(3.238.130.97) 您好!臺灣時間:2021/05/14 18:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林柏儀
研究生(外文):Bo-YiLin
論文名稱:具有很低檢測濃度極限的銀奈米團簇表面增強拉曼散射腺嘌呤感測器
論文名稱(外文):Silver Nanocluster Based Surface Enhanced Raman Scattering Adenine Sensor with a Very Low Detection Concentration Limit
指導教授:曾永華曾永華引用關係
指導教授(外文):Yon-Hua Tzeng
學位類別:碩士
校院名稱:國立成功大學
系所名稱:奈米積體電路工程碩士學位學程
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:92
中文關鍵詞:表面增強拉曼散射腺嘌呤石墨烯奈米銀粒子
外文關鍵詞:SERSsilveradeninegrapheneRaman scatteringacidbase
相關次數:
  • 被引用被引用:0
  • 點閱點閱:31
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
極低濃度腺嘌呤分子的檢測對於生物學和醫學研究有著非常重要的應用。如何開發具有高增強效應、高穩定性、低成本且再現性佳的表面增強拉曼光譜(SERS, Surface-Enhanced Raman Scattering)感測器是一個很大的挑戰。本研究將蝕刻後的矽基板通過浸泡硝酸銀水溶液,使銀沉積在部分沒有覆蓋石墨烯的球形銅結構上,形成緊密堆積的銀奈米顆粒簇,奈米銀粒子間的間隙感應出非常高的局部電場,在感測器上產生許多熱點,並有助於增強測得的拉曼散射訊號。

我們嘗試在感測器上濺鍍不同厚度的銅和浸泡不同時間的硝酸銀,製備出沉積在分散球形銅結構上的奈米銀顆粒簇表面增強拉曼光譜(SERS)感測器,在不同的酸鹼環境下,腺嘌呤分子通過靜電吸附和官能基鍵結與銀互相作用,其檢測極限非常低,可檢測濃度低至10-12M的腺嘌呤水溶液。
Adenine molecules are important for biological and medical research and applications. The detection of low concentration of adenine molecules is thus desirable. This paper reports a silver-based surface enhanced Raman scattering (SERS) sensor capable of detecting 10-12 M adenine molecules in water. Closely spaced silver nanoparticles are grown by chemical plating on discrete copper bumps located in etched holes in a silicon substrate. The copper bumps and silicon substrate are covered by rapid thermal CVD graphene with a high-density of domain boundaries and defects exhibiting a strong D-band besides a G-band and a 2-D band in the Raman spectrum. The graphene serves as a mask to only allow chemical plating of silver to occur on copper surface which is not covered by graphene or through defects of graphene covering copper. The pH value of adenine water solution is altered to optimize interactions and adsorption of adenine with the sensor surfaces. The lowest detection limit of 10-12 M adenine in pH9 water solution is achieved.
摘要 I
ABSTRACT II
致謝 IX
目錄 X
表目錄 XII
圖目錄 XIII
第一章 緒論 1
第二章 文獻回顧 3
2.1 蝕刻技術介紹 3
2.1.1 電化學蝕刻 3
2.1.2 反應離子蝕刻 4
2.1.3 金屬輔助化學蝕刻 5
2.1.4 硫酸銅蝕刻機制 6
2.2 石墨烯製備方法與判定方式 10
2.2.1 化學氣相沉積法 10
2.2.2 機械剝離法 11
2.2.3 旋轉塗佈法 12
2.2.4 石墨烯的拉曼光譜特徵峰 13
2.3 表面增強拉曼散射(SERS)理論 18
2.3.1 拉曼光譜介紹 18
2.3.2 表面增強拉曼散射 20
2.3.3 近年來腺嘌呤應用於表面增強拉曼散射基板技術 26
第三章 實驗方法 32
3.1 實驗流程圖 32
3.2 實驗製程設備 33
3.2.1 蝕刻反應槽設置 33
3.2.2 共濺鍍薄膜沉積系統 34
3.2.3 熱化學氣相沉積系統 38
3.2.4 化學反應槽設置 42
3.3 分析與量測儀器 42
3.3.1 光學顯微鏡 42
3.3.2 掃描式電子顯微鏡 43
3.3.3 原子力顯微鏡 45
3.3.4 拉曼光譜量測系統 46
第四章 結果與討論 48
4.1 粗糙化基板的製備與探討 48
4.2 石墨烯的製備 55
4.3 石墨烯複合銀奈米團簇結構於表面增強拉曼散射基板製備 59
4.4 石墨烯複合銀奈米團簇綜合比較與量測分析 60
4.4.1 石墨烯薄膜複合奈米銀金屬顆粒分析 61
4.4.2 鍍銅厚度對於量測腺嘌呤之影響 63
4.4.3 浸泡硝酸銀時間對奈米銀顆粒的探討 68
4.4.4 石墨烯複合銀奈米團簇結構組織型態綜合比較與探討分析 72
4.5 不同PH值對腺嘌呤分子吸附性分析 75
第五章 結論與未來展望 86
第六章 參考資料 87
[1] B. Giese and D. McNaughton, Surface-enhanced Raman spectroscopic and density functional theory study of adenine adsorption to silver surfaces, The Journal of Physical Chemistry B, vol. 106, no. 1, pp. 101-112, 2002.
