(3.235.191.87) 您好!臺灣時間:2021/05/14 21:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林宜賢
研究生(外文):Yi-XianLin
論文名稱:氯對於微囊藻中新型毒素DAB與AEG之釋出及降解之研究
論文名稱(外文):Effect of Chlorination on Cyanotoxin DAB and AEG Release and Degradation for Microcystis aeruginosa
指導教授:林財富林財富引用關係
指導教授(外文):Tsair-Fuh Lin
學位類別:碩士
校院名稱:國立成功大學
系所名稱:環境工程學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:110
中文關鍵詞:藻毒素2-4-二胺基丁酸 (DAB)N-2-(氨乙基)-甘氨酸 (AEG)微囊藻氧化處理
外文關鍵詞:CyanotoxinDABAEGM. aeruginosaChlorination
相關次數:
  • 被引用被引用:0
  • 點閱點閱:21
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
2-4-二胺基丁酸 (DAB)以及N-2-(氨乙基)-甘氨酸 (AEG)為神經毒素β-methylamino-L-alanine (BMAA)常見之同分異構物。DAB以及AEG產生已被報導其可以由超過10種的藍綠菌產生,DAB以及AEG同樣具有神經毒性而DAB更具有肝毒性,若是淨水廠進水含有高濃度的藍綠菌,民眾可能飲用含有DAB或AEG之飲用水。氯作為臺灣水廠最常使用的氧化劑,因此有必要去了解藍綠菌加氯後釋出及氧化劑是否能夠降解DAB以及AEG。然而DAB以及AEG與氯之反應常數並未被報導,因此在本研究中也會針對DAB以及AEG與氯的反應途徑、中間產物的形成、反應動力進行探討。
本研究以固相萃取法進行濃縮水樣中之DAB以及AEG,並透過液相層析串聯式質譜儀(LC-MS/MS)進行定量水庫及水廠濃度及偵測氯化時產生中間產物。在本研究中調查臺灣及離島共9座水庫及其淨水廠,調查結果顯示DAB以及AEG在清水中出現頻率分別為62%以及64%。在氯化的過程中,每種中間產物含有1-2個氯,其中DAB形成5種中間產物,AEG形成4種中間產物,而DAB以及AEG氯化形成中間產物以二階反應進行,在pH=8.2時DAB以及AEG與氯反應常數k1分別為8.74×104 M-1s-1以及2.65×104 M-1s-1 ; 氯化之中間產物在系統中存在餘氯時,會繼續與氯進行反應且遵守二階反應,DAB以及AEG中間產物與氯反應常數k3分別為7.46 M-1s-1以及3.55 M-1s-1 ; 若當系統中餘氯用盡,DAB以及AEG中間產物會以一階反應自體降解,DAB以及AEG中間產物自體降解常數k2分別為0.032 min-1以及0.009 min-1,以上這些反應常數有助於在本研究中建立藍綠菌釋出及降解DAB以及AEG之模式。
微囊藻(Microcystis aeruginosa)為臺灣湖庫中常見之藍綠菌且其也被報導為具有能力產生DAB以及AEG,本研究進行加氯實驗探討微囊藻細胞完整性與代謝物釋出及降解之關係。由氯化的結果可以發現微囊藻中AEG以游離態的形式存在而DAB以蛋白質鍵結態的形式存在,在氯化的過程中AEG由藻體釋放,由於藻細胞破裂速率遠高於k3,因此AEG會累積在系統且在20至30分鐘達到最高濃度。當餘氯用盡時觀察到AEG有降解現象,推測是由於自體降解反應,但其反應速率為偵測到之3倍高,而大部分的DAB濃度維持在一定濃度且留在藻細胞中。但當系統中存在餘氯時,DAB濃度提高推測為氧化劑可能打開部分細胞結構的鍵結導致偵測到更高濃度 ; 此外也有觀察到AEG濃度有些微下降,推測主要是由於餘氯降解造成。本研究中可以了解到在淨水廠清水中測到AEG是存在可能性,DAB並無釋出的現象且所有DAB皆留在細胞內。
DAB and AEG are new cyanotoxins of concern for drinking water. In this study, we first studied the presence of the two cyanotoxins present in Taiwan’s reservoirs and in the finished water of water treatment plants. Then, chlorination of DAB and AEG was studied for the reaction kinetics and chlorinated intermediates. Finally, chlorination of a cyanobacterium M. aeruginosa was studied for the release and degradation of DAB and AEG. DAB and AEG were found in most of the reservoirs and finished waters. The rate constants between chlorine and DAB and AEG were 8.74×104 and 2.68×104 M-1s-1, while the degradation rate constants of chlorinated DAB and AEG are 0.032 and 0.009 min-1 for autodecomposion, and are 7.46 and 3.55 M-1s-1 for the reaction with chlorine. According to the oxidation of cyanobacteria results, AEG were found to be present in finished water.
