(44.192.66.171) 您好!臺灣時間:2021/05/18 00:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張祐銓
研究生(外文):You-QuanZhang
論文名稱:溫度波分析法應用於二氧化矽薄膜熱傳導係數量測之實驗與數值研究
論文名稱(外文):Experimental and Numerical Study of Temperature Wave Analysis Method Applied on Measuring the Thermal Conductivity of Silicon Dioxide Film
指導教授:温昌達
指導教授(外文):Chang-Da Wen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:93
中文關鍵詞:溫度波分析法數值分析SiO2薄膜熱傳導係數量測
外文關鍵詞:Temperature Wave Analysis MethodNumerical analysisSiO2 thin-filmThermal conductivity measurement
相關次數:
  • 被引用被引用:0
  • 點閱點閱:34
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究為應用溫度波分析法針對微奈米尺度下的薄膜進行熱傳導係數量測與分析研究。整體論文架構上分為數值模擬與實驗兩大部分,模擬方面使用ANSYS Transient Thermal作為數值分析模擬軟體,探討溫度振盪頻率以及振幅大小對不同厚度、材料熱傳導係數量測的影響,並從模擬結果上知不同厚度的待測薄膜有其所適用的溫度振盪頻率區間,且隨著薄膜厚度減少其溫度振盪頻率應隨之遞減;在温度振幅方面則是將溫度振幅控制在1°C以內的結果最為準確;模擬中分別對厚度為600 nm的PE、TiO2、SiO2三種不同材料進行數值模擬,其所適合的溫度振盪頻率皆在0.022 Hz區間左右,因此可預測對於低熱導率之薄膜材料,其溫度振盪頻率的選用僅與薄膜厚度有關。
實驗方面將實驗架構分為測試模組、溫度輸出系統、量測系統、資料後處理四部分,其中實驗流程為首先委託成大奈米中心利用電子束蒸鍍機在316不鏽鋼基板上蒸鍍一層600 nm SiO2,接著在不鏽鋼基板下表面連接熱電致冷片(Peltier)並以可程控直流電源供應器控制其溫度頻率、振幅大小;量測系統方面則分別在基板與薄膜兩不同界面放置熱電偶並擷取其溫度變化,最後將實驗結果代入MATLAB進行資料後處理以求得相位差,將相位差代入理論公式推導出熱擴散係數並將其乘上密度與比熱即可求得熱傳導係數。
實驗參數方面選用溫度振盪頻率為0.025 Hz、振幅1°C進行量測,其求得600 nm SiO2熱傳導係數為0.92(W/mK),其中多篇參考文獻所求得之熱傳導係數以0.9(W/mK)至1.2(W/mK)最為常見,該結果與參考文獻相符合。
This study uses the temperature wave analysis method to measure and analyze the thermal conductivity of thin films at the micro-nano scale. The overall structure of the thesis is divided into two parts: numerical simulation and experiment. In the simulation, ANSYS Transient Thermal is used to discuss the influence of temperature oscillation frequency and amplitude on the measurement of different thickness and thermal conductivity of materials. From the simulation results, it is shown that the thickness of the film has its applicable temperature oscillation frequency range. As the thickness of the film decreases, the temperature oscillation frequency should decrease accordingly. In terms of temperature amplitude, the temperature amplitude should be controlled within 1°C; three different thin-film materials of PE, TiO2 and SiO2 with a thickness of 600 nm are numerically simulated, and the suitable temperature oscillation frequency is around 0.022. Therefore, it can predict that the choice of temperature oscillation frequency is only related to the film thickness for the thin-film materials with low thermal conductivity.
In the experiment, the experimental framework is divided into four parts: test module, temperature output system, measurement system, and data post-processing. In terms of experimental parameters, using temperature oscillation frequency 0.025 Hz, the amplitude 1°C to measure the thermal conductivity of SiO2 with a thickness of 600 nm, and the result is 0.92 (W/mK). Among references, the most common thermal conductivity ranges of SiO2 with a thickness of 600 nm is 0.9 (W/mK) to 1.2 (W/mK). It is shown that our experimental result is consistent with the references.