[2] Y.-J. Xiao, Y.-F. Chen, and X.-X. Gao, Comparative study of the surface enhanced near infrared Raman spectra of adenine and NAD+ on a gold electrode, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 55, no. 6, pp. 1209-1218, 1999.
[3] H. Kimura-Suda, D. Y. Petrovykh, M. J. Tarlov, and L. J. Whitman, Base-dependent competitive adsorption of single-stranded DNA on gold, Journal of the American Chemical Society, vol. 125, no. 30, pp. 9014-9015, 2003.
[4] S. Mirajkar, A. Dhayagude, N. Maiti, P. Suprasanna, and S. Kapoor, Distinguishing genomic DNA of Brassica juncea and Arabidopsis thaliana using surface‐enhanced Raman scattering, Journal of Raman Spectroscopy, vol. 51, no. 1, pp. 89-103, 2020.
[5] W. J. Anderson, K. Nowinska, T. Hutter, S. Mahajan, and M. Fischlechner, Tuning plasmons layer-by-layer for quantitative colloidal sensing with surface-enhanced Raman spectroscopy, Nanoscale, vol. 10, no. 15, pp. 7138-7146, 2018.
[6] P. K. Jain and M. A. El-Sayed, Plasmonic coupling in noble metal nanostructures, Chemical Physics Letters, vol. 487, no. 4-6, pp. 153-164, 2010.
[7] Y.-Y. Wang et al., A particle-based microfluidic molecular separation integrating surface-enhanced Raman scattering sensing for purine derivatives analysis, Microfluidics and Nanofluidics, vol. 23, no. 4, p. 48, 2019.
[8] N. Zhou et al., A silver-grafted sponge as an effective surface-enhanced Raman scattering substrate, Sensors and Actuators B: Chemical, vol. 258, pp. 56-63, 2018.
[9] Y.-C. Lee and C.-W. Chiu, Immobilization and 3D hot-junction formation of gold nanoparticles on two-dimensional silicate nanoplatelets as substrates for high-efficiency surface-enhanced raman scattering detection, Nanomaterials, vol. 9, no. 3, p. 324, 2019.
[10] J. E. Villa, M. A. Afonso, D. P. Dos Santos, P. A. Mercadal, E. A. Coronado, and R. J. Poppi, Colloidal gold clusters formation and chemometrics for direct SERS determination of bioanalytes in complex media, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 224, p. 117380, 2020.
[11] R.-S. Juang et al., Floating SERS substrates of silver nanoparticles-graphene based nanosheets for rapid detection of biomolecules and clinical uremic toxins, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 576, pp. 36-42, 2019.
[12] K. Ikegami, K. Sugano, and Y. Isono, Surface-enhanced Raman spectroscopy analysis of DNA bases using arrayed and single dimer of gold nanoparticle, in 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS), 2017: IEEE, pp. 408-411.
[13] R. Memming and G. Schwandt, Anodic dissolution of silicon in hydrofluoric acid solutions, Surface science, vol. 4, no. 2, pp. 109-124, 1966.
[14] X. Liu, P. R. Coxon, M. Peters, B. Hoex, J. M. Cole, and D. J. Fray, Black silicon: fabrication methods, properties and solar energy applications, Energy & Environmental Science, vol. 7, no. 10, pp. 3223-3263, 2014.
[15] H. Jansen, M. de Boer, R. Legtenberg, and M. Elwenspoek, The black silicon method: a universal method for determining the parameter setting of a fluorine-based reactive ion etcher in deep silicon trench etching with profile control, Journal of Micromechanics and Microengineering, vol. 5, no. 2, p. 115, 1995.
[16] Y. Xia, B. Liu, S. Zhong, and C. Li, X-ray photoelectron spectroscopic studies of black silicon for solar cell, Journal of Electron Spectroscopy and Related Phenomena, vol. 184, no. 11-12, pp. 589-592, 2012.
[17] Z. Huang, N. Geyer, P. Werner, J. De Boor, and U. Gösele, Metal‐assisted chemical etching of silicon: a review: in memory of Prof. Ulrich Gösele, Advanced materials, vol. 23, no. 2, pp. 285-308, 2011.
[18] C. Xiao, J. Guo, P. Zhang, C. Chen, L. Chen, and L. Qian, Effect of crystal plane orientation on tribochemical removal of monocrystalline silicon, Scientific reports, vol. 7, no. 1, pp. 1-7, 2017.
