|
Andersson, A. F., Riemann, L., and Bertilsson, S. (2010). Pyrosequencing reveals contrasting seasonal dynamics of taxa within baltic sea bacterioplankton communities. The ISME Journal, 4(2):171. Asgari, E., Garakani, K., McHardy, A. C., and Mofrad, M. R. K. (2018). MicroPheno: predicting environments and host phenotypes from 16S rRNA gene sequencing using a k-mer based representation of shallow sub-samples. Bioinformatics, 34(13):i32–i42. Austin, B., Austin, D. A., Austin, B., and Austin, D. A. (2012). Bacterial fish pathogens. Springer. Badri, M., Kurtz, Z., Muller, C., and Bonneau, R. (2018). Normalization methods for microbial abundance data strongly affect correlation estimates. bioRxiv, page 406264. Bell, P. J. L. (2001). Viral eukaryogenesis: was the ancestor of the nucleus a complex dna virus? Journal of Molecular Evolution, 53(3):251–256. Bessette, S., Moalic, Y., Gautey, S., Lesongeur, F., Godfroy, A., and Toffin, L. (2017). Relative abundance and diversity of bacterial methanotrophs at the oxic–anoxic interface of the congo deep-sea fan. Frontiers in microbiology, 8:715. Breiman, L. (2001). Random forests. Machine learning, 45(1):5–32. Brewer, C. A., Hatchard, G. W., and Harrower, M. A. (2003). Colorbrewer in print: a catalog of color schemes for maps. Cartography and geographic information science, 30(1):5–32. Campbell, B. J., Yu, L., Heidelberg, J. F., and Kirchman, D. L. (2011). Activity of abundant and rare bacteria in a coastal ocean. Proceedings of the National Academy of Sciences, 108(31):12776–12781. Chapin III, F. S., Matson, P. A., and Vitousek, P. (2011). Principles of terrestrial ecosystem ecology. Springer Science & Business Media. Cho, H., CHOI, U., and Park, H. (2018). Deep learning application to time-series prediction of daily chlorophyll-a concentration. WIT Transactions on Ecology and the Environment, Croux, C. and Dehon, C. (2010). Influence functions of the spearman and kendall correlation measures. Statistical Methods & Applications, 19(4):497–515. Crump, B. C., Hopkinson, C. S., Sogin, M. L., and Hobbie, J. E. (2004). Microbial biogeography along an estuarine salinity gradient: combined influences of bacterial growth and residence time. Appl. Environ. Microbiol., 70(3):1494–1505. Crump, B. C., Kling, G. W., Bahr, M., and Hobbie, J. E. (2003). Bacterioplankton community shifts in an arctic lake correlate with seasonal changes in organic matter source. Appl. Environ. Microbiol., 69(4):2253–2268. Cutler, D. R., Edwards Jr, T. C., Beard, K. H., Cutler, A., Hess, K. T., Gibson, J., and Lawler, J. J. (2007). Random forests for classification in ecology. Ecology, 88(11):2783–2792. Díaz-Uriarte, R. and De Andres, S. A. (2006). Gene selection and classification of microarray data using random forest. BMC bioinformatics, 7(1):3. Doney, S. C., Ruckelshaus, M., Duffy, J. E., Barry, J. P., Chan, F., English, C. A., Galindo, H. M., Grebmeier, J. M., Hollowed, A. B., Knowlton, N., et al. (2011). Climate change impacts on marine ecosystems. Duarte, C. M. and Vaqué, D. (1992). Scale dependence of bacterioplankton patchiness. Marine Ecology Progress Series, pages 95–100. Dvořák, P., Poulíčková, A., Hašler, P., Belli, M., Casamatta, D. A., and Papini, A. (2015). Species concepts and speciation factors in cyanobacteria, with connection to the problems of diversity and classification. Biodiversity and Conservation, 24(4):739–757. Elkins, K. M. (2012). Forensic DNA biology: a laboratory manual. Academic Press. Esteban, D. J., Hysa, B., and Bartow-McKenney, C. (2015). Temporal and spatial distribution of the microbial community of winogradsky columns. PloS one, 10(8):e0134588. Feldbauer, R., Schulz, F., Horn, M., and Rattei, T. (2015). Prediction of microbial phenotypes based on comparative genomics. BMC bioinformatics, 16(14):S1. Field, D., Amaral-Zettler, L., Cochrane, G., Cole, J. R., Dawyndt, P., Garrity, G. M., Gilbert, J., Glöckner, F. O., Hirschman, L., Karsch-Mizrachi, I., et al. (2011). The genomic standards consortium. PLoS biology, 9(6):e1001088. Fierer, N., Leff, J. W., Adams, B. J., Nielsen, U. N., Bates, S. T., Lauber, C. L., Owens, S., Gilbert, J. A., Wall, D. H., and Caporaso, J. G. (2012). Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proceedings of the National Academy of Sciences, 109(52):21390–21395. Fischer, M. A., Guellert, S., Neulinger, S. C., Streit, W. R., and Schmitz, R. A. (2016). Evaluation of 16s rrna gene primer pairs for monitoring microbial community structures showed high reproducibility within and low comparability between datasets generated with multiple archaeal and bacterial primer pairs. Frontiers in microbiology, 7:1297. Friedman, J. and Alm, E. J. (2012). Inferring correlation networks from genomic survey data. PLoS computational biology, 8(9):e1002687. Fuhrman, J. A., Cram, J. A., and Needham, D. M. (2015). Marine microbial community dynamics and their ecological interpretation. Nature Reviews Microbiology, 13(3):133. Fuhrman, J. A., Hewson, I., Schwalbach, M. S., Steele, J. A., Brown, M. V., and Naeem, S. (2006). Annually reoccurring bacterial communities are predictable from ocean conditions. Proceedings of the National Academy of Sciences, 103(35):13104–13109. Gibbons, S. M., Caporaso, J. G., Pirrung, M., Field, D., Knight, R., and Gilbert, J. A. (2013). Evidence for a persistent microbial seed bank throughout the global ocean. Proceedings of the National Academy of Sciences, 110(12):4651–4655. Gibbons, S. M., Duvallet, C., and Alm, E. J. (2018). Correcting for batch effects in casecontrol microbiome studies. PLoS computational biology, 14(4):e1006102. Gilbert, J. A., Steele, J. A., Caporaso, J. G., Steinbrück, L., Reeder, J., Temperton, B., Huse, S., McHardy, A. C., Knight, R., Joint, I., Somerfield, P., Fuhrman, J. A., and Field, D. (2012). Defining seasonal marine microbial community dynamics. ISME Journal. Giovannoni, S. J. and Vergin, K. L. (2012). Seasonality in ocean microbial communities. Science, 335(6069):671–676. Glibert, P. M., Anderson, D. M., Gentien, P., Granéli, E., and Sellner, K. G. (2005). The global, complex phenomena of harmful algal blooms. Oceanography, 18:136–147. Graves, A., Wayne, G., and Danihelka, I. (2014). Neural turing machines. arXiv preprint arXiv:1410.5401. Hanemaaijer, M., Röling, W. F., Olivier, B. G., Khandelwal, R. A., Teusink, B., and Bruggeman, F. J. (2015). Systems modeling approaches for microbial community studies: from metagenomics to inference of the community structure. Frontiers in microbiology, 6:213. Hanson, C. A., Fuhrman, J. A., Horner-Devine, M. C., and Martiny, J. B. (2012). Beyond biogeographic patterns: processes shaping the microbial landscape. Nature Reviews Microbiology,10(7):497. Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8):1735–1780. Hubbell, S. P. (2001). The unified neutral theory of biodiversity and biogeography (MPB-32). Princeton University Press. Hugerth, L., Lindh, M., Sjöqvist, C., Carina, B., Legrand, C., Pinhassi, J., and Andersson, A. (2016). Seasonal dynamics and interactions among baltic sea prokaryoticand eukaryotic plankton assemblages. Hugerth, L. W. and Andersson, A. F. (2017). Analysing microbial community composition through amplicon sequencing: from sampling to hypothesis testing. Frontiers in microbiology, 8:1561. Iluz, D., Dishon, G., Capuzzo, E., Meeder, E., Astoreca, R., Montecino, V., Znachor, P., Ediger, D., and Marra, J. (2009). Short-term variability in primary productivity during a wind-driven diatom bloom in the gulf of eilat (aqaba). Aquatic microbial ecology, 56(2-3): 205–215. Ininbergs, K., Bergman, B., Larsson, J., and Ekman, M. (2015). Microbial metagenomics in the baltic sea: recent advancements and prospects for environmental monitoring. Ambio, 44(3):439–450. Kendall, M. G. (1938). A new measure of rank correlation. Biometrika, 30(1/2):81–93. Knefelkamp, B., Carstens, K., and Wiltshire, K. H. (2007). Comparison of different filter types on chlorophyll-a retention and nutrient measurements. Journal of Experimental Marine Biology and Ecology, 345(1):61–70. Konopka, A. (2009). What is microbial community ecology? The ISME journal, 3(11):1223. Koskinen, K., Hultman, J., Paulin, L., Auvinen, P., and Kankaanpää, H. (2011). Spatially differing bacterial communities in water columns of the northern baltic sea. FEMS microbiology ecology, 75(1):99–110. Kurtz, Z. D., Müller, C. L., Miraldi, E. R., Littman, D. R., Blaser, M. J., and Bonneau, R. A. (2015). Sparse and compositionally robust inference of microbial ecological networks. PLoS computational biology, 11(5):e1004226. Lee, W., Evans, A., and Williams, D. R. (2016). Validation of a Smartphone Application Measuring Motor Function in Parkinson’s Disease. Journal of Parkinson’s disease, 6(2): 371–82. Li, X., Sha, J., and Wang, Z.