(3.92.96.236) 您好!臺灣時間:2021/05/07 00:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:洪韋翔
研究生(外文):Wei-HsiangHung
論文名稱:極化碼嵌入於一次碰撞序列碼之光分碼多工網路效能分析
論文名稱(外文):Analyzing Error Performance on Embedding Polar Codes over One Coincidence Coded OCDM Networks
指導教授:黃振發黃振發引用關係楊朝欽楊朝欽引用關係
指導教授(外文):Jen-Fa HuangChao-Chin Yang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電腦與通信工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:52
中文關鍵詞:極化碼光分碼多工頻域振幅編碼一次碰撞序列碼振幅頻域編碼
外文關鍵詞:Polar CodeSACOCDMA NetworkSC AlgorithmOne Coincidence Code
相關次數:
  • 被引用被引用:0
  • 點閱點閱:19
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出一個新的光纖網路架構,適用於多重存取(Multiple Access) 的光纖網路中,提出的架構利用極化碼(Polar Code) 優異的錯誤更正能力,以提升光纖網路的整體效能,進而達到低錯誤率的網路體驗,另一方面,透過光學分碼多重存取 (Optical Code Division Multiplexing, OCDM) 可以支援大量使用者的技術利用在本論文提出的架構上,其中我們選用頻域振幅編碼(Spectral Amplitude Coding,SAC),除了簡化網路的建置,也由於不同碼向量之間保有正交性,可以消除多重存取干擾 (Multiple Access Interference, MAI)。
本論文提出的架構利用極化碼將數個獨立通道重新打散成各個通道容量相反成兩群的特性,然而,在極化碼架構中必須犧牲一部分的通道以完成極化碼編碼,對此,本論文提出結合光分碼網路的架構,利用光分碼多工網路具有支援大量通道以及部分使用者停滯傳輸的特性將以上兩種具互補特性的技術結合,創造效能優異的傳輸網路環境。
Novel optical network architecture is proposed, which is suitable for the multiaccess optical fiber network. The proposed architecture exploits the excellent error correction ability of Polar code to improve the performance of the whole system and build a low error rate network environment. Also, the proposed architecture can support lots of users by optical codedivision multiplexing (OCDM) technology. Among them, spectral amplitude coding is proposed. Beside simplify network construction, the spectral amplitude coding can eliminate multiple access interference.
This thesis utilizes the properties of Polar code and OCDM network. One property of Polar code is channel polarization. Due to channel polarization, the channels will divide into two opposing channel quality. In the construction of Polar code, the construction needs to sacrifice a part of channels to complete encoding. Besides, there exist bursty traffic in the OCDM network. Few users transmitting at the same time. We combine these two techniques. The proposed architecture takes both advantages of Polar code and OCDM network. Polar code reduces bit error rate and OCDM support lots of channels to improve the problem which Polar code needs to sacrifice channels.
中文摘要i
Abstract ii
Table of Contents iii
List of Tables v
List of Figures vi
Chapter 1. Introduction 1
1.1 Forward Error Correction Overview . . . . . . . . . . . . . . . . . . . . 2
. 1.1.1. Polar Code Background . . . . . . . . . . . . . . . . . . . . . . 2
. 1.1.2. Low Density Parity Check Code . . . . . . . . . . . . . . . . . 3
1.2 One Coincidence Code in SAC-OCDM Network . . . . . . . . . . . . . 5
. 1.2.1. Shifted Prime Codes . . . . . . . . . . . . . . . . . . . . . . . . 8
. 1.2.2. Modified Stuffed Shifted Prime Codes . . . . . . . . . . . . . . 10
1.3 The Motivation of Research . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4 Thesis Preview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Chapter 2. Polar Code Overview 15
2.1 Structuring Polar Code . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 Successive Cancellation Algorithm . . . . . . . . . . . . . . . . . . . . . 19
2.3 Iterative Deocding Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 22
. 2.3.1. Tanner Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
. 2.3.2. Belief Propagation Algorithm . . . . . . . . . . . . . . . . . . . 23
. 2.3.3. Parity-Check Matrix of Polar Code . . . . . . . . . . . . . . . . 25
Chapter 3. Polar Code over One Coincidence-coded OCDM Network 28
3.1. Pre-Processing for Polar Code . . . . . . . . . . . . . . . . . . . . . . . 28
. 3.1.1. Detecting User’s State . . . . . . . . . . . . . . . . . . . . . . . 29
. 3.1.2. Buffer Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2. Fiber Bragg Grating based SAC-OCDM System . . . . . . . . . . . . . 31
3.3. Implement Polar Code over One Coincidence-coded OCDM network . . 35
. 3.3.1. SP-coded Network with Two Code Keying Scheme (2CK) . . . . 36
. 3.3.2. MSSP-coded Network with On-Off Keying Scheme (OOK) . . . 39
Chapter 4. Simulation on OCDM Performance and Analysis 42
4.1. Polar code Embedded on SP-coded Network . . . . . . . . . . . . . . . 44
4.2. Polar code Embedded on MSSP-coded Network . . . . . . . . . . . . . 46
4.3. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Chapter 5. Conclusion 49
References 50
[1] C. Yang, “High speed and secure optical cdmabased passive optical networks, Computer Networks, vol. 53, no. 12, pp. 2182 – 2191, 2009.
