(3.80.6.131) 您好!臺灣時間:2021/05/14 01:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林鉦皓
研究生(外文):Zheng-HaoLin
論文名稱:利用有限差分時域法解來研究E-skid波導管之消逝波耦合效應
論文名稱(外文):Evanescent Coupling Effect in E-skid Waveguide by FDTD Simulation
指導教授:張世慧張世慧引用關係
指導教授(外文):Shih-hui Chang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:光電科學與工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:54
中文關鍵詞:waveguideE-skid waveguidestrip waveguidecompact FDTDFDTDdirectional couplingall-dielectricintegrated optics
外文關鍵詞:waveguideE-skid waveguidestrip waveguidecompact FDTDFDTDdirectional couplingall-dielectricintegrated optics
相關次數:
  • 被引用被引用:0
  • 點閱點閱:16
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
現今為因應光學元件講求快速、低功耗以及體積小的關係,現代很多光學元件都使用半導體技術,將光學系統整合製作在晶片上,也就是所謂的積體光路,積體光路中有一個重要的元件,負責傳遞光訊號與能量,就是波導管,為了追求更有效的空間應用和元件效率,我們需要縮小晶片的體積,並將各元件之間做更有效的布局,這就可能會影響到各元件之間的距離和大小,導致各個光路中的訊號互相干擾、汙染,若我們想要讓波導管之間互相耦合時又必須讓波導管之間彎曲才能靠近,在空間利用上會產生很多浪費,波導管彎曲時也會導致bending loss,故如何調控這些coupling效應,是積體光路在限縮時一個重要的議題,因此我們採用了一種E-skid waveguide的波導管結構,他能夠在不影響波導管core的形狀下控制directional coupling 的效應。
本篇論文研究的方式是利用compact FDTD解析出E-skid waveguide波導模態,與strip waveguide相比較兩者之間的等效折射率大小,相較於strip waveguide擁有更高的等效折射率,並將兩者1550nm波長的第一階模態進行場截面的比較,證明E-skid waveguide確實能夠快速降低surface wave的強度,在coupling 部分的表現因為cladding等效折射率相對還是比strip waveguide還要高讓core與cladding之間的折射率差較低,在衰減初期還是會擁有較高的場值,因此比strip waveguide有更好的coupling效果,另外若要防止coupling effect的發生,我們另外更換了cladding的材料,採用了矽與空氣來替換原本的材料,經由截面場圖證明比原本有更好的confinement效果。
Nowadays, in order to deliver optical elements that require fast, low power consumption and small size, many modern optical elements use semiconductor technology to integrate the optical system on the chip, which is the so-called photonic integrated circuit. There is an important component in the photonic integrated circuit, which is responsible for transmitting optical signals and energy, that is the waveguide. In order to pursue more effective space utilization and circuit efficiency, we need to reduce the size of the chip and make more efficient layout between the optical elements. However, that will cause the signals in each optical circuit to interfere with each other. On the other hand, if we want to allow the waveguides to couple to each other, we must bend the waveguides to be close to each other. There will be a lot of waste in space utilization. When the waveguide is bent, it will also cause bending loss. So how to adjust these coupling effects is an important issue when reduce the size of the chip. In this thesis, we use the E-skid waveguide structure, which can control the effect of directional coupling without change the shape of the waveguide core.
We use compact FDTD to analyze the E-skid waveguide mode, and compared with the strip waveguide. E-skid waveguide has multilayer layered SiO2/Si in the cladding region which makes it anisotropic in its dielectric constant. Comparing the first-order modes of the 1550nm wavelength with the field cross section, we prove that the E-skid waveguide can indeed quickly reduce the evanescent field outside the waveguide to have better confinement. For the waveguide coupling, the equivalent refractive index in the cladding of E-skid waveguide is larger than that of the strip waveguide. This makes E-skid waveguide having a better coupling effect than the strip waveguide. In addition, if preventing the occurrence of the coupling effect is required, we replaced cladding material with multilayer Si/air in the cladding region. The cross-sectional field diagram proves that it has a better confinement effect than the original E-skid.
