(3.238.173.209) 您好!臺灣時間:2021/05/08 15:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳晨維
研究生(外文):Chen-WeiWu
論文名稱:以非平衡態分子動力學探討完美及具缺陷碳化矽奈米薄膜之熱傳導係數及聲子傳輸行為之影響
論文名稱(外文):The Study on Thermal Conductivity of Perfect and Defective Silicon Carbide Nanofilms and the Influence of Phonon Transport Behavior Using Non-Equilibrium Molecular Dynamics
指導教授:温昌達
指導教授(外文):Chang-Da Wen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:135
中文關鍵詞:非平衡態分子動力學碳化矽薄膜微奈米熱傳熱傳導係數缺陷散射機制聲子相關性
外文關鍵詞:Non-equilibrium molecular dynamicssilicon carbide nanofilmsthermal conductivitydefect ratephonon coherence
相關次數:
  • 被引用被引用:0
  • 點閱點閱:19
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要以非平衡態分子動力學模擬方法,探討碳化矽在不同奈米尺度薄膜之溫度及尺度效應,以及在缺陷散射機制下受溫度及尺度效應下的熱傳導係數,並延伸探討不同初始條件下奈米碳化矽薄膜的聲子傳輸情形,並探究其熱傳效果高低的成因。首先於理想碳化矽薄膜之模擬下,建立碳化矽薄膜完美分子晶體結構之模型,並直接改變其厚度及溫度,觀察其隨厚度及溫度之熱傳導係數變化,並利用聲子相關性觀察聲子在兩區域的振動模態是否相似,由此反映聲子傳遞之情形,聲子相關性越高表示聲子在兩區域之間所發生的散射越少,表示聲子能傳遞的能量越完整,而其中若低頻聲子之相關性越大,則會相對有較大的熱傳導係數。
於缺陷率的模擬下,首先改變整體模型之缺陷率,是利用固定薄膜厚度的情形下,以隨機抽取分子之方式將多種不同缺陷比率之分子移除,藉此模擬真實實驗條件下碳化矽薄膜以不完美的結構存在的狀況,並以具缺陷之碳化矽薄膜之模型下改變其厚度、溫度,觀察其熱傳導係數與完美碳化矽薄膜的比較,並探討在缺陷散射機制的影響下的聲子相關性的變化,藉以討論各類情況下影響熱傳導係數高低可能的成因。
This study mainly uses non-equilibrium molecular dynamics simulation methods to investigate the temperature and scale effects of silicon carbide in different nano-scale films, and compare the differences in thermal conductivity after adding defect scattering mechanisms. Using the phonon transmission behavior of silicon carbide nanofilms under different initial conditions, the reason for its heat transfer effect is discussed. We establish a model of the perfect molecular crystal structure of the silicon carbide thin film under the simulation of the ideal silicon carbide thin film, and directly change its thickness and temperature to observe the change of its thermal conductivity with the thickness and temperature, and use the phonon coherence to observe the phonon whether the vibration modes of the two regions are similar, which reflects the situation of phonon transmission. The higher the phonon coherence, the less the phonon scattering between the two regions, and the more complete the energy transferred by the phonon. Among them, the greater the coherence of low-frequency phonons, the greater the thermal conductivity.
In establishing the defect film model, the defect rate of the overall model is first changed. In the case of fixed film thickness, molecules with different defect ratios are removed by randomly selecting molecules to simulate the silicon carbide film under real experimental conditions. Under the condition of imperfect structure, we change its thickness and temperature under the model of defected silicon carbide thin film, observe the comparison of its thermal conductivity with perfect silicon carbide thin film, and discuss the phonon coherence changes under the influence of defect scattering mechanism. This result discusses the possible causes that affect the thermal conductivity in various situations.