[2] J. Huang, C. Yang, and C. Huang, “On analyzing quasicyclic ldpc codes over modified welch–costascoded optical cdma system, Journal of Lightwave Technology, vol. 27, no. 12, pp. 2150–2158, 2009.
[3] Zou Wei, H. M. H. Shalaby, and H. GhafouriShiraz, “modified quadratic congruence codes for fiber bragggratingbased spectralamplitudecoding optical cdma systems, Journal of Lightwave Technology, vol. 19, no. 9, pp. 1274–1281, 2001.
[4] S. Ayotte and L. A. Rusch, “Increasing the capacity of sacocdma: Forward error correction or coherent sources?, IEEE Journal of Selected Topics in Quantum Electronics, vol. 13, no. 5, pp. 1422–1428, 2007.
[5] E. Arikan, “Channel polarization: A method for constructing capacityachieving codes for symmetric binaryinput memoryless channels, IEEE Transactions on Information Theory, vol. 55, no. 7, pp. 3051–3073, 2009.
[6] W. Ryan and S. Lin, Channel codes: classical and modern. Cambridge university press, 2009.
[7] C. E. Shannon, “A mathematical theory of communication, The Bell System Technical Journal, vol. 27, no. 3, pp. 379–423, 1948.
[8] A. BalatsoukasStimming, M. B. Parizi, and A. Burg, “Llrbased successive cancellation list decoding of polar codes, IEEE Transactions on Signal Processing, vol. 63, no. 19, pp. 5165–5179, 2015.
[9] N. Goela, S. B. Korada, and M. Gastpar, “On lp decoding of polar codes, in 2010 IEEE Information Theory Workshop, pp. 1–5, 2010.
[10] P. Chen, B. Bai, Z. Ren, J. Wang, and S. Sun, “Hashpolar codes with application to 5g, IEEE Access, vol. 7, pp. 12441–12455, 2019.
[11] R. Gallager, “Lowdensity paritycheck codes, IRE Transactions on Information Theory, vol. 8, no. 1, pp. 21–28, 1962.
[12] R. Tanner, “A recursive approach to low complexity codes, IEEE Transactions on Information Theory, vol. 27, no. 5, pp. 533–547, 1981.
[13] D. J. C. MacKay, “Good errorcorrecting codes based on very sparse matrices, IEEE Transactions on Information Theory, vol. 45, no. 2, pp. 399–431, 1999.
[14] N. Alon and M. Luby, “A linear time erasureresilient code with nearly optimal recovery, IEEE Transactions on Information Theory, vol. 42, no. 6, pp. 1732–1736, 1996.
[15] Heng Tang, Jun Xu, Yu Kou, S. Lin, and K. AbdelGhaffar, “On algebraic construction of gallager and circulant lowdensity paritycheck codes, IEEE Transactions on Information Theory, vol. 50, no. 6, pp. 1269–1279, 2004.
[16] J. Huang, C. Huang, and C. Yang, “Construction of onecoincidence sequence quasicyclic ldpc codes of large girth, IEEE Transactions on Information Theory, vol. 58, no. 3, pp. 1825–1836, 2012.
[17] C. Huang, J. Huang, and C. Yang, “Performance analysis of ldpc codes over wsewc coded optical cdma networks, in 2010 The 12th International Conference on Advanced Communication Technology (ICACT), vol. 1, pp. 703–707, 2010.
[18] A. M. Alhassan, N. Badruddin, N. M. Saad, and S. A. Aljunid, “A multi photodiode balanced detection technique for spectral amplitude coding ocdma systems, in 2012 4th International Conference on Intelligent and Advanced Systems (ICIAS2012), vol. 1, pp. 237–240, 2012.
[19] Zou Wei and H. GhafouriShiraz, “Proposal of a novel code for spectral amplitudecoding optical cdma systems, IEEE Photonics Technology Letters, vol. 14, no. 3, pp. 414–416, 2002.
