(3.80.6.131) 您好!臺灣時間:2021/05/15 01:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳睿德
研究生(外文):Jui-TeChen
論文名稱:石墨烯類奈米材料對有機化合物獨特的吸附和吸收雙重作用之研究
論文名稱(外文):Graphene-based Nanomaterials as a Novel Dual Sorbent for Organic Chemicals
指導教授:林財富林財富引用關係邱成財
指導教授(外文):Tsair-Fuh LinCary-Tsair Chiou
學位類別:碩士
校院名稱:國立成功大學
系所名稱:環境工程學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:81
中文關鍵詞:石磨烯類奈米材料吸附吸收等溫吸附曲線
外文關鍵詞:graphene-based nanomaterialspartitionadsorptionsorption isothermsolute activity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:23
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
石墨烯類奈米材料(GBNMs)如氧化石墨烯、單壁奈米碳管、多壁奈米碳管等不同種型態下有著優越的電子及熱傳導率,因此廣泛運用環境研究及各類工程材料。過去研究常用傳統吸附行為,描述石墨烯類奈米材料與有機汙染物間之作用,本研究提出石墨烯類奈米材料,對於有機汙染物同時具有吸附(adsorption)及吸收(partition)作用,成為獨特的一種雙重吸持劑(dual sorbent)來保留有機化合物。本研究從不同有機化合物大範圍相對平衡濃度的等溫吸附實驗數據,以及文獻數值推測出,在室溫的環境下GBNMs產生似液體的擾動,使之有如溶劑般對有機化合物產生分配作用。由於同時存在吸附及吸收的雙重作用現象,因此常規之吸附模型沒辦法符合GBNMs的數據。
石墨烯結構之GBNM,由於具有大量分離單層,除有相對較大的比表面積外,更因單層結構產生使之似液體溶劑效應,靠著吸收(partition)作用容納和共存多種有機物質,在室溫下為液體的化合物,其容量超越了一般常見之吸附劑,例如活性碳。另一方面,GBNMs具雙層作用之假設可清楚解釋先前文獻無法釐清之現象,例如在競爭環境下GBNMs仍具有相當高的吸附容量,及在以單位面積計算所得之吸附容量與傳統活性碳吸附劑之顯著差異。
本研究以苯(BEN)、萘(NPL)及菲(PHN)為吸附質,有效的展示GBNMs產生吸收作用的關係,因為BEN溶質活性(solute activity)較高的原因,本研究也發現GBNMs對於BEN吸收量明顯的高於NPL及PHN。最後本研究探討不同型態之GBNM及不同化合物的吸附作用,廣泛的溶質吸附及吸收量為GBNMs同時存在的新型的吸附與吸收作用提供關鍵的說明。
Graphene-based nanomaterials (GBNMs) in different forms (e.g., as stacked graphene oxides, single-walled and multi-walled nanotubes) are known for their superior electronic and thermal conductivities. This study shows that GBNMs perform as a dual sorbent to sorption organic chemicals (contaminants) through (competitive) adsorption and (noncompetitive) partition. Extensive sorption data from various solutes on various GBNMs suggest that the well detached and structurally loose graphene monolayers develop a liquid-like motion in water at room temperature to enable them to attract organic solutes as a “solvent” in concomitance with the solute adsorption on the aggregated graphene phase. Because of the concurrent solute adsorption and partition, the observed GBNM sorption data cannot be reconciled by a conventional adsorption model.
For GBNMs possessing a large amount of detached graphene monolayers that gives rise to a relatively large BET-N2 surface area, this gives GBNMs a huge advantage to sequester an exceptionally large combined amounts of coexisting organic species (especially, liquids) over the limits posed by the conventional adsorbents, e.g., activated carbon. Moreover, the postulated GBNM dual-sorbent concept clarifies many previously unresolved issues, such as the highly concentration-dependent solute competitive effect and the highly variable “adsorbed capacities” per unit surface area of different organic solutes on a GBNM versus a conventional adsorbent (e.g., graphite or AC).
The partition hypothesis with a GBNM may be scrutinized by the experimental sorption data of liquid benzene (BEN) versus solid naphthalene (NPL) or phenanthrene (PHN) on a GBNM. The partition capacity of BEN (as a dissolved liquid) with a GBNM is expected to be sharply higher than that of either NPL or PHN (as a dissolved solid) because of the melting-point effect on the solute activity (a) (where a = 1 for a pure liquid and 〈 1 for a pure solid). The large range of solute adsorption and partition capacities gained with selected GBNMs offers a crucial account of the postulated novel GBNM behavior.