摘要 I
誌謝 XV
目錄 XVI
表目錄 XX
圖目錄 XXI
符號說明 XXV
第一章 緒論 1
1-1 前言 1
1-1-1 奈米薄膜之熱傳導係數 2
1-1-2 分子動力學的發展與應用 4
1-2 文獻回顧 6
1-2-1 微奈米尺度材料之聲子傳輸行為 6
1-2-2 微奈米尺度材料之尺度效應 11
1-2-3 微奈米尺度材料之溫度效應 14
1-2-4 微奈米尺度材料之缺陷效應 17
1-3 研究動機與目的 18
1-4 本文架構 20
第二章 理論與方法 21
2-1 分子動力學理論 21
2-1-1 基本理論 21
2-1-2 分子動力學方法 22
2-1-3 勢能函數 23
2-1-4 邊界條件 29
2-1-5 系綜觀念 30
2-1-6 控溫器/控壓器 31
2-1-7 溫度梯度的產生 34
2-1-8 初始條件 37
2-2 週期性邊界條件與最小映像法則 39
2-3 有限差分法及表列法 42
2-3-1 Velocity- Verlet演算法 43
2-3-2 表列法 44
第三章 模型建構與模擬方法 47
3-1 模擬工具 47
3-2 碳化矽薄膜模型設置 47
3-2-1 完美碳化矽薄膜模型設置 47
3-2-2 具缺陷碳化矽薄膜模型設置 50
3-3 非平衡態分子動力學模擬(NEMD) 52
3-3-1 NEMD熱傳導係數的計算 52
3-3-2 NEMD奈米薄膜熱傳模擬流程 54
3-4 結果與討論 60
3-4-1 完美碳化矽薄膜之溫度與尺度效應 60
3-4-2 具缺陷碳化矽薄膜之溫度與尺度效應 63
第四章 聲子相關性分析 69
4-1 計算聲子相關性之模型設置 69
4-1-1 聲子相關性的計算 71
4-2 完美碳化矽薄膜之聲子相關性分析 72
4-2-1 溫度效應下聲子傳輸行為 72
4-2-2 尺度效應下聲子傳輸行為 80
4-3 具缺陷碳化矽薄膜之聲子相關性分析 90
4-3-1 溫度效應下聲子傳輸行為 90
4-3-2 尺度效應下聲子傳輸行為 96
4-4 缺陷散射機制下聲子傳輸行為 105
4-4-1 溫度效應下之聲子傳輸行為 105
4-4-2 尺度效應下之聲子傳輸行為 112
第五章 結論 124
5-1 完美碳化矽薄膜之溫度與尺度效應 124
5-1-1 碳化矽薄膜之熱傳導係數 124
5-1-2 碳化矽材料的聲子相關性分析 127
5-2 未來展望 130
參考文獻 131
[1]Q. Zheng, S. Kaur, C. Dames, and R. S. Prasher, Analysis and improvement of the hot disk transient plane source method for low thermal conductivity materials, International Journal of Heat and Mass Transfer, vol. 151, p. 119331, 2020.
[2]H. Wang and M. Sen, Analysis of the 3-omega method for thermal conductivity measurement, International Journal of Heat and Mass Transfer, vol. 52, no. 7-8, pp. 2102-2109, 2009.
[3]J. Yang, J. Zhang, H. Zhang, and Y. Zhu, Thermal conductivity measurement of thin films by a dc method, Review of Scientific Instruments, vol. 81, no. 11, p. 114902, 2010.
[4]簡恒傑, 微奈米尺度薄膜之熱傳導量測方法研究開發, 博士, 工程與系統科學系, 國立清華大學, 新竹市, 2010.
[5]T. Yao, Thermal properties of AlAs/GaAs superlattices, Applied Physics Letters, vol. 51, no. 22, pp. 1798-1800, 1987.
[6]K. Kurabayashi, Anisotropic thermal properties of solid polymers, International journal of thermophysics, vol. 22, no. 1, pp. 277-288, 2001.
[7]Y. Tai, C. Mastrangelo, and R. Muller, Thermal conductivity of heavily doped low‐pressure chemical vapor deposited polycrystalline silicon films, Journal of Applied Physics, vol. 63, no. 5, pp. 1442-1447, 1988.
[8]D. Rodin and S. K. Yee, Simultaneous measurement of in-plane and through-plane thermal conductivity using beam-offset frequency domain thermoreflectance, Review of Scientific Instruments, vol. 88, no. 1, p. 014902, 2017.
[9]D. Bhusari, C. Teng, K. Chen, S. Wei, and L. Chen, Traveling wave method for measurement of thermal conductivity of thin films, Review of scientific instruments, vol. 68, no. 11, pp. 4180-4183, 1997.
[10]S. Chowdhuri and A. Chandra, Molecular dynamics simulations of aqueous NaCl and KCl solutions: Effects of ion concentration on the single-particle, pair, and collective dynamical properties of ions and water molecules, The Journal of Chemical Physics, vol. 115, no. 8, pp. 3732-3741, 2001.
[11]S. Charati and S. Stern, Diffusion of gases in silicone polymers: molecular dynamics simulations, macromolecules, vol. 31, no. 16, pp. 5529-5535, 1998.
[12]Y. Qi, T. Çağın, Y. Kimura, and W. A. Goddard III, Molecular-dynamics simulations of glass formation and crystallization in binary liquid metals: Cu-Ag and Cu-Ni, Physical review B, vol. 59, no. 5, p. 3527, 1999.
[13]B. G. FINBOW, R. L.-B. MCDONALD, and IR, Atomistic simulation of the stretching of nanoscale metal wires, Molecular Physics, vol. 92, no. 4, pp. 705-714, 1997.
