跳到主要內容

臺灣博碩士論文加值系統

(44.200.94.150) 您好!臺灣時間:2024/10/16 14:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李道明
研究生(外文):Dao-MingLee
論文名稱:棒球飛行軌跡之電腦模擬
論文名稱(外文):Computer Simulation of Baseball Flight Trajectories
指導教授:鄭匡佑鄭匡佑引用關係
指導教授(外文):Kuangyou B. Cheng
學位類別:碩士
校院名稱:國立成功大學
系所名稱:體育健康與休閒研究所
學門:民生學門
學類:運動休閒及休閒管理學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:42
中文關鍵詞:棒球打擊訓練虛擬實境橫向力係數流體力學空氣動力學
外文關鍵詞:baseball batting trainingvirtual realityside force coefficientfluid mechanicsaerodynamics
相關次數:
  • 被引用被引用:0
  • 點閱點閱:307
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
緒論:棒球打擊被視為是運動中最困難的運動技巧之一,必須要透過大量打擊訓練才能有效提升打擊能力。但現階段缺乏較好的打擊訓練方法,能幫助打者模擬比賽真實情況的球路。因此本研究希望透過空氣動力學計算棒球飛行過程中所受的各種力,模擬與真實情況相吻合的飛行軌跡。方法:本研究經電腦數值運算模擬的棒球軌跡,與下列兩者比較進行驗證。(1)實體實驗:以棒球發球機將球發出,並透過高速攝影機捕捉球上的反光貼紙位置,進而計算球飛行的運動學參數 (2)其他研究團隊(Nathan等人)之軌跡模型。並透過最佳化的方式,求取飛行過程中最佳的CD (阻力係數)與CY (橫向力係數)。結果:實體實驗因器材限制而導致X方向的分量偏移過大,以致無法參與比對,因此僅以方法2進行最佳化及軌跡比對。在假設CD為常數的情況下,最佳CY (0.00339)與速率、速度平方以及雷諾數成高度負相關 (相關係數R分別為-0.825,-0.823,與-0.825);而在假設CY為常數的情況下,最佳CD (0.27700)與速率及速度平方亦呈負相關 (R分別為-0.474與-0.475)。若同時計算最佳CY與CD值,則得最佳CY=0.00254、CD=0.27603。軌跡比對部分,則以模擬過程中有加入最佳CD時的位置誤差最小,其X、Z與總偏移量的誤差皆明顯下降 (誤差分別為0.031m,-0.033m,0.102m),至於該軌跡中EVf的誤差 (1.38%)是否會造成打者打擊判斷上的影響,則有待探討。結論:最佳CY與速率以及雷諾數在本實驗中呈高度負相關,需透過更大範圍的球速測試,才能確認其於各範圍球速下之間的相關性。而由於CY值很小,對於模擬軌跡影響有限,因此於忽略橫向力的情況下,透過加入會隨雷諾數變化的CD值,應可模擬出貼近真實飛行情況的軌跡。
This study simulated baseball flight trajectories by considering all the forces applied to the ball, including the gravitational force and aerodynamic forces. Calculation of the lift coefficient was based on previous studies, while the drag coefficient CD and side force coefficient CY were obtained by applying optimization methods. Simulated flight trajectories were verified by (1) Using high-speed cameras to record the trajectories of markers on a baseball for calculating the kinematic parameters of ball flight, and (2) Inputting the initial conditions to the Trajectory Calculator (TC) developed by another research group to obtain the data of trajectories. Moreover, when the CY and CD were not assumed to be constant, their optimal values were calculated by minimizing the overall difference in trajectory between the present simulation and TC. When the CD was assumed to be constant, the optimal CY was found to highly correlate with ball speed V, V2 and the Reynolds number Re. Optimal CD was moderately correlated with V and V2 when the side force was ignored. On the other hand, dispensing with the assumption of constant CY and CD allowed their optimal values to be calculated as 0.00254 and 0.27603, respectively. When employing optimal CD in the simulation, the deviation in the trajectory was the smallest and ΔX, ΔZ, ΔR were considerably reduced. To sum up, the small value of CY implies diminutive influence on trajectories and therefore realistic trajectories might be simulated by solely using suitable CD values. However, it still requires further research to investigate the effect of the deviation of EVf on batters’ reactions.