摘要 I
致謝 VIII
目錄 X
表目錄 XIII
圖目錄 XIV
第一章 緒論 1
1-1 研究源起 1
1-2 研究目的 3
第二章 文獻回顧 4
2-1 β-甲胺基-L-丙胺酸以及其異構物 4
2-1-1 基本特性 4
2-1-2 BMAA及其異構物之型態 7
2-1-3 BMAA及DAB, AEG毒理特性 9
2-1-4 產BMAA及其異構物之藻種 11
2-1-5 影響BMAA與其異構物產生之因素 14
2-2 BMAA及其異構物分析方法 16
2-2-1 液相層析串聯質譜儀(Liquid Chromatograph Tandem Mass Spectrometer, LC-MS/MS) 16
2-2-2 衍生化法 17
2-2-3 親水性作用層析(Hydrophilic Interaction Chromatography, HILIC) 18
2-3 加氯氧化對藍綠藻代謝物釋出的影響 19
2-3-1 次氯酸鈉氧化機制 19
2-3-2 影響氯氧化因子 19
2-3-3 氯氧化作用對於藍綠菌體的破壞 21
2-3-4 BMAA與氯氧化作用之反應途徑以及反應動力 22
第三章 實驗設備與方法 24
3-1 研究架構流程 24
3-2 藍綠菌培養 26
3-2-1 藍綠菌來源 26
3-2-2 藍綠菌培養方法 26
3-3 藍綠菌計數 27
3-3-1 微囊藻計數 27
3-3-2 細胞計數盤 27
3-4 臺灣環境水體採集 29
3-5 樣品萃取流程 30
3-5-1 蛋白質沉澱法 30
3-5-2 固相萃取法(Solid Phase Extraction, SPE) 33
3-5-3 液相層析串聯質譜儀 35
3-6 藻類氧化實驗 39
3-6-1 氧化實驗所需的準備 42
3-6-2 實驗方法 42
3-7 微囊藻細胞完整性觀察—流式細胞儀 44
3-7-1 實驗試劑與設備 44
3-7-2 實驗方法 44
3-8 標準品氧化實驗 39
3-8-1 實驗試劑與設備 39
3-8-2 實驗方法 39
3-9 胺基酸解離常數測定—滴定法 46
3-9-1 實驗試劑與設備 46
3-9-2 實驗方法 46
第四章 結果與討論 48
4-1 AEG解離常數測定 48
4-2 環境水體以及藻體內DAB與AEG之分析 51
4-2-1 環境水體固相萃取法條件確認 51
4-2-2 藻體之蛋白質沉澱法以及固相萃取條件確認 53
4-2-3 臺灣湖庫中BMAA、DAB及AEG之調查 55
4-3 DAB以及AEG降解途徑以及動力 60
4-3-1 DAB以及AEG氯化中間產物 60
4-3-2 DAB以及AEG反應動力 71
4-4 氯對於微囊藻之氧化結果 80
4-4-1 低氧化劑量加氯實驗 81
4-4-2 高氧化劑量加氯實驗 86
4-4-3 低劑量與高劑量氧化劑釋出及降解毒素比較 91
4-5 氯氧化微囊藻以及AEG釋出及降解動力模式探討 93
4-5-1 細胞完整性動力學模擬 93
4-5-2 AEG毒素釋出及降解動力學分析 96
第五章 結論與建議 101
5-1 結論 101
5-2 建議 103
第六章 參考文獻 104
Abia, L., Armesto, X. L., Canle, M., Garcia, M. V., & Santaballa, J. A. (1998). Oxidation of aliphatic amines by aqueous chlorine. Tetrahedron, 54(3-4), 521-530. doi:Doi 10.1016/S0040-4020(97)10312-X
Araoz, R., Molgo, J., & Tandeau de Marsac, N. (2010). Neurotoxic cyanobacterial toxins. Toxicon, 56(5), 813-828. doi:10.1016/j.toxicon.2009.07.036
Armesto, X. L., Canle L, M., García, M. V., Losada, M., & Santaballa, J. A. (1994). N Reactivity vs. O reactivity in aqueous chlorination. International Journal of Chemical Kinetics, 26(11), 1135-1141. doi:10.1002/kin.550261108
Armesto, X. L., Canle, M. L., & Santaballa, J. A. (1993). α-amino acids chlorination in aqueous media. Tetrahedron, 49(1), 275-284. doi:10.1016/s0040-4020(01)80525-1
Baker, T. C., Tymm, F. J. M., & Murch, S. J. (2018). Assessing Environmental Exposure to beta-N-Methylamino-L-Alanine (BMAA) in Complex Sample Matrices: a Comparison of the Three Most Popular LC-MS/MS Methods. Neurotox Res, 33(1), 43-54. doi:10.1007/s12640-017-9764-3