摘要 I
ABSTRACT II
致謝 III
CONTENTS IV
List of Figures VI
List of Tables VII
CHPATER 1 INTRODUCTION 1
1-1 Background 1
1-2 Research Objectives 2
CHPATER 2 LITERATURE REVIEW 3
2-1 Carbonaceous Materials as Sorbents 3
2-1.1 Activated carbon 3
2-1.2 Black carbon 5
2-1.3 Soil organic matter 6
2-1.4 Graphene-based Nanomaterials (GBNMs) 7
2-2 Adsorption Models and Characteristics 10
2-2.1 Langmuir adsorption isotherm 10
2-2.2 Freundlich equation 11
2-2.3 BET adsorption theory 11
2-2.4 Polanyi adsorption theory 12
2-3 Partition Uptakes and Characteristics 14
2-3.1 Solute partition in solvent-water mixtures 14
2-3.2 Solute partition into soil organic matter 17
2-3.3 Solute partition into amorphous black carbon 19
2-4 Separation of Adsorption and Partition Components 20
CHPATER 3 MATERIALS AND METHODS 22
3-1 Experimental Outlines 22
3-2 Adsorbents and Chemicals 24
3-2.1 Adsorbates 24
3-2.2 Adsorbents 24
3-2.3 Chemicals and Instruments 25
3-3 Material Characterization Techniques 26
3-3.1 Elemental Analysis 26
3-3.2 The BET Surface Analysis 26
3-3.3 The Scanning Electron Microscopy 26
3-3.4 The FTIR Spectroscopy 27
3-4 Analysis of Chemicals 28
3-5 Solute Sorption Experiments 31
3-5.1 Kinetic experiments 31
3-5.2 Equilibrium sorption isotherms 31
3-5.3 Separation of adsorption and partition components 32
CHPATER 4 RESULTS AND DISCUSSION 34
4-1 Physicochemical Properties of Test Organic Compounds 34
4-2 Characteristic of adsorbents 36
4-3 Sorption Isotherms of Test Compounds on F300AC 40
4-4 Sorption Isotherms of Test Compounds on AM-GO 45
4-4.1 Sorption experiments for solid and liquid isomers 53
4-4.2 Binary solute sorption experiment for AM-GO 55
4-5 Sorption Isotherms of Test Compounds on NM-SWNT 58
4-6 Sorption Isotherms of Test Compounds on MWNT 63
4-6.1 Treated and untreated MWNT sorption experiment 68
4-6.2 Binary solute sorption experiment for MWNT 70
CHPATER 5 CONCLUSIONS AND RECOMMEDATIONS 71
5-1 Conclusions 71
5-2 Recommendations 71
References 72
APPENDIX 78
Accardi-Dey, A., & Gschwend, P. M. (2002). Assessing the combined roles of natural organic matter and black carbon as sorbents in sediments. Environmental science & technology, 36(1), 21-29.
Ajayan, P. M. (1999). Nanotubes from carbon. Chemical reviews, 99(7), 1787-1800.
Amstaetter, K., Eek, E., & Cornelissen, G. (2012). Sorption of PAHs and PCBs to activated carbon: Coal versus biomass-based quality. Chemosphere, 87(5), 573-578.
Apul, O. G., & Karanfil, T. (2015). Adsorption of synthetic organic contaminants by carbon nanotubes: a critical review. Water Research, 68, 34-55.
Baby, R., Saifullah, B., & Hussein, M. Z. (2019). Carbon Nanomaterials for the Treatment of Heavy Metal-Contaminated Water and Environmental Remediation. Nanoscale research letters, 14(1), 341.
Balandin, A. A. (2011). Thermal properties of graphene and nanostructured carbon materials. Nature materials, 10(8), 569-581.
Bansal, R. C., & Goyal, M. (2005). Activated carbon adsorption: CRC press.
Baughman, R. H., Zakhidov, A. A., & De Heer, W. A. (2002). Carbon nanotubes--the route toward applications. science, 297(5582), 787-792.
Bianco, S. (2011). Carbon Nanotubes: From Research to Applications: BoD–Books on Demand.
Bornemann, L. C., Kookana, R. S., & Welp, G. (2007). Differential sorption behaviour of aromatic hydrocarbons on charcoals prepared at different temperatures from grass and wood. Chemosphere, 67(5), 1033-1042.
Brunauer, S., Emmett, P., & Teller, E. (1938). Am Chem. Soc, 60, 309.