-L. (2018). Application of feature selection and regression models for chlorophyll-a prediction in a shallow lake. Environmental Science and Pollution Research, 25(20):19488–19498. Liang, J.-L., Li, X.-J., Shu, H.-Y., Wang, P., Kuang, J.-L., Liu, J., Zhang, M.-M., Shu, W.-S., and Huang, L.-N. (2017). Fine-scale spatial patterns in microbial community composition in an acid mine drainage. FEMS microbiology ecology, 93(10). Little, A. E., Robinson, C. J., Peterson, S. B., Raffa, K. F., and Handelsman, J. (2008). Rules of engagement: interspecies interactions that regulate microbial communities. Annu. Rev. Microbiol., 62:375–401. Magurran, A. E. (2013). Measuring biological diversity. John Wiley & Sons. Maier, H. R. and Dandy, G. C. (2000). Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environmental modelling & software, 15(1):101–124. Marzouk, M. and Elkadi, M. (2016). Estimating water treatment plants costs using factor analysis and artificial neural networks. Journal of Cleaner Production, 112:4540–4549. McCulluch, W. and Pitts, W. (1943). A logical calculus of the ideas imminent in nervous activity. Bulletin of Mathematical Biophysics, 5:115–133. McMurrough, T. A., Dickson, R. J., Thibert, S. M., Gloor, G. B., and Edgell, D. R. (2014). Control of catalytic efficiency by a coevolving network of catalytic and noncatalytic residues. Proceedings of the National Academy of Sciences, 111(23):E2376–E2383. Muttil, N. and Chau, K.-w. (2006). Neural network and genetic programming for modelling coastal algal blooms. International Journal of Environment and Pollution. Nelsen, R. (2001). Kendall tau metric. Encyclopaedia of mathematics, 3:226–227. Nocker, A. and Camper, A. K. (2006). Selective removal of dna from dead cells of mixed bacterial communities by use of ethidium monoazide. Appl. Environ. Microbiol., 72(3): 1997–2004. Padilla, C. C., Ganesh, S., Gantt, S., Huhman, A., Parris, D. J., Sarode, N., and Stewart, F. J. (2015). Standard filtration practices may significantly distort planktonic microbial diversity estimates. Frontiers in microbiology, 6:547. Panagou, E. and Kodogiannis, V. (2009). Application of neural networks as a non-linear modelling technique in food mycology. Expert Systems with Applications, 36(1):121–131. Pinel-Alloul, B. and Ghadouani, A. (2007). Spatial heterogeneity of planktonic microorganisms in aquatic systems. In The spatial distribution of microbes in the environment, pages 203–310. Springer. Poole, D. L. and Mackworth, A. K. (2010). Artificial Intelligence: foundations of computational agents. Cambridge University Press. Riemann, L., Leitet, C., Pommier, T., Simu, K., Holmfeldt, K., Larsson, U., and Hagström, Å. (2008). The native bacterioplankton community in the central baltic sea is influenced by freshwater bacterial species. Appl. Environ. Microbiol., 74(2):503–515. Rönnberg, C. and Bonsdorff, E. (2004). Baltic sea eutrophication: area-specific ecological consequences. Hydrobiologia, 514(1-3):227–241. Scornet, E. (2017). Tuning parameters in random forests. ESAIM: Proceedings and Surveys, 60:144–162. Sellner, K. G., Doucette, G. J., and Kirkpatrick, G. J. (2003). Harmful algal blooms: causes, impacts and detection. Journal of Industrial Microbiology and Biotechnology, 30(7):383–406. Seymour, J. R., Mitchell, J. G., Pearson, L., and Waters, R. L. (2000). Heterogeneity in bacterioplankton abundance from 4.5 millimetre resolution sampling. Aquatic Microbial Ecology, 22(2):143–153. Singh, K. P., Gupta, S., and Rai, P. (2013). Identifying pollution sources and predicting urban air quality using ensemble learning methods. Atmospheric Environment, 80:426–437. Sneath, P. H., Sokal, R. R., et al. (1973). Numerical taxonomy. The principles and practice of numerical classification. W.H. Freeman and Company. Sokal, R. R., Sneath, P. H., et al. (1963). Principles of numerical taxonomy. Journal of Mammalogy, 46:111–112. Song, Y.