Banack, S. A., & Cox, P. A. (2003). Distribution of the neurotoxic nonprotein amino acid BMAA in Cycas micronesica. Botanical Journal of the Linnean Society, 143(2), 165-168. doi:10.1046/j.1095-8339.2003.00217.x
Banack, S. A., Metcalf, J. S., Spacil, Z., Downing, T. G., Downing, S., Long, A., . . . Cox, P. A. (2011). Distinguishing the cyanobacterial neurotoxin beta-N-methylamino-L-alanine (BMAA) from other diamino acids. Toxicon, 57(5), 730-738. doi:10.1016/j.toxicon.2011.02.005
Banack, S. A., Metcalf, J. S., Jiang, L., Craighead, D., Ilag, L. L., & Cox, P. A. (2012). Cyanobacteria produce N-(2-aminoethyl)glycine, a backbone for peptide nucleic acids which may have been the first genetic molecules for life on Earth. PLoS One, 7(11), e49043. doi:10.1371/journal.pone.0049043
Brenner, E. D., Stevenson, D. W., McCombie, R. W., Katari, M. S., Rudd, S. A., Mayer, K. F., . . . Coruzzi, G. M. (2003). Expressed sequence tag analysis in Cycas, the most primitive living seed plant. Genome Biol, 4(12), R78. doi:10.1186/gb-2003-4-12-r78
Buszewski, B., & Noga, S. (2012). Hydrophilic interaction liquid chromatography (HILIC)--a powerful separation technique. Anal Bioanal Chem, 402(1), 231-247. doi:10.1007/s00216-011-5308-5
Cao, Y., Hu, S., Gong, T., Xian, Q., & Xu, B. (2019). Decomposition of beta-N-methylamino-L-alanine (BMAA) and 2,4-diaminobutyric acid (DAB) during chlorination and consequent disinfection byproducts formation. Water Res, 159, 365-374. doi:10.1016/j.watres.2019.05.007
Chen, C.-H., Flory, W., & Koeppe, R. E. (1972). Variation of neurotoxicity of l-and d-2, 4-diaminobutyric acid with route of administration. Toxicology and applied pharmacology, 23(2), 334-338.
Chen, Y. T., Chen, W. R., & Lin, T. F. (2018). Oxidation of cyanobacterial neurotoxin beta-N-methylamino-L-alanine (BMAA) with chlorine, permanganate, ozone, hydrogen peroxide and hydroxyl radical. Water Research, 142, 187-195. doi:10.1016/j.watres.2018.05.056
Chen, Y. T., Chen, W. R., Liu, Z. Q., & Lin, T. F. (2017). Reaction Pathways and Kinetics of a Cyanobacterial Neurotoxin beta-N-Methylamino-L-Alanine (BMAA) during Chlorination. Environ Sci Technol, 51(3), 1303-1311. doi:10.1021/acs.est.6b03553
Chick, H. (1908). An investigation of the laws of disinfection. Epidemiology & Infection, 8(1), 92-158.
Chow, C. W., Drikas, M., House, J., Burch, M. D., & Velzeboer, R. M. (1999). The impact of conventional water treatment processes on cells of the cyanobacterium Microcystis aeruginosa. Water Research, 33(15), 3253-3262.