口試委員審定書 I
中文摘要 II
Abstract III
誌謝 VIII
目錄 IX
圖目錄 XI
第一章 序論 1
1.1 前言 1
1.1.1 波導管 (waveguides) 1
1.1.2 積體光學(Integrated Optics)[19][20] 3
1.1.3 定向耦合 (directional coupling) 4
1.2 研究動機 5
1.3 本文內容 6
第二章 研究相關理論 7
2.1 平板波導管 7
2.2 Relaxed total internal reflection (Relaxed TIR) [26] 9
2.3 Effective Medium Theory(EMT)[27][28] 11
第三章 數值模擬方法 14
3.1 有限差分法(Finite Difference method) 14
3.2 馬克士威爾方程式(Maxwell’s equation) 14
3.3 Finite Difference Time Domain(FDTD)[29][30] 15
3.4 Compact FDTD 17
3.5 Total Field Scatter Field(TFSF) 19
3.6 Convolutional Perfect Match Layer(CPML) 21
第四章 研究結果與討論 23
4.1 E-skid waveguide mode 23
4.1.1 1.5D compact FDTD解模態 24
4.1.2 2D FDTD 30
4.2 Filling Fraction對E-skid waveguide之影響與分析 33
4.2.1 Effective Medium of e-skid waveguide cladding 33
4.2.2 E-skid waveguide 橫截面Ex場分析 34
4.2.3 E-skid waveguide coupling effect 38
4.2.4 E-skid waveguide cladding 材料替換 47
第五章 結論與未來展望 50
5.1 結論 50
5.2 未來展望 50
參考文獻 51
[1]N. W. McLachlan, Theory and Applications of Mathieu Functions, 8 (1947)
[2]K. S. Packard, The origin of waveguides: A case of multiple rediscovery, IEEE Trans. Microwave Theory Tech., MTT-32, 961-969(1984).
[3]N. W. McLachlan, Theory and Applications of Mathieu Functions, 8 (1947)
[4]Saman Jahani, Sangsik Kim, Jonathan Atkinson, Justin C. Wirth, Farid Kalhor, Abdullah Al Noman,Ward D. Newman, Prashant Shekhar, Kyunghun Han, Vien Van, Raymond G. DeCorby,Lukas Chrostowski, Minghao Qi & Zubin Jacob “Controlling evanescent waves using silicon photonic all-dielectric metamaterials for dense integration NATURE COMMUNICATIONS, 9:1893(2018)
[5]Jahani, S. & Jacob, Z. All-dielectric metamaterials. Nat. Nanotechnol. 11, 23–36 (2016)
[6]Staude, I. & Schilling, J. Metamaterial-inspired silicon nanophotonics. Nat. Photonics 11, 274–284 (2017).
[7]Kuznetsov, A. I., Miroshnichenko, A. E., Brongersma, M. L., Kivshar, Y. S. & Luk’yanchuk, B. Optically resonant dielectric nanostructures. Science 354(2472) (2016).
[8]Hirohito Yamada , Tao Chu, Satomi Ishida, and Yasuhiko Arakawa, “Optical Directional Coupler Based on Si-Wire Waveguides , IEEE PHOTONICS TECHNOLOGY LETTERS, 17(3), MARCH 2005 P.585
[9]Orad Reshef , Codey Nacke , Jeremy Upham , Robert W. Boyd , “Waveguide-to-waveguide directional coupling beyond a free space wavelength ,CLEO OSA (2019)
[10]A.Yariv and P.Yeh, “Photonics: Optical electronics in modern communications ,Oxford University Press ,New York, NY, 2007, 6th ed.
[11]I. Park, H. S. Lee, H. J. Kim, K. M. Moon, S. G. Lee, B. H. O, S. G. Park, and E. H. -Lee“Photonic crystal power-splitter based on directional coupling, Opt. Express 12,3599-3604 (2004)
[12]T. B. Yu, M. H. Wang, X. Q. Jiang, Q. H. Liao, and J. Y. Yang, “Ultracompact and wideband power splitter based on triple photonic crystal waveguides directional 51 coupler, J. Opt. A : Pure Appl. Opt. 9, 37-42 (2007)
[13]A. Sharkawy, S. Shi, and D. W. Prather, “Electro-optical switching using coupled photonic crystal waveguides, Opt. Express 10, 1048-1059 (2002)
[14]N. Yamamoto, T. Ogawa, and K. Komori, “Photonic crystal directional coupler switch with small switching length and wide bandwidth, Opt. Express 14, 1223-1229 (2006)
[15]D. M. Beggs, T. P. White, L. O'Faolain, and T. F. Krauss, “Ultracompact and low-power optical switch based on silicon photonic crystals, Opt. Lett. 33, 147-149 (2008)
[16]F. S. S. Chien, Y. J. Hsu, W. F. Hsieh, and S. C. Cheng, “Dual wavelength demultiplexing by coupling and decoupling of photonic crystal waveguides, Opt. Express 12,1119-1125 (2004)
[17]F. S. S. Chien, S. C. Cheng, Y. J. Hsu, and W. F. Hsieh, “Dual-band multiplexer/demultiplexer with photonic-crystal-waveguide couplers for bidirectional communications, Opt. Commun. 266, 592-597 (2006)
[18]Saman Jahani,Jonathan Atkinson,Zubin Jacob, “Photonic Skin-Depth Engineering for Transparent Sub-diffraction Photonics
[19]John F. Ready, “Industrial Applications of Lasers , ACADEMIC PRESS, Second Edition, (1997)
[20]Robert G. Hunsperger, “Integrated Optics Theory and Technology, Springer, Fifth Edition, (2002)
[21]S.E. Miller, Bell Syst. Tech. J. 48, 2059 (1969).
