(3.236.222.124) 您好!臺灣時間:2021/05/14 15:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:余恆億
研究生(外文):Heng-YiYu
論文名稱:在寬頻無線多重輸入多重輸出系統之低複雜度通道預測
論文名稱(外文):Low-Complexity MIMO Channel Prediction for Wideband Wireless Systems
指導教授:劉光浩
指導教授(外文):Kuang-Hao Liu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電腦與通信工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:46
中文關鍵詞:大規模多輸入多輸出寬頻通道預測毫米波奇異值分解
外文關鍵詞:Massive MIMOwidebandchannel predictionmillimeter wavesingular value decomposition
相關次數:
  • 被引用被引用:0
  • 點閱點閱:27
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
毫米波大規模多輸入多輸出寬頻系統對於提供快速的無線數據傳輸非常有吸引力,都卜勒頻率隨著高載波頻率線性增加而導致通道快速的變化,通道狀態資訊將會很快過時,使得獲取準確的通道狀態資訊十分具有挑戰性。由於系統在毫米波高頻段進行傳輸,且由於通道狀態資訊隨著天線數量的增加而成長,在大規模多輸入多輸出毫米波系統中,預測通道的複雜度會大量提升。在本篇論文中,針對毫米波寬頻頻率選擇性通道,我們提出基於奇異值分解以及角度旋轉的兩種通道預測方法。利用提出的通道預測方法可以有效降低預測複雜度,補償過時的通道狀態資訊,使系統達到更高的頻譜效益。此外,我們分析了各種預測方法的均方誤差以及預測複雜度,最後利用模擬結果比較提出方法與現有方法的性能,並深入探討各關鍵參數對於系統性能之影響。
The wideband communications over Millimeter Wave (mmWave) band using Massive Multi-Input Multi-Output (MIMO) are attractive to provide ultra-fast wireless data delivery. However, acquiring accurate Channel State Information (CSI) is challenging for wideband mmWave systems because linearly increased Doppler frequency with the high carrier frequency will cause rapidly time-varying channels. Besides, the amount of CSI becomes extraordinarily large when a large antenna array is employed, resulting in a significant increase on the prediction complexity. In this thesis, we focus on the channel prediction for wideband mmWave channels and propose two new prediction approaches based on Singular Value Decomposition (SVD) and angle rotation that are shown to reduce the prediction complexity and improve the prediction accuracy for the mmWave wideband system in frequency-selective channels. Besides, we analyse the Mean Squared Error (MSE) performance and prediction complexity of the proposed prediction methods. Simulation results are presented to evaluate the performance of the proposed methods in comparison with existing approaches and get insights into the system performance subject to numerous key parameters.
Chinese Abstract i
Abstract ii
Acknowledgement iii
Table of Contents iv
List of Figures vi
List of Tables vii
List of Symbols ix
List of Acronyms x
1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.1 Wideband Millimeter Wave . . . . . . . . . . . . . . . . . . . . 2
1.2.2 MMSE Prediction Filter . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2 System Model 7
2.1 Channel Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Channel Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Channel Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3 Proposed Methods 11
3.1 Channel Prediction in the Time Domain and the Angle Domain . . . . 12
3.1.1 Time Domain Channel Prediction . . . . . . . . . . . . . . . . . 12
3.1.2 Angle Domain Channel Prediction . . . . . . . . . . . . . . . . 14
3.2 Channel Prediction Based on Angle Rotation . . . . . . . . . . . . . . 17
3.3 Channel Prediction Based on SVD . . . . . . . . . . . . . . . . . . . . 21
3.4 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4.1 MSE Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4.2 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . 26
4 Results and Discussions 28
4.1 Prediction in Different Domains . . . . . . . . . . . . . . . . . . . . . . 30
4.1.1 Prediction in Different Domains . . . . . . . . . . . . . . . . . . 30
4.1.2 The performance gap between the angle rotation domain and the SVD domain . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.1.3 Prediction in Different Domains with Low Complexity . . . . . 32
4.2 The Comparison of Different Delay Tap . . . . . . . . . . . . . . . . . 33
4.3 The Comparison of Antenna Numbers . . . . . . . . . . . . . . . . . . 34
4.4 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.5 The Impact of Number of Prediction Steps . . . . . . . . . . . . . . . . 37
4.6 The Impact of Antenna Number to the Angle Domain Prediction . . . 39
4.7 Channel Prediction in the Angle Rotation Domain . . . . . . . . . . . 40
4.7.1 The Impact of Different Searching Grids . . . . . . . . . . . . . 40
4.7.2 Theoretical Value for Rotated Angle . . . . . . . . . . . . . . . 41
5 Conclusion 43
References 45
[1] J. Bellorado, S. S. Ghassemzadeh, L. J. Greenstein, T. Sveinsson, and V. Tarokh, “Coexistence of ultra-wideband systems with ieee-802.11 a wireless lans, in Proc. IEEE Globecom, 2003.