Cox, P. A., Banack, S. A., & Murch, S. J. (2003). Biomagnification of cyanobacterial neurotoxins and neurodegenerative disease among the Chamorro people of Guam. Proc Natl Acad Sci U S A, 100(23), 13380-13383. doi:10.1073/pnas.2235808100
Cox, P. A., & Sacks, O. W. (2002). Cycad neurotoxins, consumption of flying foxes, and ALS-PDC disease in Guam. Neurology, 58(6), 956-959. doi:10.1212/wnl.58.6.956
Craighead, D., Metcalf, J. S., Banack, S. A., Amgalan, L., Reynolds, H. V., & Batmunkh, M. (2009). Presence of the neurotoxic amino acids beta-N-methylamino-L-alanine (BMAA) and 2,4-diamino-butyric acid (DAB) in shallow springs from the Gobi Desert. Amyotroph Lateral Scler, 10 Suppl 2, 96-100. doi:10.3109/17482960903278469
Daly, R. I., Ho, L., & Brookes, J. D. (2007). Effect of chlorination on Microcystis aeruginosa cell integrity and subsequent microcystin release and degradation. Environ Sci Technol, 41(12), 4447-4453. doi:10.1021/es070318s
Deborde, M., & von Gunten, U. (2008). Reactions of chlorine with inorganic and organic compounds during water treatment-Kinetics and mechanisms: a critical review. Water Res, 42(1-2), 13-51. doi:10.1016/j.watres.2007.07.025
Dietrich, A., Hoehn, R., Dufresne, L., Buffin, L., Rashash, D., & Parker, B. (1995). Oxidation of odorous and nonodorous algal metabolites by permanganate, chlorine, and chlorine dioxide. Water science and technology, 31(11), 223-228.
Downing, S., Banack, S. A., Metcalf, J. S., Cox, P. A., & Downing, T. G. (2011). Nitrogen starvation of cyanobacteria results in the production of beta-N-methylamino-L-alanine. Toxicon, 58(2), 187-194. doi:10.1016/j.toxicon.2011.05.017
Duncan, M. W. (2012). Good mass spectrometry and its place in good science. J Mass Spectrom, 47(6), 795-809. doi:10.1002/jms.3038
EPISuite, U. E. P. A. s. (2008) Property of BMAA、DAB、AEG. In P. o. BMAA、DAB、AEG (Ed.).
Faassen, E. J. (2014). Presence of the neurotoxin BMAA in aquatic ecosystems: what do we really know? Toxins, 6(3), 1109-1138.
Faassen, E. J., Antoniou, M. G., Beekman-Lukassen, W., Blahova, L., Chernova, E., Christophoridis, C., . . . Zguna, N. (2016). A Collaborative Evaluation of LC-MS/MS Based Methods for BMAA Analysis: Soluble Bound BMAA Found to Be an Important Fraction. Mar Drugs, 14(3). doi:10.3390/md14030045
Faassen, E. J., Gillissen, F., & Lurling, M. (2012). A comparative study on three analytical methods for the determination of the neurotoxin BMAA in cyanobacteria. PLoS One, 7(5), e36667. doi:10.1371/journal.pone.0036667
Fan, H., Qiu, J., Fan, L., & Li, A. (2015). Effects of growth conditions on the production of neurotoxin 2,4-diaminobutyric acid (DAB) in Microcystis aeruginosa and its universal presence in diverse cyanobacteria isolated from freshwater in China. Environ Sci Pollut Res Int, 22(8), 5943-5951. doi:10.1007/s11356-014-3766-y
Fan, J., Rao, Chiu, Y. T., & Lin, T. F. (2016). Impact of chlorine on the cell integrity and toxin release and degradation of colonial Microcystis. Water Res, 102, 394-404. doi:10.1016/j.watres.2016.06.053
Fang, J., Ma, J., Yang, X., & Shang, C. (2010). Formation of carbonaceous and nitrogenous disinfection by-products from the chlorination of Microcystis aeruginosa. Water Res, 44(6), 1934-1940. doi:10.1016/j.watres.2009.11.046
Glaze, W. H., Schep, R., Chauncey, W., Ruth, E. C., Zarnoch, J. J., Aieta, E. M., . . . McGuire, M. J. (1990). Evaluating oxidants for the removal of model taste and odor compounds from a municipal water supply. Journal‐American Water Works Association, 82(5), 79-84.