摘要 i
致謝 ix
目錄 x
表目錄 xii
圖目錄 xiii
第壹章 緒論 1
第一節 研究背景 1
第二節 研究目的 3
第三節 研究假設 3
第四節 名詞解釋 4
第貳章 文獻探討 5
第一節 棒球飛行的空氣動力學 5
第二節 阻力 5
第三節 升力 7
第四節 其他作用力 9
第五節 總結 9
第參章 研究方法 11
第一節 儀器設備 11
第二節 實驗設置 12
第三節 Trajectory Calculator 17
第四節 電腦模擬 19
第五節 實驗流程 20
第六節 資料處理與分析 21
第肆章 研究結果 25
第一節 電腦模擬與Trajectory Calculator 26
第二節 最佳CY與CD 26
第三節 位移變化量 30
第四節 末速誤差率與飛行時間差 31
第伍章 討論 33
第一節 實體實驗 33
第二節 原模擬軌跡差異比較 33
第三節 CY與CD對飛行軌跡之影響 34
第陸章 結論與建議 37
參考文獻 38
Achenbach, E. (1974). The effects of surface roughness and tunnel blockage on the flow past spheres. Journal of Fluid Mechanics, 65(01), 113. https://doi.org/10.1017/S0022112074001285
Alam, F., Ho, H., Chowdhury, H., & Subic, A. (2011). Aerodynamics of baseball. Procedia Engineering, 13, 207–212. https://doi.org/10.1016/j.proeng.2011.05.074
Alam, F., Ho, H., Smith, L., Subic, A., Chowdhury, H., & Kumar, A. (2012). A study of baseball and softball aerodynamics. Procedia Engineering, 34, 86–91. https://doi.org/10.1016/j.proeng.2012.04.016
Alaways, Leroy W., & Hubbard, M. (2001). Experimental determination of baseball spin and lift. Journal of Sports Sciences, 19(5), 349–358. https://doi.org/10.1080/02640410152006126
Alaways, LeRoy W., Mish, S. P., & Hubbard, M. (2001). Identification of Release Conditions and Aerodynamic Forces in Pitched-Baseball Trajectories. Journal of Applied Biomechanics, 17(1), 63–76. https://doi.org/10.1123/jab.17.1.63
Anderson Jr, J. D. (2010). Fundamentals of aerodynamics. Tata McGraw-Hill Education.
Andrews, J. R., & Fleisig, G. S. (1998). Preventing Throwing Injuries. Journal of Orthopaedic & Sports Physical Therapy, 27(3), 187–188. https://doi.org/10.2519/jospt.1998.27.3.187
Bahill, A. T., Baldwin, D. G., & Ramberg, J. S. (2009). Effects of Altitude and Atmospheric Conditions on the Flight of a Baseball. 20.
Bearman, P. W., & Harvey, J. K. (1976). Golf Ball Aerodynamics. The Aeronautical Quarterly, 27(2), 112–122. https://doi.org/10.1017/S0001925900007617
Briggs, L. J. (1959). Effect of Spin and Speed on the Lateral Deflection (Curve) of a Baseball; and the Magnus Effect for Smooth Spheres. American Journal of Physics, 27(8), 589–596. https://doi.org/10.1119/1.1934921
Cork, A., Justham, L., & West, A. A. (2010). Batter’s behaviour during training when facing a bowling machine and when facing a bowler. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, 224(3), 201–208. https://doi.org/10.1243/17543371JSET70
Cross, R. (2011). Physics of baseball & softball. Springer.