摘要 i
誌謝 xiv
目錄 xv
表目錄 xviii
圖目錄 xix
符號表 xxii
第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 2
1-2-1 熱傳導法 2
1-2-2 熱擴散法 11
1-3 研究動機 15
1-4 研究內容與架構 16
第二章 理論分析 18
2-1 微奈米尺度下之熱性質探討 18
2-1-1 熱載子之能量傳輸 18
2-1-2 薄膜尺度效應(size effect) 19
2-1-3 溫度對微觀尺度下熱導率之影響 22
2-2 薄膜沉積方法 24
2-2-1 化學氣相沉積 24
2-2-2 物理氣相沉積 27
2-3 熱電效應 29
2-3-1 席貝克效應(Seebeck Effect) 29
2-3-2 皮爾特效應(Peltier Effect) 30
2-3-3 湯姆生效應(Thomson Effect) 33
2-3-4 熱電優質 35
2-4 溫度波分析法理論公式推導 36
第三章 數值分析 38
3-1 物理模型 38
3-1-1 基本假設 42
3-1-2 統御方程式 43
3-1-3 初始條件與邊界條件 43
3-1-4 網格設置 45
3-2 數值模擬流程 47
3-2-1 溫度振盪輸出選取 49
3-2-2 相位差量測 50
3-2-3 計算理論公式誤差 52
第四章 實驗方法 54
4-1 實驗架構(Experimental Equipment) 54
4-1-1 測試模組(Test Module) 57
4-1-2 溫度輸出系統(Temperature Output System ) 61
4-1-3 量測系統(Measuring System) 64
4-1-4 資料後處理(Data Post Processing) 69
4-2 實驗流程(Experimental Procedures) 70
第五章 結果與討論 72
5-1 數值模擬結果 72
5-1-1 PE不同厚度所適用之溫度振幅、振盪頻率 72
5-1-2 不同材料對溫度振盪頻率選用的影響 82
5-1-3薄膜厚度與溫度振盪頻率之關係 84
5-2 600 nm二氧化矽薄膜之實驗結果 85
第六章 結論與未來工作 88
6-1 結論 88
6-2未來工作 89
參考論文 90
[1]D. G. Cahill, HEAT TRANSPORT IN DIELECTRIC THIN FILMS AND AT SOLID-SOLID INTERFACES, Microscale Thermophysical, pp. 85-109, 1997.
[2]E. Jansen and E. Obermeier, Thermal conductivity measurements on thin films based on micromechanical devices, 1996.
[3]S. E. Gustafsson, E. Karawacki, and M. N. Khan, Transient hot-strip method for simultaneously measuring thermal conductivity and thermal diffusivity of solids and fluids., pp. 1411-1421, 1979
[4]S. E. Gustafsson, E. Karawacki, and M. A. Chohan, Thermal transport studies of electrically conducting materials using the transient hot-strip technique, pp. 727-735, 1986.
[5]O. W. Käding, H. Skurk, and K. E. Goodson, Thermal conduction in metallized silicon‐dioxide layers on silicon, Applied Physics Letters, vol. 65, no. 13, pp. 1629-1631, 1994, doi: 10.1063/1.112933.
[6]D. G. Cahill, Thermal conductivity measurement from 30 to 750K, vol. Vol.91, pp. 802-808, 1989.
[7]S. M. Lee and D. G. Cahill, Heat transport in thin dielectric films, Journal of Applied Physics, vol. 81, no. 6, pp. 2590-2595, 1997, doi: 10.1063/1.363923.
[8]O. Pessoa, C. L. Cesar, N. A. Patel, H. Vargas, C. C. Ghizoni, and L. C. M. Miranda, Two‐beam photoacoustic phase measurement of the thermal diffusivity of solids, Journal of Applied Physics, vol. 59, no. 4, pp. 1316-1318, 1986, doi: 10.1063/1.336524.
[9]A. Salazar, A. Sánchez‐Lavega, and J. Fernández, Thermal diffusivity measurements in solids by the ‘‘mirage’’ technique: Experimental results, Journal of Applied Physics, vol. 69, no. 3, pp. 1216-1223, 1991, doi: 10.1063/1.347306.
[10]T. Hashimoto, (temperature wave analysis.pdf), Technical magazine of Electron Microscope and Analytical Instruments, vol. vol.9, 2017.
