(3.236.222.124) 您好!臺灣時間:2021/05/11 10:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡孟儒
研究生(外文):Meng-RuTsai
論文名稱:使用虛擬實境訓練中風患者下肢外在體感覺於移行表現的效果
論文名稱(外文):Effect of lower limb exproprioception training in virtual environment on locomotion performance in stroke patients
指導教授:李佩紜李佩紜引用關係
指導教授(外文):Pei-Yun Lee
學位類別:碩士
校院名稱:國立成功大學
系所名稱:物理治療學系
學門:醫藥衛生學門
學類:復健醫學學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:76
中文關鍵詞:外在體感覺中風虛擬實境移行活動
外文關鍵詞:exproprioceptionstrokevirtual realitylocomotion
相關次數:
  • 被引用被引用:0
  • 點閱點閱:38
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
研究背景與目的:中風是導致成人失去移行能力最主要的疾病,除了動作受損會影響下肢動作功能,感覺系統受損也會使患者的移行能力恢復受限,其中,外在體感覺:負責偵測身體或肢體在環境中或與環境中某一物體相對位置、方向及動作的能力是過去鮮少被探討的,此感覺主要是透過視覺來取得,在我們要執行任何移行活動前,需先藉由視覺取得環境資訊,接著再使用外在體感覺來定位我們在空間中的位置,使我們在走路或是在移動過程中遇到障礙物時可以順利地避開;然而臨床上,當中風患者被要求用對稱的步態行走或是要避開障礙物時,都傾向依賴視覺外在體感覺(visual exproprioception)來完成任務,也就是較無法收集完環境資訊後,在不看地面或腳的情況下使用非視覺外在體感覺(non-visual exproprioception)來執行行走、跨越門檻及小水溝等功能性活動,因此本篇研究希望透過強化中風患者的視覺外在體感覺或非視覺的外在體感覺,來觀察患者在運用外在體感覺的能力及行走、跨障礙物及目標線行走等能力的變化。
研究方法:本研究徵召26位第一次中風且可獨自行走的慢性中風患者,隨機分配到實驗組,接受視覺外在體感覺訓練(visual exproprioception training)或控制組,接受非視覺外在體感覺訓練(non-visual exproprioception training),在兩週內使用虛擬實境訓練4次,每次30分鐘,並在訓練前、後接受外在體感覺(趾點測試、腳掌對應測試)及功能性活動(行走、跨障礙物及目標線行走)測試作為前測、後測及追蹤(後測後兩周),測試過程中使用SIMI動作分析系統來記錄貼在受試者大腳趾及腳後跟反光球的移動軌跡,包括外在體感覺測試和目標線行走中的大腳趾誤差距離(error distance)、運動軌跡變異性(toe variation),跨障礙測試的大腳趾離物高度(toe clearance)、後距離(post-distance)及大腳趾運動軌跡變異性(toe variation),行走測試中步長、單腳承重時間、擺盪時間及雙腳承重時間的對稱性數值(symmetry index)、走路速度及步寬,再用MATLAB計算各測試的參數表現,並用無母數分析方法:魏克生符號檢定(Wilcoxon signed rank test)比較各組在前、後測及追蹤三時間點的組內差異。
結果:本研究的結果顯示,實驗組在後測時,在後測時水平面上的外在體感覺、跨障礙物及目標線行走等能力皆較前測有顯著進步,且用習慣的走路方式行走時的步長、單腳承重時間及擺盪時間的對稱性指數(symmetry index)也比前測時有顯著下降,除此之外,追蹤時的走路速度相較於前測時亦有顯著增加。而另一方面,控制組的健側腳誤差距離在低頭看腳的目標線行走上,以及垂直平面上閉眼情況下趾點測試的大腳趾誤差距離有顯著進步。
結論:中風患者健側腳於水平面上的非視覺外在體感覺能力是可被訓練的,並可有效增進他們的功能性活動能力,像走路、跨障礙物及目標線行走等。

關鍵字:外在體感覺、中風、虛擬實境、移行活動
Introduction: Stroke is the most common reason causing adults losing their locomotion ability. Motor impairment caused by stroke is one of the reasons affecting lower limb motor function. In addition, sensory deficit would limit the recovery of stroke patients’ motor function. One of the sensory information needed for locomotion was rarely discussed in the past: exproprioception, which is the ability to detect relative position, orientation and movement of the body or an object in the environment. This information is mainly obtained from vision, which means that before conducting any locomotion activities, in order to walk or cross an obstacle smoothly without looking at the feet one would need to obtain environmental information from vision first, and then use exproprioception to locate our position in space. However, in clinical, it can often be observed that the stroke patients look at their feet to avoid an obstacle or walk with a more symmetrical gait pattern. It may be because that stroke patients usually use their visual exproprioception, but not non-visual exproprioception, to conduct locomotion activities. Therefore, the study was designed to investigate the effect of visual or non-visual exproprioception training on exproprioception ability and functional mobility, such as walking, crossing and targeted walking ability in stroke patients.
