T. D. Anthopoulos, Chemical Communications 2013, 49, 4154.
[163]X. Zhang, S. Yoshioka, N. Loew, M. Ihara, ECS Transactions 2014, 64, 1.
[164]S. Ito, S. Tanaka, H. Vahlman, H. Nishino, K. Manabe, P. Lund, ChemPhysChem 2014, 15, 1194.
[165]S. Hatch, J. Briscoe, S. Dunn, Thin Solid Films 2013, 531, 404.
[166]Y. Liao, T. Fukuda, N. Kamata, physica status solidi (RRL)–Rapid Research Letters, 8 (2014) 154-157.
[167]T. Fukuda, K. Suzuki, N. Yoshimoto, Y. Liao, Organic Electronics, 33 (2016) 32-39.
[168]C. Chappaz-Gillot, R. Salazar, S. Berson, V. Ivanova, Electrochimica Acta 2013, 110, 375.
[169]A. Perumal, H. Faber, N. Yaacobi‐Gross, P. Pattanasattayavong, C. Burgess, S. Jha, M. A. McLachlan, P. N. Stavrinou, T. D. Anthopoulos, D. D. Bradley, Advanced Materials 2015, 27, 93.
[170]M. Auer-Berger, V. Tretnak, F.-P. Wenzl, J. R. Krenn, E. J. List-Kratochvil, Optical Engineering 2017, 56, 097102.
[171]M. Auer-Berger, V. Tretnak, F.-P. Wenzl, J. Krenn, E. J. List-Kratochvil, Tuning of the emission color of organic light emitting diodes via smartly designed aluminum plasmonics, presented at Organic Photonic Materials and Devices XIX, 2017.
[172]S. Logothetidis, Handbook of flexible organic electronics: Materials, manufacturing and applications, Elsevier, 2014.
[173]J.-D. You, S.-R. Tseng, H.-F. Meng, F.-W. Yen, I.-F. Lin, S.-F. Horng, Organic Electronics 2009, 10, 1610.
[174]S. Höfle, M. Pfaff, H. Do, C. Bernhard, D. Gerthsen, U. Lemmer, A. Colsmann, Organic Electronics 2014, 15, 337.
[175]Y. Ni, Z. Jin, Y. Fu, Journal of the American Ceramic Society 2007, 90, 2966.
[176]C. Chappaz-Gillot, R. Salazar, S. Berson, V. Ivanova, Electrochemistry Communications 2012, 24, 1.
[177]D. Volz, Journal of Photonics for Energy 2016, 6, 020901.
[178]A. Köhnen, M.C. Gather, N. Riegel, P. Zacharias, K. Meerholz, Applied Physics Letters, 91 (2007) 113501.
[179]M. Thomschke, S. Hofmann, S. Olthof, M. Anderson, H. Kleemann, M. Schober, B. Lüssem, K. Leo, Applied Physics Letters 2011, 98, 44.
[180]Y. Liu, X. Wu, Z. Xiao, J. Gao, J. Zhang, H. Rui, X. Lin, N. Zhang, Y. Hua, S. Yin, Applied Surface Science 2017, 413, 302.
[181]R. Komatsu, H. Sasabe, S. Inomata, Y.-J. Pu, J. Kido, Synthetic Metals 2015, 202, 165.
[182]L. Duan, L. Hou, T.-W. Lee, J. Qiao, D. Zhang, G. Dong, L. Wang, Y. Qiu, Journal of Materials Chemistry 2010, 20, 6392.
[183]J. Zhao, Y. Cai, J.-P. Yang, H.-X. Wei, Y.-H. Deng, Y.-Q. Li, S.-T. Lee, J.-X. Tang, Applied Physics Letters 2012, 101, 193303.
[184]Z. Hongmei, X. Jianjian, H. Wei, Displays 2014, 35, 171.
[185]Z. Liu, M. G. Helander, Z. Wang, Z. Lu, The Journal of Physical Chemistry C 2010, 114, 11931.