[22]Dionne, J. A., Sweatlock, L. A., Atwater, H. A. & Polman, Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization. Phys. Rev. B 73, 035407 (2006)
[23]Oulton, R. F., Sorger, V. J., Genov, D. A., Pile, D. F. P. & Zhang, X. A hybrid “plasmonic waveguide for subwavelength confinement and long-range propagation. Nat. Photonics 2, 496–500 (2008)
[24]Khurgin, J. B. “How to deal with the loss in plasmonics and metamaterials. Nat. Nanotechnol. 10, 2–6 (2015)
[25]Umran S. Inan, Aziz S. Inan, “ELECTROMAGNETIC WAVES Pearson Education (US) (1999)
[26]Jahani, S. & Jacob, Z. “Transparent subdiffraction optics: nanoscale light confinement without metal Optica 1, 96–100 (2014)
[27]Wenshan, Cai; Shalaev, Vladimir, “Optical Metamaterials: Fundamentals and Applications, Springer, November, Chapter 2.4 (2009),
[28]Wang M, Pan N, “Predictions of effective physical properties of complex multiphase materials, Materials Science and Engineering: R: Reports, 63: 1–30(2008)
[29]Yee kane, “Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media, IEEE Transactions on Antennas and Propagation 14.3 302-307(1966)
[30]Allen Taflove, “Application of the Finite-Difference Time-Domain Method to Sinusoidal Steady-State Electromagnetic-Penetration Problems , IEEE Transactions on Electromagnetic Compatibility 3 191-202(1980)
[31]S. Xiao, R. Vahldieck, H. Jin “Full-wave analysis of guided wave structures using a novel 2-D FDTD, IEEE Microwave and Guided Wave Letters 2.5 165-167(1992)
[32]H. Jin, R. Vahldieck, S. Xiao, “An improved TLM full-wave analysis using a two dimensional mesh, 1991 IEEE MTT-S International Microwave Symposium Digest (1991)
[33]A. Asi, L. Shafai, “Dispersion analysis of anisotropic inhomogeneous waveguides using compact 2D-FDTD, Electronics Letters 28-15, 1451-1452(1992)
[34]S. Xiao, R. Vahldieck, “An efficient 2-D FDTD algorithm using real variables (guided wave structure analysis), IEEE Microwave and Guided Wave Letters, 3-5,127-129(1993)
[35]An Ping Zhao, Jaakko Juntunen, and Antti V. Raisanen, “Relationship Between The Compact Complex And Real Variable 2-D FDTD Methods In Arbitrary Anisotropic Dielectric Waveguides, IEEE MTT-S International. Vol.1, IEEE(1997)
[36]Bing-Zhong Wang, Wei Shao, Yingjun Wang, “2-D FDTD method for exact attenuation constant extraction of lossy transmission lines , IEEE Microwave and Wireless Components Letters, 14-6, 289-291(2004)
[37]J. Alan Roden, Stephen D. Gedney “Convolutional PML (CPML): An Efficient FDTD Implementation of the CFS-PML for Arbitrary Media Microwave and Optical Technology Letters(2000)
[38]Allen Taflove, “Application of the Finite-Difference Time-Domain Method to Sinusoidal Steady-State Electromagnetic-Penetration Problems , IEEE Transactions on Electromagnetic Compatibility 3 .187(1980)
[39]J. Berenger (1994). A perfectly matched layer for the absorption of electromagnetic waves. Journal of Computational Physics. 114. 185-200(1994)
[40]Roden, J. Alan, and Stephen D. Gedney. Convolutional PML (CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media. Microwave and optical technology letters 27.5 ,334-338.( 2000)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