[20] I. B. Djordjevic and B. Vasic, “Novel combinatorial constructions of optical orthogonal codes for incoherent optical cdma systems, Journal of Lightwave Technology, vol. 21, no. 9, pp. 1869–1875, 2003.
[21] M. Kavehrad and D. Zaccarin, “Optical codedivisionmultiplexed systems based on spectral encoding of noncoherent sources, Journal of Lightwave Technology, vol. 13, no. 3, pp. 534–545, 1995.
[22] K. O. Hill and G. Meltz, “Fiber bragg grating technology fundamentals and overview, Journal of Lightwave Technology, vol. 15, no. 8, pp. 1263 1276, 1997.
[23] H. Takahashi, K. Oda, H. Toba, and Y. Inoue, “Transmission characteristics of arrayed waveguide n/spl times/n wavelength multiplexer, Journal of Lightwave Technology, vol. 13, no. 3, pp. 447–455, 1995.
[24] H. GhafouriShiraz and M. M. Karbassian, Optical CDMA Networking, pp. 281–346. 2012.
[25] C. Yang, “Optical cdma passive optical network using prime code with interference elimination, IEEE Photonics Technology Letters, vol. 19, no. 7, pp. 516–518, 2007.
[26] C. Yang, J. F. Huang, and T. Hsu, “Differentiated service provision in optical cdma network using power control, IEEE Photonics Technology Letters, vol. 20, no. 20, pp. 1664–1666, 2008.
[27] S. Cammerer, M. Ebada, A. Elkelesh, and S. ten Brink, “Sparse graphs for belief propagation decoding of polar codes, in 2018 IEEE International Symposium on Information Theory (ISIT), pp. 1465–1469, 2018.
[28] W. Xu, X. You, C. Zhang, and Y. Be'ery, “Polar decoding on sparse graphs with deep learning, in 2018 52nd Asilomar Conference on Signals, Systems, and Computers, pp. 599–603, 2018.
[29] 樊婷婷, Polar 码的若干关键技术研究. PhD thesis, 北京交通大学, 2016.
[30] 张亮, 极化码的译码算法研究及其应用. PhD thesis, 浙江大学, 2016.
[31] V. Taranalli and P. H. Siegel, “Adaptive linear programming decoding of polar codes, in 2014 IEEE International Symposium on Information Theory, pp. 2982–2986, 2014.
[32] Y. Chen, G. Zhang, R. Li, X. Liu, H. Luo, H. Zhang, C. Xu, J. Wang, J. Wang, and Y. Zhou, “Investigation of polarization weight an efficient construction for polar codes, in 2018 IEEE 87th Vehicular Technology Conference (VTC Spring), pp. 1–5, 2018.
[33] G. He, J. Belfiore, I. Land, G. Yang, X. Liu, Y. Chen, R. Li, J. Wang, Y. Ge, R. Zhang, and W. Tong, “Betaexpansion: A theoretical framework for fast and recursive construction of polar codes, in GLOBECOM 2017 2017 IEEE Global Communications Conference, pp. 1–6, 2017.
[34] A. Bayesteh, E. Yi, H. Nikopour, and H. Baligh, “Blind detection of scma for uplink grantfree multipleaccess, in 2014 11th International Symposium on Wireless Communications Systems (ISWCS), pp. 853–857, 2014.
[35] J. Kim, K. Lee, J. Kim, H. Wang, M. Na, and D. Hong, “A novel scma system for coexistence of active users and inactive users, IEEE Communications Letters, vol. 21, no. 12, pp. 2730–2733, 2017.
[36] J. Kim, S. Kim, J. Bang, and D. Hong, “Adaptive mode selection in d2d communications considering the bursty traffic model, IEEE Communications Letters, vol. 20, no. 4, pp. 712–715, 2016.
[37] P. Laakkonen, M. Kuittinen, and J. Turunen, “Coated phase masks for proximity printing of bragg gratings, Optics Communications, vol. 192, no. 3, pp. 153 – 159, 2001.
[38] H. Li, M. Li, K. Ogusu, Y. Sheng, and J. E. Rothenberg, “Optimization of a continuous phaseonly sampling for high channelcount fiber bragg gratings, Opt. Express, vol. 14, pp. 3152–3160, Apr 2006.
[39] A. S. Othonos and K. Kalli, Fiber Bragg gratings fundamentals and applications in telecommunications and sensing. Boston: Artech House.
[40] E. D. J. Smith, R. J. Blaikie, and D. P. Taylor, “Performance enhancement of spectralamplitudecoding optical cdma using pulseposition modulation, IEEE Transactions on Communications, vol. 46, no. 9, pp. 1176–1185, 1998.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