(3.238.173.209) 您好!臺灣時間:2021/05/16 21:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳永峻
研究生(外文):Yung-ChunChen
論文名稱:膽固醇液晶模板於連續波雷射輸出之研究
論文名稱(外文):Towards continuous-wave lasing emissions based on dyed-doped cholesteric liquid crystal templates
指導教授:李佳榮
指導教授(外文):Chia-Rong Lee
學位類別:碩士
校院名稱:國立成功大學
系所名稱:光電科學與工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:85
中文關鍵詞:膽固醇液晶膽固醇液晶模板液晶雷射步進馬達
外文關鍵詞:dye-doped cholesteric liquid crystalcholesteric liquid crystal templateliquid crystal laserphotobleaching
相關次數:
  • 被引用被引用:0
  • 點閱點閱:25
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要使用染料摻雜膽固醇液晶模板(DDCLC模板)與染料摻雜膽固醇液晶(DDCLC)兩種樣品為研究系統。首先,比較DDCLC模板與DDCLC兩種樣品反射光學特性,同時量測兩者基礎雷射性質,結果證實後者雷射閥值低於前者,研判乃因為在激發區內,灌入模板內部微奈米孔洞之染料整體體積少於DDCLC樣品。第二部分分別以脈衝激發能量與重複率為變因長時間(一小時)激發兩種樣品,比較兩者之雷射輸出特性之差異。研究結果發現雖然模板樣品之熱穩定性較高,但在長時間激發下,DDCLC樣品卻更能承受高能量或高重複率脈衝雷射激發而輸出更不容易衰減。此乃因為模板具備穩定光學共振腔之功能,但是高能量或高重複率的長時間激發下,模板高分子網絡的限制卻讓光漂白染料與新鮮染料的交換擴散效率降低,以致於模板雷射輸出衰敗較快且較嚴重。第三部分研究乃結合步進馬達,透過激發的同時旋轉DDCLC模板以改變相鄰雷射脈衝激發位置,有效降低每秒鐘樣品實際被激發的脈衝數目,成功在脈衝源超高重複率10000 Hz下,獲得穩定長時間輸出之準連續波雷射。
本研究所使用旋轉模板雷射樣品之優點包含共振腔穩定(不易受環境溫度影響)與可穩定長時間輸出準連續波雷射,同時確保在旋轉時能穩定樣品內液晶,不受離心力影響而溢出。另外,期許未來能基於本研究,結合樣品旋轉與模板空間調控技術,發展全白光頻域波長可調且可穩定長時間準連續波輸出之液晶雷射元件。
This research aims to overcome the fatal shortcomings of traditional liquid crystal (LC) laser, including photobleaching of dyes and induced thermal disturbance, for moving towards the goal of continuous¬-wave (CW) laser output. The experiments are performed based on DDCLC and DDCLC template samples at various pump energies (50  1000 J/pulse) and repetition rates (10  10k Hz) at a long-termed excitation (one hour).
Experimental results show that the lasing performances between the two lasers are different at regimes of low and high pump energies or repetition rates. At a regime of low pump energy or repetition rate ( 700 nJ/pulse or  100 Hz), both the two lasers have less decay in lasing output and the lasing wavelength of the DDCLC template laser is more stable than that of DDCLC laser. The results are attributable to the template-induced stabilization of optical resonator. At a regime of high pump energy or repetition rate (〉 700 J/pulse or 〉100 Hz), the lasing decay rate of DDCLC template laser is higher than that of DDCLC laser at identical pump condition and the recovering ability for the latter is better than the former. The results are attributable to the nanoporous-template-induced suppression in exchange between bleached and non-bleached dyes. Third, the rotation method of the DDCLC template sample is employed for effectively reducing the excitation frequency such that the template laser can endure a high repetition rate of long-termed excitation up to 10000 Hz with less decay of lasing output. Additionally, the polymer matrix in the template can stabilize the DDLC in the nanopores by secondary force which provides enough centrifugal forces to the DDLC being thrown under the high-speed rotation even without any encapsulation processing. In the future, a potential application of a broadband tunable CW-like LC laser can be realized through the sample-rotating method.