Methods: Twenty-six chronic stroke patients were recruited from National Cheng Kung University Hospital and Tainan Hospital. They were randomized into experimental group (non-visual exproprioception training) or control group (visual exproprioception training) to receive 4-time training in two weeks. The participants were required to perform exproprioception tests, including pointing and foot-matched tasks, and functional movement tests, including walking, crossing and targeted walking tasks, before, after, and two weeks after post-test. The toe error distance and toe variation were calculated in the exproprioception test and targeted walking test; the toe clearance, post distance and toe variation were calculated in crossing tests; and the symmetry index of step length, single limb support time, swing time and double limb support time, gait speed and step width were calculated in walking tests. Mann-Whitney test was used to compare the differences of baseline performance between the two groups at pre-test. Wilcoxon signed rank test was used to examine the within group difference: post-test perform compared to pre-test and follow-up performance compared to pre-test.
Results: The results showed that the experimental group significantly improved the performance of pointing test, crossing and targeted walking on horizontal plane at post-test compared to pre-test. In addition, the symmetry index of the step length, single limb support time and swing time during walking were significantly decreased in the experimental group at post-test compared to pre-test. The control group significantly improved only in non-affected toe error distance of looking down targeted walking and error distance of eye close sagittal pointing test.
Conclusion: Stroke patients’ non-visual exproprioception ability of the non-affected foot on the horizontal plane could be trained and can effectively improve their functional activities ability.
ABSTRACT I
中文摘要 III
誌謝 V
TABLE OF CONTENTS VII
LIST OF TABLES X
LIST OF FIGURES XI
CHAPTER 1 INTRODUCTION 1
1.1 MOTIVATION 1
1.2 THE IMPORTANCE OF LOCOMOTION IN DAILY ACTIVITIES 1
1.3 MOTOR PLANNING AND CONTROL OF LOCOMOTION 2
1.3.1 Sensory information for controlling locomotion 2
1.3.2 Neural mechanism of locomotion 4
1.4 THE ROLE OF EXPROPRIOCEPTION DURING LOCOMOTION 5
1.4.1 Walking 5
1.4.2 Obstacle crossing 6
1.5 IMPACT OF EXPROPRIOCEPTION DEFICIT 8
1.5.1 Findings in healthy subjects 9
1.5.2 Findings in neurological disease 9
1.5.3 Findings in stroke patients 10
1.6 EXPROPRIOCEPTION TRAINING ON UPPER EXTREMITIES IN STROKE PATIENTS 11
1.7 EFFECT OF EXPROPRIOCEPTION TRAINING ON LOWER EXTREMITIES IN STROKE PATIENTS 12
1.8 EFFECT OF REHABILITATION TRAINING USING VIRTUAL REALITY IN STROKE PATIENTS 14