Glover, W. B., Liberto, C. M., McNeil, W. S., Banack, S. A., Shipley, P. R., & Murch, S. J. (2012). Reactivity of beta-methylamino-L-alanine in complex sample matrixes complicating detection and quantification by mass spectrometry. Anal Chem, 84(18), 7946-7953. doi:10.1021/ac301691r
Hand, V. C., & Margerum, D. W. (1983). Kinetics and mechanisms of the decomposition of dichloramine in aqueous solution. Inorganic Chemistry, 22(10), 1449-1456.
Hureiki, L., Croue, J. P., & Legube, B. (1994). Chlorination Studies of Free and Combined Amino-Acids. Water Research, 28(12), 2521-2531. doi:Doi 10.1016/0043-1354(94)90070-1
Ince, P. G., & Codd, G. A. (2005). Return of the cycad hypothesis - does the amyotrophic lateral sclerosis/parkinsonism dementia complex (ALS/PDC) of Guam have new implications for global health? Neuropathol Appl Neurobiol, 31(4), 345-353. doi:10.1111/j.1365-2990.2005.00686.x
Jafvert, C. T., & Valentine, R. L. (1987). Dichloramine decomposition in the presence of excess ammonia. Water Research, 21(8), 967-973. doi:10.1016/s0043-1354(87)80015-5
Jafvert, C. T., & Valentine, R. L. (1992). Reaction Scheme for the Chlorination of Ammoniacal Water. Environmental science & technology, 26(3), 577-586. doi:DOI 10.1021/es00027a022
Kubo, T., Kato, N., Hosoya, K., & Kaya, K. (2008). Effective determination method for a cyanobacterial neurotoxin, beta-N-methylamino-L-alanine. Toxicon, 51(7), 1264-1268. doi:10.1016/j.toxicon.2008.02.015
Lalezary, S., Pirbazari, M., & McGuire, M. J. (1986). Oxidation of five earthy‐musty taste and odor compounds. Journal‐American Water Works Association, 78(3), 62-69.
Li, A., Fan, H., Ma, F., McCarron, P., Thomas, K., Tang, X., & Quilliam, M. A. (2012). Elucidation of matrix effects and performance of solid-phase extraction for LC-MS/MS analysis of beta-N-methylamino-L-alanine (BMAA) and 2,4-diaminobutyric acid (DAB) neurotoxins in cyanobacteria. Analyst, 137(5), 1210-1219. doi:10.1039/c2an15887f
Li, X., Chen, S., Zeng, J., Song, W., & Yu, X. (2020). Comparing the effects of chlorination on membrane integrity and toxin fate of high- and low-viability cyanobacteria. Water Res, 177, 115769. doi:10.1016/j.watres.2020.115769
Lin, T.-F., Chang, D.-W., Lien, S.-K., Tseng, Y.-S., Chiu, Y.-T., & Wang, Y.-S. (2009). Effect of chlorination on the cell integrity of two noxious cyanobacteria and their releases of odorants. Journal of Water Supply: Research and Technology-Aqua, 58(8), 539-551. doi:10.2166/aqua.2009.117
Lobner, D., Piana, P. M., Salous, A. K., & Peoples, R. W. (2007). Beta-N-methylamino-L-alanine enhances neurotoxicity through multiple mechanisms. Neurobiol Dis, 25(2), 360-366. doi:10.1016/j.nbd.2006.10.002
Ma, M., Liu, R., Liu, H., & Qu, J. (2012). Chlorination of Microcystis aeruginosa suspension: cell lysis, toxin release and degradation. J Hazard Mater, 217-218, 279-285. doi:10.1016/j.jhazmat.2012.03.030
Main, B. J., & Rodgers, K. J. (2018). Assessing the Combined Toxicity of BMAA and Its Isomers 2,4-DAB and AEG In Vitro Using Human Neuroblastoma Cells. Neurotox Res, 33(1), 33-42. doi:10.1007/s12640-017-9763-4
Margerum, D. W., GRAY JR, E. T., & Huffman, R. P. (1978). Chlorination and the formation of N-chloro compounds in water treatment. In: ACS Publications.