摘要I
誌謝XIV
目錄XV
圖目錄XVIII
表目錄XXIV
第一章 緒論1
第二章 液晶介紹3
2.1 液晶背景3
2.2 液晶分類4
2.2.1 棒狀液晶分子4
2.3 液晶的物理特性9
2.3.1 光學異向性與雙折射性10
2.3.2 介電異向性13
2.3.3 溫度對液晶影響14
2.3.4 連續彈性體理論15
第三章 膽固醇液晶與膽固醇液晶模板技術17
3.1 膽固醇液晶介紹17
3.1.1 膽固醇液晶的分類17
3.1.2 膽固醇液晶的光學特性18
3.1.3 影響膽固醇液晶螺距的因素20
3.2 膽固醇液晶模板22
3.2.1 膽固醇液晶模板製程與原理23
3.2.2 膽固醇液晶模板應用24
第四章 雷射原理與膽固醇液晶雷射27
4.1 雷射27
4.1.1 光與物質的交互作用27
4.1.2 居量反轉31
4.1.3 雷射的激發32
4.2 分佈式回饋雷射機制33
4.3 染料摻雜膽固醇液晶之能隙邊緣雷射機制34
4.4 雷射染料的光漂白36
第五章 樣品製備與實驗架設39
5.1 實驗材料39
5.2 製作液晶平板樣品43
5.2.1 玻璃基板的清潔與配向43
5.2.2 製備空樣品44
5.2.3 膽固醇液晶模板樣品製備45
5.3 實驗架設47
5.3.1 雷射量測架設47
第六章 結果與討論49
6.1 膽固醇液晶模板與膽固醇液晶雷射元件之基本特性量測49
6.1.1 染料摻雜膽固醇液晶模板之光學量測49
6.1.2 染料摻雜膽固醇液晶之光學測量52
6.1.3 雷射基本特性量測53
6.2 準連續雷射輸出之研究58
6.2.1改變激發能量對DDCLC模板與DDCLC樣品雷射輸出特性之影響59
6.2.2激發重複率對DDCLC模板與DDCLC樣品雷射輸出特性之影響64
6.2.3 高激發重複率對兩種樣品之雷射輸出特性進一步探討70
6.3 旋轉染料摻雜膽固醇液晶模板樣品之準連續雷射輸出73
第七章 結論與未來展望79
7.1 結論79
7.2 未來展望81
參考文獻82
1.P. G. de Gennes and J. Prost, The physics of liquid crystals (Clarendon Press, New York, 1993).
2.S. Chandrasekhar, Liquid crystals (Cambridge University Press, New York, 1992).
3.I. C. Khoo, Liquid crystals: physical properties and nonlinear optical phenomena (John Wiley & Sons, New York, 1995).
4.Eds. H. S. Kitzerow and Ch. Bahr, Chirality in liquid crystals (Springer, New York, 2001).
5.J. Li, S. Gauza and S. T. Wu, “Temperature effect on liquid crystal refractive indices, J. Appl. Phys. 96, 1924 (2004).
6.H. Coles and S. Morris, “Liquid-crystal lasers, Nat. Photonics 4, 676685 (2010).
7.H. Yu, B. Y. Tang, J. Li, and L. Li , “Electrically tunable lasers made from electro-optically active photonics band gap materials, Opt. Express 13, 72437249 (2003).
8.田民波 著,林怡欣 校訂,TFT 液晶顯示原理與技術 (五南圖書出版公司,臺灣,2008)。
9.S. M. Morris, A. D. Ford, M. N. Pivnenko, and H. J. Coles, “The effects of reorientation on the emission properties of a photonic band edge liquid crystal laser, J. Opt. A, Pure Appl. Opt. 7(5), 215–223 (2005).
10.J. Etxebarria, J. Ortega, C. L. Folcia, G. Sanz-Enguita, and I. Aramburu, “Thermally induced light-scattering effects as responsible for the degradation of cholesteric liquid crystal lasers, Opt. Lett. 7, 12621265 (2015).
11.M. C. Normand, P. Chen, C. Can, and P. J. W. Hands, “Overcoming repetition rate limitations in liquid crystal laser systems, Opt. Express 26, 2654426555 (2018).
12.A. Muñoz, M. E. McConney, T. Kosa, P. Luchette, L. Sukhomlinova, T. J. White, T. J. Bunning, and B. Taheri, “Continuous wave mirrorless lasing in cholesteric liquid crystals with a pitch gradient across the cell gap, Opt. Lett. 14, 29042906(2012).
13.B. Bahadur, Liquid crystals: applications and uses (World Scientific, USA 1990).
14.J. P. F. Lagerwall, C. Schütz, M. Salajkova, J. H. Noh, J. H. Park, G. Scalia, L. Bergström, “Cellulose nanocrystal-based materials: from liquid crystal self-assembly and glass formation to multifunctional thin films, NPG Asia Mater. 6, e80 (2014).
15.X. Y. Mu, D. G. Gray, “Formation of chiral nematic films from cellulose nanocrystal suspensions is a two-stage process, Langmuir 30, 92569260 (2014).
16.松本正一 和 角田市良 合著,劉瑞祥 譯,液晶之基礎與應用 (國立編譯館,台灣,1996)。
17.Eugene Hecht, Optics (Addison Wesley, 2002).
18.J. R. McColl and C. S. Shih, “Temperature dependence of orientational order in a nematic liquid crystal at constant molar volume, Phys. Rev. Lett. 29, 8587 (1972).
19.D.-K. Yang and S. T. Wu, Fundamental of liquid crystal devices (Wiley, 2006).
20.P. G. deGennes, “Calcul de la distorsion d'une structure cholesterique par un champ magnetique, Solid State Communications 6, 163165 (1968).