1.9 POSSIBLE EFFECT OF EXPROPRIOCEPTION TRAINING IN VIRTUAL ENVIRONMENT ON LOCOMOTION 15
1.10 KNOWLEDGE GAP 16
CHAPTER 2 OBJECTIVES 17
2.1 PURPOSE 17
2.2 SPECIFIC AIMS 17
CHAPTER 3 RESEARCH DESIGN AND METHODOLOGY 18
3.1 STUDY DESIGN 18
3.2 PARTICIPANTS 18
3.3 PROCEDURE 19
3.5 INTERVENTION 22
3.5.1 Control group: visual exproprioception training 26
3.5.2 Experimental group: non-visual exproprioception training 28
29
3.6 ASSESSMENT TESTS 30
3.6.1 Sensorimotor function tests 30
3.6.1.1 Modified Ashworth Scale (MAS) 30
3.6.1.2 Fugl-Meyer assessment of lower extremity motor function (FMA-LE) 30
3.6.1.3 Functional Ambulation Categories (FAC) 30
3.6.1.4 Grip strength test 31
3.6.1.5 Plantar cutaneous sensation 31
3.6.2 Exproprioception test 31
3.6.2.1 Pointing task 33
3.6.2.2 Foot-matched task 33
3.6.3 Functional movement test 34
3.6.3.1 Walking test 35
3.6.3.2 Crossing test 35
3.6.3.3 Targeted walking tasks 36
3.7 INSTRUMENTATION 36
3.8 DATA PROCESSING AND REDUCTION 37
3.9 STATISTICAL ANALYSIS 40
CHAPTER 4 RESULTS 41
4.1 BASIC DATA AND SENSORIMOTOR FUNCTION 41
4.2 PERFORMANCE OF POINTING TASKS 43
4.3 PERFORMANCE OF FOOT-MATCHED TASKS 44
4.4 PERFORMANCE OF WALKING TASKS 52
4.5 PERFORMANCE OF CROSSING TASKS 55
4.6 PERFORMANCE OF TARGETED WALKING TASKS 65
CHAPTER 5 DISCUSSION 68
CHAPTER 6 CONCLUSION 71
REFERENCES 73
1.Aburub, A.S. and Lamontagne, A. (2013). Altered steerring strategies for goal-directed locomotion in stroke. Journal of neuroengineering and rehabilitation, 10:80.
2.Barbieri, F. A., & Vitorio, R. (2017). Locomotion and posture in older adults: The role of aging and movement disorders. Springer. Brazil.
3.Bell-Krotoski, J.A., Fess, E.E., Figarola, J.H. et al. (1995). Threshold detection and Semmes-Weinstein Monofilaments. Journal of hand therapy, 8: 155-162.
4.Bent, L.R., Inglis, J.T. and McFadyen, B.J. (2004). When is vestibular information important during walking? J Neurophysiol, 92(3): 1269-1275.
5.Blackbum, M., Vliet, P., and Mockett, S.P. (2002). Reliability of measurements obtained with the Modified Ashorth Scale in the lower extremities of people with stroke. Physical Therapy, 82(1): 25-34.
6.Bolognini, N., Russo, C., Edwards, D. J. (2016). The sensory side of post-stroke motor rehabilitation. Restor Neurol Neurosci, 34(4): 571-586.
7.Bonan,I.V., Yelnik, A.P., Colle, F.M. et al. (2004). Reliance on visual information after stroke. Part II: Effectiveness of a balance rehabilitation program with visual cue deprivation after stroke: a randomized controlled trial. Arch Phys Med Rehabil, 85(2):274-278.
8.Bouchard, S. Robillardm, G. Renaud, P. et al. (2011). Exploring new dimensions in the assessment of virtual reality induced side effects. Journal of Computer and Information Technology, 1, 20-32.
9.Campbell, S.K. (2006). Physical Therapy for Children.