McCarron, P., Logan, A. C., Giddings, S. D., & Quilliam, M. A. (2014). Analysis of beta-N-methylamino-L-alanine (BMAA) in spirulina-containing supplements by liquid chromatography-tandem mass spectrometry. Aquat Biosyst, 10, 5. doi:10.1186/2046-9063-10-5
Metcalf, J. S., Banack, S. A., Richer, R., & Cox, P. A. (2015). Neurotoxic amino acids and their isomers in desert environments. Journal of Arid Environments, 112, 140-144. doi:10.1016/j.jaridenv.2014.08.002
Monteiro, M., Costa, M., Moreira, C., Vasconcelos, V. M., & Baptista, M. S. (2016). Screening of BMAA-producing cyanobacteria in cultured isolates and in in situ blooms. Journal of Applied Phycology, 29(2), 879-888. doi:10.1007/s10811-016-1003-4
Montiel, A., & Welte, B. (1998). Preozonation coupled with flotation filtration: successful removal of algae. Water science and technology, 37(2), 65-73.
Murch, S. J., Cox, P. A., & Banack, S. A. (2004). A mechanism for slow release of biomagnified cyanobacterial neurotoxins and neurodegenerative disease in Guam. Proceedings of the National Academy of Sciences, 101(33), 12228-12231.
Nelson, K. E., Levy, M., & Miller, S. L. (2000). Peptide nucleic acids rather than RNA may have been the first genetic molecule. Proceedings of the National Academy of Sciences of the United States of America, 97(8), 3868-3871. doi:DOI 10.1073/pnas.97.8.3868
Newcombe, G., Cook, D., Brooke, S., Ho, L., & Slyman, N. (2003). Treatment options for microcystin toxins: similarities and differences between variants. Environmental technology, 24(3), 299-308.
Newcombe, G., House, J., Ho, L., Baker, P., & Burch, M. (2010). Management strategies for cyanobacteria (blue-green algae): A guide for water utilities. Water Quality Research Australia (WQRA), Reserach Report, 74.
O'Neal, R. M., Chen, C. H., Reynolds, C. S., Meghal, S. K., & Koeppe, R. E. (1968). The 'neurotoxicity' of L-2,4-diaminobutyric acid. Biochem J, 106(3), 699-706. doi:10.1042/bj1060699
Pattison, D. I., & Davies, M. J. (2001). Absolute rate constants for the reaction of hypochlorous acid with protein side chains and peptide bonds. Chem Res Toxicol, 14(10), 1453-1464. doi:10.1021/tx0155451
Plummer, J. D., & Edzwald, J. K. (2001). Effect of ozone on algae as precursors for trihalomethane and haloacetic acid production. Environmental science & technology, 35(18), 3661-3668.
Plummer, J. D., & Edzwald, J. K. (2002). Effects of chlorine and ozone on algal cell properties and removal of algae by coagulation. Journal of Water Supply: Research and Technology—AQUA, 51(6), 307-318.
Purdie, E. L., Metcalf, J. S., Kashmiri, S., & Codd, G. A. (2009). Toxicity of the cyanobacterial neurotoxin beta-N-methylamino-L-alanine to three aquatic animal species. Amyotroph Lateral Scler, 10 Suppl 2, 67-70. doi:10.3109/17482960903273551
Rajalingam, D., Loftis, C., Xu, J. J., & Kumar, T. K. (2009). Trichloroacetic acid-induced protein precipitation involves the reversible association of a stable partially structured intermediate. Protein Sci, 18(5), 980-993. doi:10.1002/pro.108
Regueiro, J., Negreira, N., Carreira-Casais, A., Perez-Lamela, C., & Simal-Gandara, J. (2017). Dietary exposure and neurotoxicity of the environmental free and bound toxin beta-N-methylamino-l-alanine. Food Res Int, 100(Pt 1), 1-13. doi:10.1016/j.foodres.2017.07.033
Ressler, C., Redstone, P. A., & Erenberg, R. H. (1961). Isolation and identification of a neuroactive factor from Lathyrus latifolius. Science, 134(3473), 188-190.