-Y. and Ying, L. (2015). Decision tree methods: applications for classification and prediction. Shanghai archives of psychiatry, 27(2):130. Spearman, C. (1961). The proof and measurement of association between two things. Stocker, R. (2012). Marine microbes see a sea of gradients. science, 338(6107):628–633. Stocker, R., Seymour, J. R., Samadani, A., Hunt, D. E., and Polz, M. F. (2008). Rapid chemotactic response enables marine bacteria to exploit ephemeral microscale nutrient patches. Proceedings of the National Academy of Sciences, 105(11):4209–4214. Sulakvelidze, A., Alavidze, Z., and Morris, J. G. (2001). Bacteriophage therapy. Antimicrobial agents and chemotherapy, 45(3):649–659. Svetnik, V., Liaw, A., Tong, C., Culberson, J. C., Sheridan, R. P., and Feuston, B. P. (2003). Random forest: a classification and regression tool for compound classification and qsar modeling. Journal of chemical information and computer sciences, 43(6):1947–1958. Taguchi, S. and Laws, E. A. (1988). On the microparticles which pass through glass fiber filter type gf/f in coastal and open waters. Journal of Plankton Research, 10(5):999–1008. Vilas, L. G., Spyrakos, E., Palenzuela, J. M. T., and Pazos, Y. (2014). Support vector machinebased method for predicting pseudo-nitzschia spp. blooms in coastal waters (galician rias, nw spain). Progress in Oceanography, 124:66–77. Ward, C. S., Yung, C.-M., Davis, K. M., Blinebry, S. K., Williams, T. C., Johnson, Z. I., and Hunt, D. E. (2017). Annual community patterns are driven by seasonal switching between closely related marine bacteria. The ISME journal, 11(6):1412. Weiss, S., Xu, Z. Z., Peddada, S., Amir, A., Bittinger, K., Gonzalez, A., Lozupone, C., Zaneveld, J. R., Vázquez-Baeza, Y., Birmingham, A., et al. (2017). Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome, 5(1): 27. Whitaker, J., Ostle, N., Nottingham, A. T., Ccahuana, A., Salinas, N., Bardgett, R. D., Meir, P., and McNamara, N. P. (2014). Microbial community composition explains soil respiration responses to changing carbon inputs along an a ndes-to-a mazon elevation gradient. Journal of Ecology, 102(4):1058–1071. Wilhelm, S. W., LeCleir, G. R., Bullerjahn, G. S., McKay, R. M., Saxton, M. A., Twiss, M. R., and Bourbonniere, R. A. (2014). Seasonal changes in microbial community structure and activity imply winter production is linked to summer hypoxia in a large lake. FEMS microbiology ecology, 87(2):475–485. Willmott, C. J. and Matsuura, K. (2005). Advantages of the mean absolute error (mae) over the root mean square error (rmse) in assessing average model performance. Climate research, 30(1):79–82. Wu, S., Wang, G., Angert, E. R., Wang, W., Li, W., and Zou, H. (2012). Composition, diversity, and origin of the bacterial community in grass carp intestine. PloS one, 7(2):e30440. Yajima, H. and Derot, J. (2018). Application of the random forest model for chlorophylla forecasts in fresh and brackish water bodies in japan, using multivariate long-term databases. Journal of Hydroinformatics, 20(1):206–220. Young, I. M., Crawford, J. W., Nunan, N., Otten, W., and Spiers, A. (2008). Microbial distribution in soils: physics and scaling. Advances in agronomy, 100:81–121. Zhang, F., Wang, Y., Cao, M., Sun, X., Du, Z., Liu, R., and Ye, X. (2016). Deep-learningbased approach for prediction of algal blooms. Sustainability, 8(10):1060. Zhang, X., Cheng, W., Listgarten, J., Kadie, C., Huang, S., Wang, W., and Heckerman, D. (2012). Learning transcriptional regulatory relationships using sparse graphical models. PloS one, 7(5):e35762. Zhang, Z. X., Chen, H., Chen, S. D., Shao, M., Sun, S. G., Qu, Q. M., Zhang, B. R., Liu, Y. M., Xu, Q., Wan, X., Li, L., Wen, H. B., Chen, X., Chen, H. B., Liu, Z. G., Wang, J., and Wang, G. (2014). Chinese culture permeation in the treatment of Parkinson disease: A cross-sectional study in four regions of China. BMC Res. Notes, 7(1):2–9. Zilouchian, A. and Jafar, M. (2001). Automation and process control of reverse osmosis plants using soft computing methodologies. Desalination, 135(1-3):51–59.
|