[11]H. Zhang, Y.-M. Li, and W.-Q. Tao, Theoretical accuracy of anisotropic thermal conductivity determined by transient plane source method, International Journal of Heat and Mass Transfer, vol. 108, pp. 1634-1644, 2017, doi: 10.1016/j.ijheatmasstransfer.2017.01.025.
[12]L. Lu, W. Yi, and D. L. Zhang, 3ω method for specific heat and thermal conductivity measurements, Review of Scientific Instruments, vol. 72, no. 7, pp. 2996-3003, 2001, doi: 10.1063/1.1378340.
[13]C. L.Tien and A. Majumdar, Challenges in Microscale Conductive and Radiative Heat Transfer, J. Heat Transfer, pp. 799-807, 1994.
[14]A. Majumdar, Microscale Heat Conduction in Dielectric Thin Films, J. Heat Transfer, vol. 7-16, 1993.
[15]J. M. Ziman, Electrons and Phonons, 1960.
[16]G. Chen and C. L. Tien, Thermal conductivities of quantum well structures, Journal of Thermophysics and Heat Transfer, vol. 7, no. 2, pp. 311-318, 1993, doi: 10.2514/3.421.
[17]C.-K. Liu et al., Thermal conductivity of Si/SiGe superlattice films, Journal of Applied Physics, vol. 104, no. 11, 2008, doi: 10.1063/1.3032602.
[18]S. Y. Ren and J. D. Dow, Thermal conductivity of superlattices, Physical Review B, vol. 25, no. 6, pp. 3750-3755, 1982, doi: 10.1103/PhysRevB.25.3750.
[19]S. Kotake, Molecular engineering problems in heat and mass transfer, ASME Thermal Engineering Proceedings, pp. 33-40, 1991.
[20]X. Feng, Z. Li, X. Liang, and Z. Guo, Molecular dynamics study on thermal conductivity of nanoscale thin films, Chinese Science Bulletin, vol. 46, no. 7, pp. 604-607, 2001, doi: 10.1007/bf02900421.
[21]Callister and William, Materials Science and Engineering - AnIntroduction, 2003.
[22]Electron Beam Evaporation, NCKU Micro-Nano Technology Center/Southern Region MEMS Center, p. 4, 2003.
[23]I. Hatta, Thermal Diffusivity Measurements of Thin Films and Muitilayered Composites, International Journal of Thermophysics, vol. Vol. 11, pp. 293-303,, 1990.
[24]李泱儒, 多層薄膜熱擴散分析研究, 國立成功大學機械工程研究所碩士論文, 2012.
[25]H. Zhang, M.-J. Li, W.-Z. Fang, D. Dan, Z.-Y. Li, and W.-Q. Tao, A numerical study on the theoretical accuracy of film thermal conductivity using transient plane source method, Applied Thermal Engineering, vol. 72, no. 1, pp. 62-69, 2014, doi: 10.1016/j.applthermaleng.2014.01.058.
[26]D.-J. Yao, W.-C. Lai, H.-C. Chien, and C.-T. Hsu, Measurement of Thermal Conductivity and Thermal Boundary Resistance on SiO2, 2008.
[27]T. Yamane, N. Nagai, S.-i. Katayama, and M. Todoki, Measurement of thermal conductivity of silicon dioxide thin films using a 3ω method, Journal of Applied Physics, vol. 91, no. 12, 2002, doi: 10.1063/1.1481958.
[28]A. Al Mohtar et al., Thickness-dependent thermal properties of amorphous insulating thin films measured by photoreflectance microscopy, Thin Solid Films, vol. 642, pp. 157-162, 2017, doi: 10.1016/j.tsf.2017.09.037.
[29]H. C. Chien, D. J. Yao, M. J. Huang, and T. Y. Chang, Thermal conductivity measurement and interface thermal resistance estimation using SiO2 thin film, Rev Sci Instrum, vol. 79, no. 5, p. 054902, May 2008, doi: 10.1063/1.2927253.
[30]J. Yang, J. Zhang, H. Zhang, and Y. Zhu, Thermal conductivity measurement of thin films by a dc method, Rev Sci Instrum, vol. 81, no. 11, p. 114902, Nov 2010, doi: 10.1063/1.3481787.
[31]S. Govorkov and W. Ruderman, A new method for measuring thermal conductivity of thin films, American Institute of Physics, Nov 1997.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
無相關點閱論文