21.P. Oswald and P. Pieranski, Nematic and cholesteric liquid crystals (Taylor and Francis Group, 2005).
22.C. W. Chen and I. C. Khoo, “Normally transparent smart window based on electrically induced instability in dielectrically negative cholesteric liquid crystal, Opt. Mater. Express 8, 691–697 (2018).
23.Y. Zhou and S. T. Wu, “Enhanced photonic band edge laser emission in a cholesteric liquid crystal resonator, Opt. Mater. Express 8, 691–697 (2018).
24.S. T. Wu and D. K. Yang, Reflective liquid crystal displays (Wiley, New York, 2001).
25.P. J. Collind and M. Hird, Introduction to liquid crystals:chemistry and physics (Taylor and Francis, London, 1997).
26.W.-R. Chen and J.-C. Hwang, “The phase behaviour and optical properties of a nematic/chiral dopant liquid crystalline mixture system, Liq. Cryst. 31, 1539–1546 (2004).
27.R. B. Meyer, “Effects of electric and magnetic fields on the structure of cholesteric liquid crystals, Appl. Phys. Lett. 12, 281–282 (1968).
28.S.-H. Lin, C.-Y. Shyu, J.-H. Liu, P.-C. Yang, T.-S. Mo, S.-Y. Huang, and C.-R. Lee, “Photoerasable and photorewritable spatially-tunable laser based on a dye-doped cholesteric liquid crystal with a photoisomerizable chiral dopant, Opt. Express 18, 94969503 (2010).
29.J. Guo, H. Cao, J. Wei, D. Zhang, F. Liu, G. Pan, D. Zhao, W. He and H. Yang, “Polymer stabilized liquid crystal films reflecting both right- and left-circularly polarized light, Appl. Phys. Lett. 93, 201901 (2008).
30.J.-D Lin, H.-Y. Lin, G.-J Wei, Y.-C. Chuang, L.-J Chen, T.-S. Mo, and C.-R. Lee, “A broadban-tunable photonic bandgap and thermally convertible laser with an ultra-low lasing threshold from a refilled chiral polymer template, J. Mater. Chem. C 7, 4740–4747(2019).
31.S. S. Gandhi, Y. Li, D. Luo, and L.-C. Chien, “Laser emission in a 3D nanoporous polymer replica of amorphous blue phase III, J. Polym. Sci. B 56, 551–557 (2018).
32.J.-D. Lin, C.-L. Chu, H.-Y. Lin, B. You, C.-T. Horng, S.-Y. Huang, T.-S. Mo, C.-Y. Huang, and C.-R. Lee, “Wide-band tunable photonic bandgaps based on nematic-refilling cholesteric liquid crystal polymer template samples, Opt. Mater. Express 6, 1419–1430 (2015).
33.J.-D Lin, H. -L Lin, H.-Y. Lin, G.-J Wei, Y.-C. Chuang, L.-J Chen, S.-Y Huang, C.-Y Huang, T.-S. Mo, and C.-R. Lee, “Widely tunable photonic bandgap and lasing emission in enantiomorphic cholesteric liquid crystal templates, J. Mater. Chem. C 5, 3222–3228(2017).
34.J. Guo, H. Wu, F. Chen, L. Zhang, W. He, H. Yang and J. W ei, “Fabrication of multi-pitched photonic structure in cholesteric liquid crystals based on a polymer template with helical structure, J. Mater. Chem. 20, 4094–4102 (2010).
35.J. T. Verdeyen, Laser electronics, 3rd ed. (Prentice Hall, Inc., New Jersey, 1995).
36.沈柯,雷射原理教程 (亞東書局,臺北市,1990)。
37.H. Kogelnik and C. V. Shank, “Stimulated emission in a periodic structure, Appl. Phys. Lett. 18, 152154 (1971).
38.H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers, J. Appl. Phys. 43, 23272335 (1972).
39.H. Yu, B. Y. Tang, J. Li, and L. Li, “Electrically tunable lasers made from electro-optically active photonics band gap materials, Opt. Express 13, 72437249 (2003).
40.J. Widengren, R. Rigler, “Mechanisms of photobleaching investigated by fluorescence correlation spectroscopy, Bioimaging 4, 149157 (1996).
41.A. P. Demchenko, “Photobleaching of organic fluorophores: quantitative characterization, mechanisms, protection, Methods Appl. Fluoresc. 8, 022001 (2020).
42.D. M. Soumpasis, “Theoretical analysis of fluorescence photobleaching recovery experiments, Biophys. J. 41, 9597 (1983).
43.G. Nava, F. Ciciulla, O. S. Iadlovska, O. D. Lavrentovich, F. Simoni, and L. Lucchetti, “Pitch tuning induced by optical torque in heliconical cholesteric liquid crystals, Phys. Rev. Research 1, 033215 (2019).
44.Y. Inoue and H. Moritake, “Lasing stability of quasi-CW driven cholesteric liquid crystal lasers, Jpn. J. Appl. Phys. 59, 052006 (2020).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top