Reveillon, D., Abadie, E., Sechet, V., Brient, L., Savar, V., Bardouil, M., . . . Amzil, Z. (2014). Beta-N-methylamino-L-alanine: LC-MS/MS optimization, screening of cyanobacterial strains and occurrence in shellfish from Thau, a French Mediterranean lagoon. Mar Drugs, 12(11), 5441-5467. doi:10.3390/md12115441
Reveillon, D., Abadie, E., Sechet, V., Masseret, E., Hess, P., & Amzil, Z. (2015). beta-N-methylamino-l-alanine (BMAA) and isomers: Distribution in different food web compartments of Thau lagoon, French Mediterranean Sea. Mar Environ Res, 110, 8-18. doi:10.1016/j.marenvres.2015.07.015
Riggs, T. R., Coyne, B. A., & Christensen, H. N. (1954). Amino acid concentration by a free cell neoplasm. Structural influences. Journal of Biological Chemistry, 209(1), 395-411.
Rodríguez-Gonzalo, E., & García-Gómez, D. (2018). Hydrophilic Interaction Chromatography: Current Trends and Applications. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering.
Rosen, J., & Hellenas, K. E. (2008). Determination of the neurotoxin BMAA (beta-N-methylamino-L-alanine) in cycad seed and cyanobacteria by LC-MS/MS (liquid chromatography tandem mass spectrometry). Analyst, 133(12), 1785-1789. doi:10.1039/b809231a
Rosen, J., Westerberg, E., Schmiedt, S., & Hellenas, K. E. (2016). BMAA detected as neither free nor protein bound amino acid in blue mussels. Toxicon, 109, 45-50. doi:10.1016/j.toxicon.2015.11.008
Rutala, W. A., & Weber, D. J. (1997). Uses of inorganic hypochlorite (bleach) in health-care facilities. Clinical microbiology reviews, 10(4), 597-610.
Schleifer, K. H., & Kandler, O. (1972). Peptidoglycan Types of Bacterial Cell-Walls and Their Taxonomic Implications. Bacteriological reviews, 36(4), 407-477. doi:Doi 10.1128/Mmbr.36.4.407-477.1972
Schleifer, K. H., & Kandler, O. (1972). Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriological reviews, 36(4), 407.
Shah, A. D., Kim, J. H., & Huang, C. H. (2006). Reaction kinetics and transformation of carbadox and structurally related compounds with aqueous chlorine. Environ Sci Technol, 40(23), 7228-7235. doi:10.1021/es060404c
Shuter, E., & Robins, E. (1974). Elevation of brain gamma-aminobutyric acid in the mouse by L-2, 4-diaminobutyric acid. Transactions of the American Neurological Association, 99, 49.
Silhavy, T. J., Kahne, D., & Walker, S. (2010). The bacterial cell envelope. Cold Spring Harb Perspect Biol, 2(5), a000414. doi:10.1101/cshperspect.a000414
Spacil, Z., Eriksson, J., Jonasson, S., Rasmussen, U., Ilag, L. L., & Bergman, B. (2010). Analytical protocol for identification of BMAA and DAB in biological samples. Analyst, 135(1), 127-132. doi:10.1039/b921048b
Suzuki, K.-I., Sasaki, J., Uramoto, M., Nakase, T., & Komagata, K. (1996). Agromyces mediolanus sp. nov., nom. rev., comb. nov., a species for “Corynebacterium mediolanum Mamoli 1939 and for some aniline-assimilating bacteria which contain 2, 4-diaminobutyric acid in the cell wall peptidoglycan. International Journal of Systematic and Evolutionary Microbiology, 46(1), 88-93.
Takeuchi, M., Weiss, N., Schumann, P., & Yokota, A. (1996). Leucobacter komagatae gen. nov., sp. nov., a new aerobic gram-positive, nonsporulating rod with 2, 4-diaminobutyric acid in the cell wall. International Journal of Systematic and Evolutionary Microbiology, 46(4), 967-971.
Tung, S.-C., Lin, T.-F., Liu, C.-L., & Lai, S.-D. (2004). The effect of oxidants on 2-MIB concentration with the presence of cyanobacteria. Water science and technology, 49(9), 281-288.
Valentine, R. L., & Jafvert, C. T. (1988). General Acid Catalysis of Monochloramine Disproportionation. Environmental science & technology, 22(6), 691-696. doi:DOI 10.1021/es00171a012
Vega, A., & Bell, E. (1967). α-Amino-β-methylaminopropionic acid, a new amino acid from seeds of Cycas circinalis. Phytochemistry, 6(5), 759-762.