[14]林政佑, 分子動力學模擬聚乙烯分子鍊之熱傳,交通大學機械工程學系學位論,2013.
[15]G. Chen, Ballistic-diffusive equations for transient heat conduction from nano to macroscales, J. Heat Transfer, vol. 124, no. 2, pp. 320-328, 2002.
[16]T.-K. Hsiao, H.-K. Chang, S.-C. Liou, M.-W. Chu, S.-C. Lee, and C.-W. Chang, Observation of room-temperature ballistic thermal conduction persisting over 8.3 µm in SiGe nanowires, Nature nanotechnology, vol. 8, no. 7, pp. 534-538, 2013.
[17]B. Latour and Y. Chalopin, Distinguishing between spatial coherence and temporal coherence of phonons, Physical Review B, vol. 95, no. 21, p. 214310, 2017.
[18]A. Barut, E= ℏω, Physics Letters A, vol. 143, no. 8, pp. 349-352, 1990.
[19]W. D. Callister and D. G. Rethwisch, Materials science and engineering. John wiley & sons NY, 2011.
[20]L. Sham and J. Ziman, The electron-phonon interaction, in Solid State Physics, vol. 15: Elsevier, 1963, pp. 221-298.
[21]R. Pawula, Approximation of the linear Boltzmann equation by the Fokker-Planck equation, Physical review, vol. 162, no. 1, p. 186, 1967.
[22]R. Wei et al., Thermal conductivity of 4H-SiC single crystals, Journal of Applied Physics, vol. 113, no. 5, p. 053503, 2013.
[23]A. Majumdar, Microscale heat conduction in dielectric thin films, 1993.
[24]F. Alvarez and D. Jou, Memory and nonlocal effects in heat transport: From diffusive to ballistic regimes, Applied physics letters, vol. 90, no. 8, p. 083109, 2007.
[25]G. L. Harris, Properties of Silicon Carbide, Institution of Engineering and Technology, 1995.
[26]M. Asheghi, Y. Leung, S. Wong, and K. Goodson, Phonon-boundary scattering in thin silicon layers, Applied Physics Letters, vol. 71, no. 13, pp. 1798-1800, 1997.
[27]Z. M. Zhang, NANO/MICROSCALE HEAT TRANSFER, The McGraw-Hill Companies, Inc., 2007.
[28]T. Yamamoto and K. Watanabe, Nonequilibrium Green’s function approach to phonon transport in defective carbon nanotubes, Physical review letters, vol. 96, no. 25, p. 255503, 2006.
[29]C. Ren, Z. Xu, W. Zhang, Y. Li, Z. Zhu, and P. Huai, Theoretical study of heat conduction in carbon nanotube hetero-junctions, Physics Letters A, vol. 374, no. 17-18, pp. 1860-1865, 2010.
[30]X. Zhang and Z. SUN, Molecular Dynamics Simulation of Vacancy Defect Effects on the Thermal Conductivities of Silicon Thin Films, Materials Review, no. 12, pp. 2, 2011.
[31]陳羿樺, 含缺陷阿基米德晶格聲子晶體散射行為之分析,成功大學機械工程學系學位論文, pp. 1-70, 2014.
[32]B. J. Alder and T. E. Wainwright, Studies in molecular dynamics. I. General method, The Journal of Chemical Physics, vol. 31, no. 2, pp. 459-466, 1959.
[33]D. Frenkel and B. Smit, Understanding molecular simulation: From algorithms to applications, vol. 1, ed: Elsevier (formerly published by Academic Press), 2002, pp. 1-638.
[34]J.-P. Hansen and I. R. McDonald, Theory of simple liquids. Elsevier, 1990.
[35]K.-C. Fang, C.-I. Weng, and S.-P. Ju, An investigation into the structural features and thermal conductivity of silicon nanoparticles using molecular dynamics simulations, Nanotechnology, vol. 17, no. 15, p. 3909, 2006.
[36]T. Ikeshoji and B. Hafskjold, Non-equilibrium molecular dynamics calculation of heat conduction in liquid and through liquid-gas interface, Molecular Physics, vol. 81, no. 2, pp. 251-261, 1994.
[37]P. K. Schelling, S. R. Phillpot, and P. Keblinski, Comparison of atomic-level simulation methods for computing thermal conductivity, Physical Review B, vol. 65, no. 14, p. 144306, 2002.
[38]Y. Kowaki, A. Harada, F. Shimojo, and K. Hoshino, Radius dependence of the melting temperature of single-walled carbon nanotubes: molecular-dynamics simulations, Journal of Physics: Condensed Matter, vol. 19, no. 43, p. 436224, 2007.