[186]N. C. Erickson, R. J. Holmes, Advanced Functional Materials 2014, 24, 6074.
[187]F. Zhang, A. Petr, U. Kirbach, L. Dunsch, Journal of Materials Chemistry 2003, 13, 265.
[188]N. Wijeyasinghe, T.D. Anthopoulos, Copper (I) thiocyanate (CuSCN) as a hole-transport material for large-area opto/electronics, Semiconductor Science and Technology, 30 (2015) 104002.
[189]P. Pattanasattayavong, N. Yaacobi‐Gross, K. Zhao, G.O.N. Ndjawa, J. Li, F. Yan, B.C. O'Regan, A. Amassian, T.D. Anthopoulos, Hole‐Transporting Transistors and Circuits Based on the Transparent Inorganic Semiconductor Copper (I) Thiocyanate (CuSCN) Processed from Solution at Room Temperature, Advanced Materials, 25 (2013) 1504-1509.
[190]A. Perumal, H. Faber, N. Yaacobi‐Gross, P. Pattanasattayavong, C. Burgess, S. Jha, M.A. McLachlan, P.N. Stavrinou, T.D. Anthopoulos, D.D. Bradley, High‐Efficiency, Solution‐Processed, Multilayer Phosphorescent Organic Light‐Emitting Diodes with a Copper Thiocyanate Hole‐Injection/Hole‐Transport Layer, Advanced Materials, 27 (2015) 93-100.
[191]N. Wijeyasinghe, F. Eisner, L. Tsetseris, Y.H. Lin, A. Seitkhan, J. Li, F. Yan, O. Solomeshch, N. Tessler, P. Patsalas, p‐Doping of Copper (I) Thiocyanate (CuSCN) Hole‐Transport Layers for High‐Performance Transistors and Organic Solar Cells, Advanced Functional Materials, (2018) 1802055.
[192]S. Ye, W. Sun, Y. Li, W. Yan, H. Peng, Z. Bian, Z. Liu, C. Huang, CuSCN-based inverted planar perovskite solar cell with an average PCE of 15.6%, Nano letters, 15 (2015) 3723-3728.
[193]J.W. Jung, C.C. Chueh, A.K.Y. Jen, High‐Performance Semitransparent Perovskite Solar Cells with 10% Power Conversion Efficiency and 25% Average Visible Transmittance Based on Transparent CuSCN as the Hole‐Transporting Material, Advanced Energy Materials, 5 (2015).
[194]K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, H. Hosono, Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors, Nature, 432 (2004) 488.
[195]J.-Y. Kwon, D.-J. Lee, K.-B. Kim, Transparent amorphous oxide semiconductor thin film transistor, Electronic Materials Letters, 7 (2011) 1-11.
[196]M. Kabešová, M. Dunaj-Jurčo, M. Serator, J. Gažo, J. Garaj, The crystal structure of copper (I) thiocyanate and its relation to the crystal structure of copper (II) diammine dithiocyanate complex, Inorganica Chimica Acta, 17 (1976) 161-165.
[197]J.E. Jaffe, T.C. Kaspar, T.C. Droubay, T. Varga, M.E. Bowden, G.J. Exarhos, Electronic and defect structures of CuSCN, The Journal of Physical Chemistry C, 114 (2010) 9111-9117.
[198]P. Pattanasattayavong, V. Promarak, T.D. Anthopoulos, Electronic Properties of Copper (I) Thiocyanate (CuSCN), Advanced Electronic Materials, 3 (2017).
[199]B. Ptaszyński, E. Skiba, J. Krystek, Thermal decomposition of alkali metal, copper (I) and silver (I) thiocyanates, Thermochimica acta, 319 (1998) 75-85.
[200]P. Pattanasattayavong, G.O.N. Ndjawa, K. Zhao, K.W. Chou, N. Yaacobi-Gross, B.C. O'Regan, A. Amassian, T.D. Anthopoulos, Electric field-induced hole transport in copper (I) thiocyanate (CuSCN) thin-films processed from solution at room temperature, Chemical Communications, 49 (2013) 4154-4156.