Vikesland, P. (2001). Monochloramine Decay in Model and Distribution System Waters. Water Research, 35(7), 1766-1776. doi:10.1016/s0043-1354(00)00406-1
Violi, J. P., Facey, J. A., Mitrovic, S. M., Colville, A., & Rodgers, K. J. (2019). Production of beta-methylamino-L-alanine (BMAA) and Its Isomers by Freshwater Diatoms. Toxins (Basel), 11(9). doi:10.3390/toxins11090512
Violi, J. P., Mitrovic, S. M., Colville, A., Main, B. J., & Rodgers, K. J. (2019). Prevalence of beta-methylamino-L-alanine (BMAA) and its isomers in freshwater cyanobacteria isolated from eastern Australia. Ecotoxicol Environ Saf, 172, 72-81. doi:10.1016/j.ecoenv.2019.01.046
Vo Duy, S., Munoz, G., Dinh, Q. T., Tien Do, D., Simon, D. F., & Sauve, S. (2019). Analysis of the neurotoxin beta-N-methylamino-L-alanine (BMAA) and isomers in surface water by FMOC derivatization liquid chromatography high resolution mass spectrometry. PLoS One, 14(8), e0220698. doi:10.1371/journal.pone.0220698
Watson, H. E. (1908). A note on the variation of the rate of disinfection with change in the concentration of the disinfectant. Epidemiology & Infection, 8(4), 536-542.
Weil, I., & Morris, J. C. (1949). Kinetic Studies on the Chloramines. I. The Rates of Formation of Monochloramine, N-Chlormethylamine and N-Chlordimethylamine. Journal of the American Chemical Society, 71(5), 1664-1671. doi:10.1021/ja01173a033
Wert, E. C., Dong, M. M., & Rosario-Ortiz, F. L. (2013). Using digital flow cytometry to assess the degradation of three cyanobacteria species after oxidation processes. Water Res, 47(11), 3752-3761. doi:10.1016/j.watres.2013.04.038
White, G. C. (1986). The handbook of chlorination: Van Nostrand Reinhold New York.
Wittung, P., Nielsen, P. E., Buchardt, O., Egholm, M., & Norde, B. (1994). DNA-like double helix formed by peptide nucleic acid. Nature, 368(6471), 561-563.
Yan, B., Liu, Z., Huang, R., Xu, Y., Liu, D., Lin, T. F., & Cui, F. (2017). Optimization of the Determination Method for Dissolved Cyanobacterial Toxin BMAA in Natural Water. Anal Chem, 89(20), 10991-10998. doi:10.1021/acs.analchem.7b02867
Yan, B., Liu, Z., Huang, R., Xu, Y., Liu, D., Wang, W., . . . Shi, W. (2019). Impact factors on the production of beta-methylamino-L-alanine (BMAA) by cyanobacteria. Chemosphere, 243, 125355. doi:10.1016/j.chemosphere.2019.125355
Zamyadi, A., Fan, Y., Daly, R. I., & Prevost, M. (2013). Chlorination of Microcystis aeruginosa: toxin release and oxidation, cellular chlorine demand and disinfection by-products formation. Water Res, 47(3), 1080-1090. doi:10.1016/j.watres.2012.11.031
Zimmerman, D., Goto, J. J., & Krishnan, V. V. (2016). Equilibrium Dynamics of beta-N-Methylamino-L-Alanine (BMAA) and Its Carbamate Adducts at Physiological Conditions. PLoS One, 11(8), e0160491. doi:10.1371/journal.pone.0160491
陳逸廷. (2018). 水中新型藻毒素β-甲氨基-L-丙氨酸的氧化處理研究. 國立成功大學, (2018年)
楊明敏. (2018). 水源中β-甲氨基-L-丙氨酸毒素分析技術建立及調查研究. 國立成功大學, (2018年)
蔣寶玉. (2019). 三種藍綠菌在不同生長階段中產生BMAA濃度之測定. 國立成功大學, (2019年)
饒拉. (2013). 氯對團聚微囊藻細胞破壞及其代謝物釋出及降解之研究. 國立成功大學, (2013年)
林財富. (2019). 水中新型藻類神經毒素BMAA、DAB及AEG來源分析及氧化處理研究. 科技部(MOST106-2221-E006-013-MY3)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
無相關點閱論文