[2] K. Witrisal, G. Leus, G. J. M. Janssen, M. Pausini, F. Troesch, T. Zasowski,
and J. Romme, “Noncoherent ultra-wideband systems, IEEE Signal Processing Magazine, vol. 26, no. 4, pp. 48–66, 2009.
[3] X. Wang, L. Kong, F. Kong, F. Qiu, M. Xia, S. Arnon, and G. Chen, “Millimeter wave communication: A comprehensive survey, IEEE Communications Surveys Tutorials, vol. 20, no. 3, pp. 1616–1653, 2018.
[4] Y. Niu, Y. Li, D. Jin, L. Su, and A. V. Vasilakos, “A survey of millimeter wave communications (mmwave) for 5g: opportunities and challenges, Wireless networks, vol. 21, no. 8, pp. 2657–2676, 2015.
[5] I. C. Wong, A. Forenza, R. W. Heath, and B. L. Evans, “Long range channel prediction for adaptive ofdm systems, in Proc. Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, 2004., 2004.
[6] P. S. R. Diniz, Fundamentals of Adaptive Filtering. Springer, 2003.
[7] A. Heidari, A. K. Khandani, and D. Mcavoy, “Adaptive modelling and long-range prediction of mobile fading channels, IET Communications, vol. 4, no. 1, pp.39–50, 2010.
[8] A. Duel-Hallen, Shengquan Hu, and H. Hallen, “Long-range prediction of fading signals, IEEE Signal Processing Magazine, vol. 17, no. 3, pp. 62–75, 2000.
[9] C. Lv, J. Lin, and Z. Yang, “Channel prediction for millimeter wave mimoofdm communications in rapidly time-varying frequency-selective fading channels, IEEE Access, vol. 7, pp. 15 183–15 195, 2019.
[10] L. Thiele, M. Olbrich, M. Kurras, and B. Matthiesen, “Channel aging effects in comp transmission: gains from linear channel prediction, in Proc. 2011 the Forty Fifth Asilomar Conference on Signals, Systems and Computers (ASILOMAR), 2011.
[11] C. Min, N. Chang, J. Cha, and J. Kang, “Mimo-ofdm downlink channel prediction for ieee802.16e systems using kalman filter, in Proc. 2007 IEEE Wireless Communications and Networking Conference, 2007.
[12] I. C. Wong and B. L. Evans, “Exploiting spatio-temporal correlations in mimo wireless channel prediction, in Proc. IEEE Globecom, 2006.
[13] L. Liu, H. Feng, B. Hu, and J. Zhang, “Mimo-ofdm wireless channel prediction by exploiting spatial correlation, in Proc. 2012 International Conference on Wireless Communications and Signal Processing (WCSP), 2012.
[14] P. Schniter and A. Sayeed, “Channel estimation and precoder design for millimeter-wave communications: The sparse way, in Proc. 2014 48th Asilomar Conference on Signals, Systems and Computers, 2014.
[15] H. Xie, F. Gao, S. Zhang, and S. Jin, “A unified transmission strategy for tdd/fdd massive mimo systems with spatial basis expansion model, IEEE Transactions on Vehicular Technology, vol. 66, no. 4, pp. 3170–3184, 2017.
[16] D. Fan, F. Gao, Y. Liu, Y. Deng, G. Wang, Z. Zhong, and A. Nallanathan, “Angle domain channel estimation in hybrid millimeter wave massive mimo systems, IEEE Transactions on Wireless Communications, vol. 17, no. 12, pp. 8165–8179, 2018.
[17] A. Duel-Hallen, “Fading channel prediction for mobile radio adaptive transmission systems, Proceedings of the IEEE, vol. 95, no. 12, pp. 2299–2313, 2007.
[18] Jeng-Kuang Hwang and J. H. Winters, “Sinusoidal modeling and prediction of fast fading processes,in Proc. IEEE Globecom, 1998.
[19] J. B. Andersen, J. Jensen, S. H. Jensen, and F. Frederiksen, “Prediction of future fading based on past measurements, in Proc. IEEE VTS 50th Vehicular Technology Conference, 1999.
[20] K. Venugopal, A. Alkhateeb, N. González Prelcic, and R. W. Heath, “Channel estimation for hybrid architecture-based wideband millimeter wave systems, IEEE Journal on Selected Areas in Communications, vol. 35, no. 9, pp. 1996–2009, 2017.
[21] J. Rodriguez-Fernandez, N. Gonzalez-Prelcic, and T. Shimizu, “Channel tracking and hybrid precoding for wideband hybrid millimeter wave mimo systems, arXivpreprint arXiv:1905.03903, 2019.
[22] 3GPP, “Study on channel model for frequencies from 0.5 to 100 GHz, 3rd Generation Partnership Project (3GPP), Technical Report (TR) 38.901, 01 2018, version 14.0.0. [Online]. Available: http://www.3gpp.org/ftp/Specs/html-info/38901.htm.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