Escamilla, R. F., Fleisig, G. S., DeRenne, C., Taylor, M. K., Moorman, C. T., Imamura, R., Barakatt, E., & Andrews, J. R. (2009). A Comparison of Age Level on Baseball Hitting Kinematics. Journal of Applied Biomechanics, 25(3), 210–218. https://doi.org/10.1123/jab.25.3.210
Frohlich, C. (1984). Aerodynamic drag crisis and its possible effect on the flight of baseballs. American Journal of Physics, 52(4), 325–334. https://doi.org/10.1119/1.13883
Gray, R. (2017). Transfer of Training from Virtual to Real Baseball Batting. Frontiers in Psychology, 8. https://doi.org/10.3389/fpsyg.2017.02183
Isogawa, M., Mikami, D., Fukuda, T., Saijo, N., Takahashi, K., Kimata, H., & Kashino, M. (2018). What Can VR Systems Tell Sports Players? Reaction-Based Analysis of Baseball Batters in Virtual and Real Worlds. 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), 587–588. https://doi.org/10.1109/VR.2018.8446073
Jinji, T., & Sakurai, S. (2006). Baseball: Direction of spin axis and spin rate of the pitched baseball. Sports Biomechanics, 5(2), 197–214. https://doi.org/10.1080/14763140608522874
Jinji, T., Sakurai, S., & Hirano, Y. (2011). Factors determining the spin axis of a pitched fastball in baseball. Journal of Sports Sciences, 29(7), 761–767. https://doi.org/10.1080/02640414.2011.553963
Kagan, D., & Nathan, A. M. (2017). Statcast and the Baseball Trajectory Calculator. The Physics Teacher, 55(3), 134–136. https://doi.org/10.1119/1.4976652
Kensrud, J. R., Smith, L. V., Nathan, A., & Nevins, D. (2015). Relating Baseball Seam Height to Carry Distance. Procedia Engineering, 112, 406–411. https://doi.org/10.1016/j.proeng.2015.07.216
Kuo, S.-Y., Cheng, K. B., Chiu, H.-T., & Huang, Y.-C. (2013). Differences in Baseball Batting Movement Strategies between Facing a Pitcher and Pitching Machine.
Maccoll, J. W. (1928). Aerodynamics of a Spinning Sphere. The Aeronautical Journal, 32(213), 777–798. https://doi.org/10.1017/S0368393100136260
Mihoces, G. (2003, March 3). 10 hardest things to do in sports. USA Today, 3C.
Nagami, T., Higuchi, T., Nakata, H., Yanai, T., & Kanosue, K. (2016). Relation between Lift Force and Ball Spin for Different Baseball Pitches. Journal of Applied Biomechanics, 32(2), 196–204. https://doi.org/10.1123/jab.2015-0068
Nagami, T., Morohoshi, J., Higuchi, T., Nakata, H., Naito, S., & Kanosue, K. (2011). Spin on Fastballs Thrown by Elite Baseball Pitchers: Medicine & Science in Sports & Exercise, 43(12), 2321–2327. https://doi.org/10.1249/MSS.0b013e318220e728
Nathan, A. M. (2008). The effect of spin on the flight of a baseball. Am. J. Phys., 76(2), 7.
Nathan, A. M. (2012). What New Technologies Are Teaching Us About the Game of Baseball.
Race, D. E. (1961). A Cinematographic and Mechanical Analysis of the External Movements Involved in Hitting a Baseball Effectively. Research Quarterly. American Association for Health, Physical Education and Recreation, 32(3), 394–404. https://doi.org/10.1080/10671188.1961.10613161
Rubinow, S. I., & Keller, J. B. (1961). The transverse force on a spinning sphere moving in a viscous fluid. Journal of Fluid Mechanics, 11(03), 447. https://doi.org/10.1017/S0022112061000640
Sawicki, G. S., Hubbard, M., & Stronge, W. J. (2003). How to hit home runs: Optimum baseball bat swing parameters for maximum range trajectories. American Journal of Physics, 71(11), 1152–1162. https://doi.org/10.1119/1.1604384
Selin, C. (1959). An Analysis of the Aerodynamics of Pitched Baseballs. Research Quarterly. American Association for Health, Physical Education and Recreation, 30(2), 232–240. https://doi.org/10.1080/10671188.1959.10613029
Watts, R. G., & Ferrer, R. (1987). The lateral force on a spinning sphere: Aerodynamics of a curveball. American Journal of Physics, 55(1), 40–44. https://doi.org/10.1119/1.14969
Watts, R. G., & Sawyer, E. (1975). Aerodynamics of a knuckleball. American Journal of Physics, 43(11), 960–963. https://doi.org/10.1119/1.10020
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top