10.Chen, L., Lo,W.L., Mao, Y.R. et al (2016). Effect of virtual reality on postural and balance control in patients with stroke: a systematic literature review. BioMed Research International,23.
11.Cho, S., Ku, J., Cho, Y.K. et al. (2014). Development of virtual reality proprioceptive rehabilitation system for stroke patients. Computer Methods and Programs in Biomedicine, 113(1), 258-265.
12.Da Conceicao, N.R., Teixerira-Arroyo, C., Vitorio, R. et al. (2019). Influence of Parkinson’s disease on judging stair step height: exploratory study. Percept Mot Skills, 126(1): 106-118.
13.Dominguez -Tellez, P., Moral-Murioz, J.A., Salazar, A. (2020). Game-based virtual reality interventions to improve upper limb motor function and quality of life after stroke: systematic review and meta-analysis. Games Health Journal, 9(1),1-10.
14.Golledge, G. (1999). Wayfinding behavior: Cognitive Mapping and Other Spatial Process. The John Hopkins University Press.
15.Graci, V. (2011). The role of peripheral visual cues in the visuomotor coordination of locomotion and prehension. Gait & Posture, 34(4):514-518.
16.Graci, V. (2016). The role of peripheral visual cues in planning and controlling movement :|ban investigation of which cues provided by different parts of the visual field influence the execution of movement and how they work to control upper and lower limb motion.
17.Graci, V., Elliott, D.B., Buckley, J.G. (2009). Peripheral visual cues affect minimum-foot-clearance during overground locomotion. Gait & Posture, 30(3):370-374.
18.Graci, V., Elliott, D.B., Buckley, J.G. (2010). Utility of peripheral visual cues in planning and controlling adaptive gait. Optom Vis Sci, 87(1):21-27.
19.Hatem S.M, Saussez G, Faille M et al (2016). Rehabilitation of Motor Function after Stroke: A Multiple Systematic Review Focused on Techniques to Stimulate Upper Extremity Recovery.Front Hum Neurosci, 10:442.
20.Hershenson, M. (1999). Visual Space Perception. Massachusetts Institute of Technology
21.Hultborn, H., & Nielsen, J.B. (2007). Spinal control of locomotion-from cat to man. Acta Physiol, 189, 111-121.
22.Kessner, S.S, Bingel, U & Thomalla, G (2016). Somatosensory deficits after stroke: a scoping review. Topic in stroke rehabilitation, 23(2), 136-146.
23.Kim, J.S., Kang, S.Y., Jeon, H.S. (2015). A comparison of the effects of visual deprivation and regular body weight support treadmill training on improving over-ground walking of stroke patients: a multiple baseline single subject design. Physiother Theory Pract, 31(7):466-473.
24.Kunimune, S. Okada, S. (2017). Gait & Posture, 55:126-130.
25.Laver, K.E., Lange, B., George, S. et al. (2017). Virtual reality for stroke rehabilitation. Cochrane Database Syst Rev, 11.
26.Lee (1978). Modes of Perceiving and Processing Information.
27.Levin, M.F. (2020). What is the potential of virtual reality for post-stroke sensorimotor rehabilitation? Expert Rev Neurother, 2(12), 1-3.
28.Lewek, M.D., Feasel, J., Wentz, E. et al. (2012). Use of visual and proprioceptive feedback to improve gait speed and spatiotemporal symmetry following chronic stroke: A case series. Physical Therapy, 92(5), 748-756.
29.Marigold D (2008). Role of peripheral visual cues in online visual guidance of locomotion. Exercise and Sport Sciences Reviews. 36(3):145-151.
30.McGregor, H.R., Cashaback, J.G., and Gribble, P.L. (2018). Somatosensory perceptual training enhances motor learning by observing. J Neurophysiol, 120: 3017-3025.