Cao, X., Ma, L., Gao, B., & Harris, W. (2009). Dairy-manure derived biochar effectively sorbs lead and atrazine. Environmental science & technology, 43(9), 3285-3291.
Chen, B., Chen, Z., & Lv, S. (2011). A novel magnetic biochar efficiently sorbs organic pollutants and phosphate. Bioresource technology, 102(2), 716-723.
Chen, B., Zhou, D., & Zhu, L. (2008). Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environmental science & technology, 42(14), 5137-5143.
Chen, X., & Chen, B. (2015). Macroscopic and spectroscopic investigations of the adsorption of nitroaromatic compounds on graphene oxide, reduced graphene oxide, and graphene nanosheets. Environmental science & technology, 49(10), 6181-6189.
Chin, C.-J. M., Shih, L.-C., Tsai, H.-J., & Liu, T.-K. (2007). Adsorption of o-xylene and p-xylene from water by NM-SWNTs. Carbon, 45(6), 1254-1260.
Chiou, C. T. (2003). Partition and adsorption of organic contaminants in environmental systems: John Wiley & Sons.
Chiou, C. T., Cheng, J., Hung, W.-N., Chen, B., & Lin, T.-F. (2015). Resolution of adsorption and partition components of organic compounds on black carbons. Environmental science & technology, 49(15), 9116-9123.
Chiou, C. T., & Kile, D. E. (1998). Deviations from sorption linearity on soils of polar and nonpolar organic compounds at low relative concentrations. Environmental science & technology, 32(3), 338-343.
Chiou, C. T., Peters, L. J., & Freed, V. H. (1979). A physical concept of soil-water equilibria for nonionic organic compounds. science, 206(4420), 831-832.
Chiou, C. T., Porter, P. E., & Schmedding, D. W. (1983). Partition equilibriums of nonionic organic compounds between soil organic matter and water. Environmental science & technology, 17(4), 227-231.
Chiou, C. T., Schmedding, D. W., & Manes, M. (1982). Partitioning of organic compounds in octanol-water systems. Environmental science & technology, 16(1), 4-10.
Chiou, C. T., Schmedding, D. W., & Manes, M. (2005). Improved prediction of octanol− water partition coefficients from liquid− solute water solubilities and molar volumes. Environmental science & technology, 39(22), 8840-8846.
Chiou, C. T., Shoup, T. D., & Porter, P. E. (1985). Mechanistic roles of soil humus and minerals in the sorption of nonionic organic compounds from aqueous and organic solutions. Organic Geochemistry, 8(1), 9-14.
Chun, Y., Sheng, G., Chiou, C. T., & Xing, B. (2004). Compositions and sorptive properties of crop residue-derived chars. Environmental science & technology, 38(17), 4649-4655.
Chung, D. (2002). Review graphite. Journal of materials science, 37(8), 1475-1489.
Cinke, M., Li, J., Chen, B., Cassell, A., Delzeit, L., Han, J., & Meyyappan, M. (2002). Pore structure of raw and purified HiPco single-walled carbon nanotubes. Chemical Physics Letters, 365(1-2), 69-74.
Das, D., Gaur, V., & Verma, N. (2004). Removal of volatile organic compound by activated carbon fiber. Carbon, 42(14), 2949-2962.
Geim, A. K. (2009). Graphene: status and prospects. science, 324(5934), 1530-1534.
Gregg, S., & Sing, K. Adsorption, Surface Area and Porosity 1982. Translated into Russian) Mir, Moscow.
Harter, R. D., & Smith, G. (1981). Langmuir equation and alternate methods of studying “adsorption reactions in soils. Chemistry in the soil environment, 40, 167-182.
Iijima, S. (1991). Helical microtubules of graphitic carbon. nature, 354(6348), 56-58.
Iijima, S., & Ichihashi, T. (1993). Single-shell carbon nanotubes of 1-nm diameter. nature, 363(6430), 603-605.
Inyang, M., & Dickenson, E. (2015). The potential role of biochar in the removal of organic and microbial contaminants from potable and reuse water: a review. Chemosphere, 134, 232-240.
Ji, L., Chen, W., Duan, L., & Zhu, D. (2009). Mechanisms for strong adsorption of tetracycline to carbon nanotubes: a comparative study using activated carbon and graphite as adsorbents. Environmental science & technology, 43(7), 2322-2327.
Karanfil, T., Kitis, M., Kilduff, J. E., & Wigton, A. (1999). Role of granular activated carbon surface chemistry on the adsorption of organic compounds. 2. Natural organic matter. Environmental science & technology, 33(18), 3225-3233.