[201]X. Zhang, S. Yoshioka, N. Loew, M. Ihara, Microstructure control of absorber Sb2S3 and p-type semiconductor CuSCN for semiconductor-sensitized solar cells (TiO2/Sb2S3/CuSCN), ECS Transactions, 64 (2014) 1-13.
[202]S. Ito, S. Tanaka, H. Vahlman, H. Nishino, K. Manabe, P. Lund, Carbon‐double‐bond‐free printed solar cells from TiO2/CH3NH3PbI3/CuSCN/Au: structural control and photoaging effects, ChemPhysChem, 15 (2014) 1194-1200.
[203]X.-D. Gao, X.-M. Li, W.-D. Yu, J.-J. Qiu, X.-Y. Gan, Room-temperature deposition of nanocrystalline CuSCN film by the modified successive ionic layer adsorption and reaction method, Thin Solid Films, 517 (2008) 554-559.
[204]S. Hatch, J. Briscoe, S. Dunn, Improved CuSCN–ZnO diode performance with spray deposited CuSCN, Thin Solid Films, 531 (2013) 404-407.
[205]H.-P. Lin, X.-J. Lin, D.-C. Perng, Electrodeposited CuSCN metal-semiconductor-metal high performance deep-ultraviolet photodetector, Applied Physics Letters, 112 (2018) 021107.
[206]N. Wijeyasinghe, A. Regoutz, F. Eisner, T. Du, L. Tsetseris, Y.H. Lin, H. Faber, P. Pattanasattayavong, J. Li, F. Yan, Copper (I) Thiocyanate (CuSCN) Hole‐Transport Layers Processed from Aqueous Precursor Solutions and Their Application in Thin‐Film Transistors and Highly Efficient Organic and Organometal Halide Perovskite Solar Cells, Advanced Functional Materials, 27 (2017) 1701818.
[207]Y. Ni, Z. Jin, Y. Fu, Electrodeposition of p‐type CuSCN thin films by a new aqueous electrolyte with triethanolamine chelation, Journal of the American Ceramic Society, 90 (2007) 2966-2973.
[208]D.J. Gaspar, E. Polikarpov, OLED fundamentals: materials, devices, and processing of organic light-emitting diodes, CRC press, 2015.
[209]H.-W. Lu, P.-C. Kao, S.-Y. Chu, Effects of Ultra-Thin Al2O3-Doped ZnO Film as Anode Buffer Layer Grown by Thermal Evaporation for Organic Light-Emitting Diodes, ECS Journal of Solid-State Science and Technology, 6 (2017) R14-R19.
[210]A. Eskandari, P. Sangpour, M. Vaezi, Hydrophilic Cu2O nanostructured thin films prepared by facile spin coating method: investigation of surface energy and roughness, Materials Chemistry and Physics, 147 (2014) 1204-1209.
[211]D.-J. Yun, S.-W. Rhee, Deposition of Al-doped ZnO thin-films with radio frequency magnetron sputtering for a source/drain electrode for pentacene thin-film transistor, Thin Solid Films, 517 (2009) 4644-4649.
[212]C.-T. Wang, C.-C. Ting, P.-C. Kao, S.-R. Li, S.-Y. Chu, Improvement of OLED performance by tuning of silver oxide buffer layer composition on silver grid surface using UV-ozone treatment, Applied Physics Letters, 113 (2018) 051602.
[213]L. Sun, Y. Huang, M. A. Hossain, K. Li, S. Adams, & Q. Wang, Fabrication of TiO2/CuSCN bulk heterojunctions by profile-controlled electrodeposition. Journal of The Electrochemical Society, 159 (2012), D323-D327.
[214]L. Li, J. Liang, L. Qin, D. Chen, & Y. Huang, In Situ Growth of P-type CuSCN/Cu2O Heterojunction to Enhance Charge Transport and Suppress Charge Recombination. Journal of Materials Chemistry C, (2019).