31.Mehrholz, K., Wagner, K., Rutte, K. et al. (2007). Predictive validity and responsiveness of the Functional Ambulation Category in hemiparetic patients after stroke. Archives of Physical medicine and Rehabilitation, 88: 1314-1319.
32.Muratori, L.M., Lamberg, E.M., Quinn, L. et al. (2013). Applying principles of motor learning and control to upper extremity rehabilitation. Journal of Hand Therapy, 26(2): 94-103.
33.Murphy,R.R. (2019). Introduction to AI Robots, 2nd edition, London, England.
34.O’Sullivan, S.B., Schmitz, T.J. (1994) Physical Rehabilitation: Assessment and treatment.
35.Pagano,C.C. (1966). Exteroception and exproprioception by dynamic touch are different functions of the inertia tensor. Perception & Psychophysics, 58(8), 1191-1202.
36.Park, S. I., Shin, H. J., & Shin, S. Y. (2002). On-line locomotion generation based on motion blending. ACM SIGGRAPH/Eurographics symposium on Computer animation, 105-111.
37.Patrick, W.H. and Shamay, S.M. (2019). Cutoff score of the lower-extremity motor subscale of Fugl-Meyer Assessment in chronic stroke survivors: a cross-sectional study. Archives of Physical medicine and Rehabilitation, 100(9): 1782-1787.
38.Pepping, G.J., Grealy, M.A. (2007). Closing the Gap: The Scientific Writing of David N. Lee. Lawrence Erlbaum Associates, Mahwah, New Jersey. Chapter 8: The Functions of Vision.
39.Rhea, C.K., Rietdyk, S. (2007). Visual exteroceptive information provided during obstacle crossing did not modify the lower limb trahectory. Neurosci Lett, 11; 418(1): 60-65.
40.Rose, D.K, DeMark, L, Fox, E.J, Clark, D.J, Wludyka, P (2018). A backward walking training program to improve balance and mobility in acute stroke: a pilot randomized controlled trial. J Neurol phys Ther, 42(1), 12-21.
41.Rundek, T., Mast, H., Hartmann, A., et al. (2000). Predictors of resource use after acute hospitalization: The Northern Manhattan Stroke Study. Neurology, 55:1180–1187.
42.Roberts, H.C., Denison, H.J., Martin, H.J.et al. (2011). A review of the measurement of grip strength in clinical and epidemiological studies: towards a standardized approach. Age and Ageing, 40(4): 423-429.
43.Reginald, G., Golledge. (1999). Wayfinding Behavior: Cognitive Mapping and Other Spatial Process. The Johns Hopkins University Press. Baltimore and London.
44.Santis, D.D., Zenzeri, J., Casadio, M. et al. (2015). Robot-assisted training of the kinesthetic sense: enhancing proprioception after stroke. Frontiers in Human Neuroscience, 8:1037.
45.Soechting, J.F., Flanders, M. (1989). Errors in pointing are due to approximations in sensorimotor transformation. J Neurophysiol, 62(2): 595-608.
46.Sullivan KJ, Tilson JK, Cen SY, Rose DK, Hershberg J, Correa A, et al. (2011). Fugl-Meyer assessment of sensorimotor function after stroke. Stroke, 42:427-32.
47.Timmis, M.A., Buckley, J.G. (2012). Obstacle crossing during locomotion: visual exproprioceptive information is used in an online mode to update foot placement before the obstacle but not swing trajectory over it. Gait & Posture, 36(1):160-162.
48.Umeki, N., Murata, J., Higashijima, M. (2019). Effects of Training for Finger Perception on Functional Recovery of Hemiplegic Upper Limbs in Acute Stroke Patients. Occupational Therapy International, 4,1-4.
49.Vahdat, S., Darainy, M, Thiel, A. et al. (2019). A single session of robot-controlled proprioceptive training modulates functional connectivity of sensory motor networks and improves reaching accuracy in chronic stroke. Neurorehabilitation and Neural Repair, 33(1), 70-81.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