Kasozi, G. N., Zimmerman, A. R., Nkedi-Kizza, P., & Gao, B. (2010). Catechol and humic acid sorption onto a range of laboratory-produced black carbons (biochars). Environmental science & technology, 44(16), 6189-6195.
Kemp, K. C., Seema, H., Saleh, M., Le, N. H., Mahesh, K., Chandra, V., & Kim, K. S. (2013). Environmental applications using graphene composites: water remediation and gas adsorption. Nanoscale, 5(8), 3149-3171.
Khan, F. I., & Ghoshal, A. K. (2000). Removal of volatile organic compounds from polluted air. Journal of loss prevention in the process industries, 13(6), 527-545.
Kim, B. R., Snoeyink, V. L., & Saunders, F. M. (1976). Adsorption of organic compounds by synthetic resins. Journal (Water Pollution Control Federation), 120-133.
Kose, H. (2010). The Effects of Physical Factors on the Adsorption of Synthetic Organic Compounds by Activated Carbons and Activated Carbon Fibers.
Kwon, S., & Pignatello, J. J. (2005). Effect of natural organic substances on the surface and adsorptive properties of environmental black carbon (char): pseudo pore blockage by model lipid components and its implications for N2-probed surface properties of natural sorbents. Environmental science & technology, 39(20), 7932-7939.
Lambert, S. M. (1967). Functional relation between sorption in soil and chemical structure. Journal of agricultural and food chemistry, 15(4), 572-576.
Lastoskie, C., Gubbins, K. E., & Quirke, N. (1993). Pore size distribution analysis of microporous carbons: a density functional theory approach. The journal of physical chemistry, 97(18), 4786-4796.
Lee, C., Wei, X., Kysar, J. W., & Hone, J. (2008). Measurement of the elastic properties and intrinsic strength of monolayer graphene. science, 321(5887), 385-388.
Lewis, G. (1923). Randall,.: Thermodynamics and the Free Energy of Chemical Substances. In (Vol. Chapter XIX, pp. 221-231): McGraw-Hill. New-York.
Li, D., & Kaner, R. B. (2008). Graphene-based materials. science, 320(5880), 1170-1171.
Li, L., Quinlivan, P. A., & Knappe, D. R. (2002). Effects of activated carbon surface chemistry and pore structure on the adsorption of organic contaminants from aqueous solution. Carbon, 40(12), 2085-2100.
Liao, Q., Sun, J., & Gao, L. (2008). The adsorption of resorcinol from water using multi-walled carbon nanotubes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 312(2-3), 160-165.
Lin, D., & Xing, B. (2008a). Adsorption of phenolic compounds by carbon nanotubes: role of aromaticity and substitution of hydroxyl groups. Environmental science & technology, 42(19), 7254-7259.
Lin, D., & Xing, B. (2008b). Tannic acid adsorption and its role for stabilizing carbon nanotube suspensions. Environmental science & technology, 42(16), 5917-5923.
Loh, K. P., Bao, Q., Ang, P. K., & Yang, J. (2010). The chemistry of graphene. Journal of Materials Chemistry, 20(12), 2277-2289.
Manes, M. (1998). Activated carbon adsorption fundamentals. Encyclopedia of environmental analysis and remediation, 1, 26-68.
Marsh, H., & Reinoso, F. R. (2006). Activated carbon: Elsevier.
Mouhat, F., Coudert, F.-X., & Bocquet, M.-L. (2020). Structure and chemistry of graphene oxide in liquid water from first principles. Nature communications, 11(1), 1-9.
Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., . . . Firsov, A. A. (2004). Electric field effect in atomically thin carbon films. science, 306(5696), 666-669.
Oleszczuk, P., Hale, S. E., Lehmann, J., & Cornelissen, G. (2012). Activated carbon and biochar amendments decrease pore-water concentrations of polycyclic aromatic hydrocarbons (PAHs) in sewage sludge. Bioresource technology, 111, 84-91.
Pan, B., Lin, D., Mashayekhi, H., & Xing, B. (2008). Adsorption and hysteresis of bisphenol A and 17α-ethinyl estradiol on carbon nanomaterials. Environmental science & technology, 42(15), 5480-5485.
Paul, P., & Ghosh, U. (2011). Influence of activated carbon amendment on the accumulation and elimination of PCBs in the earthworm Eisenia fetida. Environmental pollution, 159(12), 3763-3768.