[215]P. Jiang, D. Prendergast, F. Borondics, S. Porsgaard, L. Giovanetti, E. Pach, J. Newberg, H. Bluhm, F. Besenbacher, & M. Salmeron, Experimental and theoretical investigation of the electronic structure of Cu2O and CuO thin films on Cu (110) using x-ray photoelectron and absorption spectroscopy. The Journal of chemical physics, 138 (2013), 024704.
[216]D. A. Svintsitskiy, T. Y. Kardash, O. A. Stonkus, E. M. Slavinskaya, A. I. Stadnichenko, S. V. Koscheev, A. P. Chupakhin, A. I. Boronin, In situ XRD, XPS, TEM, and TPR study of highly active in CO oxidation CuO nanopowders. The Journal of Physical Chemistry C, 117 (2013), 14588-14599.
[217]S. Liu, H. Hou, X. Liu, J. Duan, Y. Yao, & Q. Liao, High-performance hierarchical cypress-like CuO/Cu 2 O/Cu anode for lithium ion battery. Ionics, 23 (2017), 1075-1082.
[218]S. S. Shariffudin, S. S. Khalid, N. M. Sahat, M. S. P. Sarah, & H. Hashim, Preparation and characterization of nanostructured CuO thin films using sol-gel dip coating. In IOP Conference Series: Materials Science and Engineering (2015). IOP Publishing.
[219]M. L. Zeggar, F. Bourfaa, A. Adjimi, F. Boutbakh, M. S. Aida, & N. Attaf, CuO thin films deposition by spray pyrolysis: influence of precursor solution properties. International Journal of Mathematical, Computational, Physical, Electrical and Computer Engineering, 9 (2015), 610-13.
[220]P. C. Kao, C. W. Lu, J. H. Lin, & Y. K. Lin, Lithium hydroxide doped tris (8-hydroxyquinoline) aluminum as an effective interfacial layer in inverted bottom-emission organic light-emitting diodes. Thin Solid Films, 570 (2014), 510-515.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 高效率藍光複合發光元件機制探討與元件優化
2. 無鉛(Ba,Ca)(Ti,Sn,Hf)織構化摻雜MnCO3壓電陶瓷在還原氣氛下之特性影響與應用於壓電馬達之研究
3. 以混合式溶膠凝膠法製備Pb(Zr0.52Ti0.48)1-xNbxO3壓電膜:特性分析、機制探討及應用於智慧機械檢測
4. TMD-Pt 複合材料及CuSCN奈米柱之合成及具極快速反應/回復性之氫氣感測器之製備
5. 以氨水改質PEDOT:PSS之研究及其應用:材料分析、相關機制探討及全無機鈣鈦礦發光二極體特性優化
6. 高效率有機發光二極體激發複合發光元件之機制特性探討與元件製程優化
7. 矽摻雜氮化鋁電阻式記憶體特性分析及、互補式陣列結構應用於PUF之研究
8. 以低溫濺鍍製程製備C軸優選取向氮化鋁壓電膜及其在無鉛壓電MEMS加速規應用之研究
9. 金屬中間層與晶向對氮化鋁互補式電阻切換記憶體效應與機制之探討
10. 高壓電性AlN:Mo無鉛材料之開發、機制探討及新型ZnO MEMS壓電加速規之設計與不同場域應用:具高頻寬、高靈敏度、低橫向靈敏度
11. ZnO:Nb2O5應用於提高有機發光二極體元件效率: 陽極緩衝層、漸進式摻雜層及相關機制探討
12. 以田口法與電容-電壓非破壞式量測分析及優化串聯式有機發光二極體電荷產生層
13. 高功率無鉛壓電元件之開發:無鉛鈮酸鈉鉀基壓電陶瓷製備、元件設計及整合
14. 無機鈣鈦礦量子點合成、相轉換特性分析及其在高演色性照明與廣色域顯示應用之白光LED元件
15. 高穩定性積層無鉛壓電陶瓷與卑金屬共燒技術之開發及積層壓電加速規設計/製作