[39]D. W. Lau, D. G. McCulloch, N. A. Marks, N. Madsen, and A. V. Rode, High-temperature formation of concentric fullerene-like structures within foam-like carbon: experiment and molecular dynamics simulation, Physical Review B, vol. 75, no. 23, p. 233408, 2007.
[40]P. Erhart and K. Albe, Analytical potential for atomistic simulations of silicon, carbon, and silicon carbide, Physical Review B, vol. 71, no. 3, p. 035211, 2005.
[41]G.Lucas,M.Bertolus ,and L.Pizzagalli, An environment-dependent interatomic potential for silicon carbide: calculation of bulk properties, high-pressure phases, point and extended defects, and amorphous structures Journal of Physics: Condensed Matter, vol.22, no. 3, pp. 035802,2009.
[42]Chao Jiang,Dane Morgan,and Izabela Szlufarska, Carbon tri-interstitial defect: A model for the D II center, Physical Review B, vol. 86, no. 14, pp. 144118, 2012.
[43]J. Haile, I. Johnston, A. J. Mallinckrodt, and S. McKay, Molecular dynamics simulation: elementary methods, Computers in Physics, vol. 7, no. 6, pp. 625-625, 1993.
[44]W. G. Hoover, Canonical dynamics: Equilibrium phase-space distributions, Physical review A, vol. 31, no. 3, p. 1695, 1985.
[45]G. Bussi, D. Donadio, and M. Parrinello, Canonical sampling through velocity rescaling, The Journal of chemical physics, vol. 126, no. 1, p. 014101, 2007.
[46]S. Nosé, A unified formulation of the constant temperature molecular dynamics methods, The Journal of chemical physics, vol. 81, no. 1, pp. 511-519, 1984.
[47]H. J. Berendsen, J. v. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak, Molecular dynamics with coupling to an external bath, The Journal of chemical physics, vol. 81, no. 8, pp. 3684-3690, 1984.
[48]S. Adelman and J. Doll, Generalized Langevin equation approach for atom/solid‐surface scattering: General formulation for classical scattering off harmonic solids, The Journal of chemical physics, vol. 64, no. 6, pp. 2375-2388, 1976.
[49]Müller-Plathe, Florian, A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity, The Journal of chemical physics, vol. 106, no. 14, pp. 6082-6085, 1997.
[50]L. Verlet, Computer experiments on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules, Physical review, vol. 159, no. 1, p. 98, 1967.
[51]T. Dumitrica, Trends in Computational Nanomechanics: Transcending Length and Time Scales. Springer Science & Business Media, 2010.
[52]W. C. Swope, H. C. Andersen, P. H. Berens, and K. R. Wilson, A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters, The Journal of Chemical Physics, vol. 76, no. 1, pp. 637-649, 1982.
[53]B. Quentrec and C. Brot, New method for searching for neighbors in molecular dynamics computations, Journal of Computational Physics, vol. 13, no. 3, pp. 430-432, 1973.
[54]T. N. Heinz and P. H. Hünenberger, A fast pairlist‐construction algorithm for molecular simulations under periodic boundary conditions, Journal of computational chemistry, vol. 25, no. 12, pp. 1474-1486, 2004.
[55]W. Humphrey, A. Dalke, and K. Schulten, VMD: visual molecular dynamics, Journal of molecular graphics, vol. 14, no. 1, pp. 33-38, 1996.
[56]H. Zaoui et al., Thermal conductivity of deca-nanometric patterned Si membranes by multiscale simulations, International Journal of Heat and Mass Transfer, vol. 126, pp. 830-835, 2018.
[57]吳奇臨, 以非平衡態分子動力學探討奈米碳管非局部效應及石墨烯同調傳輸, 成功大學機械工程學系學位論文, 2019.
[58]L. Yang and A. J. Minnich, Thermal transport in nanocrystalline Si and SiGe by ab initio based Monte Carlo simulation, Scientific reports, vol. 7, p. 44254, 2017.
[59]P. G. Klemens, Theory of lattice thermal conductivity: Role of low-frequency phonons, International Journal of Thermophysics, vol.2, no. 1, pp. 55-62, 1981.
[60]J. P. Freedman, J. H. Leach, E. A. Preble, Z. Sitar, R. F. Davis, and J. A. Malen, Universal phonon mean free path spectra in crystalline semiconductors at high temperature, Scientific reports, vol. 3, no. 1, pp. 1-6, 2013.
[61]G. L. Harris, Properties of silicon carbide (no. 13). Iet, 1995.
[62]L. An, N. Liu, Ultraslow Group Velocity in Photonic Crystal with a Dispersive Defect,Internatioanal Journal of Thermophysics, vol.23, no. 11, pp. 1287-1290, 2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