Pelekani, C., & Snoeyink, V. (1999). Competitive adsorption in natural water: role of activated carbon pore size. Water Research, 33(5), 1209-1219.
Pignatello, J. J., Kwon, S., & Lu, Y. (2006). Effect of natural organic substances on the surface and adsorptive properties of environmental black carbon (char): attenuation of surface activity by humic and fulvic acids. Environmental science & technology, 40(24), 7757-7763.
Roos, M., Künzel, D., Uhl, B., Huang, H.-H., Brandao Alves, O., Hoster, H. E., . . . Behm, R. J. r. (2011). Hierarchical interactions and their influence upon the adsorption of organic molecules on a graphene film. Journal of the American Chemical Society, 133(24), 9208-9211.
Sangster, J. (1989). Octanol‐water partition coefficients of simple organic compounds. Journal of Physical and Chemical Reference Data, 18(3), 1111-1229.
Sparks, D. L. (2003). Environmental soil chemistry: Elsevier.
Spurlock, F. C., & Biggar, J. W. (1994). Thermodynamics of organic chemical partition in soils. 2. Nonlinear partition of substituted phenylureas from aqueous solution. Environmental science & technology, 28(6), 996-1002.
Stoller, M. D., Park, S., Zhu, Y., An, J., & Ruoff, R. S. (2008). Graphene-based ultracapacitors. Nano letters, 8(10), 3498-3502.
Stumm, W., & Morgan, J. J. (1981). Aquatic chemistry: an introduction emphasizing chemical equilibria in natural waters: John Wiley & Sons.
Terrones, M. (2004). Carbon nanotubes: synthesis and properties, electronic devices and other emerging applications. International materials reviews, 49(6), 325-377.
Tewari, Y. B., Miller, M. M., Wasik, S. P., & Martire, D. E. (1982). Aqueous solubility and octanol/water partition coefficient of organic compounds at 25.0. degree. C. Journal of Chemical and Engineering Data, 27(4), 451-454.
Thangavel, S., & Venugopal, G. (2014). Understanding the adsorption property of graphene-oxide with different degrees of oxidation levels. Powder technology, 257, 141-148.
Wang, X., Liu, Y., Tao, S., & Xing, B. (2010). Relative importance of multiple mechanisms in sorption of organic compounds by multiwalled carbon nanotubes. Carbon, 48(13), 3721-3728.
Wang, X., Lu, J., & Xing, B. (2008). Sorption of organic contaminants by carbon nanotubes: influence of adsorbed organic matter. Environmental science & technology, 42(9), 3207-3212.
Wang, X., Tao, S., & Xing, B. (2009). Sorption and competition of aromatic compounds and humic acid on multiwalled carbon nanotubes. Environmental science & technology, 43(16), 6214-6219.
Wang, X., & Xing, B. (2007). Sorption of organic contaminants by biopolymer-derived chars. Environmental science & technology, 41(24), 8342-8348.
Xing, B., Pignatello, J. J., & Gigliotti, B. (1996). Competitive sorption between atrazine and other organic compounds in soils and model sorbents. Environmental science & technology, 30(8), 2432-2440.
Yan, X., Shi, B., Lu, J., Feng, C., Wang, D., & Tang, H. (2008). Adsorption and desorption of atrazine on carbon nanotubes. Journal of Colloid and Interface Science, 321(1), 30-38.
Yang, K., Wang, X., Zhu, L., & Xing, B. (2006). Competitive sorption of pyrene, phenanthrene, and naphthalene on multiwalled carbon nanotubes. Environmental science & technology, 40(18), 5804-5810.
Yang, K., & Xing, B. (2009). Adsorption of fulvic acid by carbon nanotubes from water. Environmental pollution, 157(4), 1095-1100.
Yang, K., & Xing, B. (2010). Adsorption of organic compounds by carbon nanomaterials in aqueous phase: Polanyi theory and its application. Chemical reviews, 110(10), 5989-6008.
Yang, K., Zhu, L., & Xing, B. (2006). Adsorption of polycyclic aromatic hydrocarbons by carbon nanomaterials. Environmental science & technology, 40(6), 1855-1861.
Young, T. M., & Weber, W. J. J. (1995). A distributed reactivity model for sorption by soils and sediments. 3. Effects of diagenetic processes on sorption energetics. Environmental science & technology, 29(1), 92-97.
Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J. W., Potts, J. R., & Ruoff, R. S. (2010). Graphene and graphene oxide: synthesis, properties, and applications. Advanced materials, 22(35), 3906-3924.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top