[19] Q. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen, and S.-S. Pei, Graphene segregated on Ni surfaces and transferred to insulators, Applied Physics Letters, vol. 93, no. 11, p. 113103, 2008.
[20] X. Li et al., Large-area synthesis of high-quality and uniform graphene films on copper foils, science, vol. 324, no. 5932, pp. 1312-1314, 2009.
[21] K. S. Novoselov et al., Electric field effect in atomically thin carbon films, science, vol. 306, no. 5696, pp. 666-669, 2004.
[22] P. Blake et al., Making graphene visible, Applied physics letters, vol. 91, no. 6, p. 063124, 2007.
[23] Y. Si and E. T. Samulski, Synthesis of water soluble graphene, Nano letters, vol. 8, no. 6, pp. 1679-1682, 2008.
[24] F. Thema et al., Physical properties of graphene via γ-radiolysis of exfoliated graphene oxide, Materials Today: Proceedings, vol. 2, no. 7, pp. 4038-4045, 2015.
[25] L. Malard, M. A. Pimenta, G. Dresselhaus, and M. Dresselhaus, Raman spectroscopy in graphene, Physics reports, vol. 473, no. 5-6, pp. 51-87, 2009.
[26] I. Calizo, I. Bejenari, M. Rahman, G. Liu, and A. A. Balandin, Ultraviolet Raman microscopy of single and multilayer graphene, Journal of Applied Physics, vol. 106, no. 4, p. 043509, 2009.
[27] M. Fleischmann, P. Hendra, and A. McQuillan, RAMAN SPECTRA OF PYRIDINE ADSORBED AT A SILVER ELEC, Chemical physics letters, vol. 26, no. 2, 1974.
[28] R. L. McCreery, Raman spectroscopy for chemical analysis. John Wiley & Sons, 2005.
[29] D. L. Jeanmaire and R. P. Van Duyne, Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode, Journal of electroanalytical chemistry and interfacial electrochemistry, vol. 84, no. 1, pp. 1-20, 1977.
[30] P. Lee and D. Meisel, Adsorption and surface-enhanced Raman of dyes on silver and gold sols, The Journal of Physical Chemistry, vol. 86, no. 17, pp. 3391-3395, 1982.
[31] S. G. Harroun, The controversial orientation of adenine on gold and silver, ChemPhysChem, vol. 19, no. 9, pp. 1003-1015, 2018.
[32] R. Aroca, Surface-enhanced vibrational spectroscopy. John Wiley & Sons, 2006.
[33] A. I. Pérez-Jiménez, D. Lyu, Z. Lu, G. Liu, and B. Ren, Surface-enhanced Raman spectroscopy: benefits, trade-offs and future developments, Chemical Science, vol. 11, no. 18, pp. 4563-4577, 2020.
[34] A. G. Brolo, D. E. Irish, and B. D. Smith, Applications of surface enhanced Raman scattering to the study of metal-adsorbate interactions, Journal of molecular structure, vol. 405, no. 1, pp. 29-44, 1997.
[35] W. E. Doering and S. Nie, Single-molecule and single-nanoparticle SERS: examining the roles of surface active sites and chemical enhancement, The Journal of Physical Chemistry B, vol. 106, no. 2, pp. 311-317, 2002.
[36] J. H. Yoon, J. S. Park, and S. Yoon, Time-dependent and symmetry-selective charge-transfer contribution to sers in gold nanoparticle aggregates, Langmuir, vol. 25, no. 21, pp. 12475-12480, 2009.
[37] C.-W. Chiu, Y.-C. Lee, G.-B. Ou, and C.-C. Cheng, Controllable 3D hot-junctions of silver nanoparticles stabilized by amphiphilic tri-block copolymer/graphene oxide hybrid surfactants for use as surface-enhanced Raman scattering substrates, Industrial & Engineering Chemistry Research, vol. 56, no. 11, pp. 2935-2942, 2017.
[38] R. Panneerselvam, L. Xiao, K. B. Waites, T. P. Atkinson, and R. A. Dluhy, A rapid and simple chemical method for the preparation of Ag colloids for surface-enhanced Raman spectroscopy using the Ag mirror reaction, Vibrational Spectroscopy, vol. 98, pp. 1-7, 2018.
[39] E. Papadopoulou and S. E. Bell, Structure of adenine on metal nanoparticles: pH equilibria and formation of Ag+ complexes detected by surface-enhanced Raman spectroscopy, The Journal of Physical Chemistry C, vol. 114, no. 51, pp. 22644-22651, 2010.
[40] H. Tang, G. Meng, Q. Huang, Z. Zhang, Z. Huang, and C. Zhu, Arrays of cone‐shaped ZnO nanorods decorated with Ag nanoparticles as 3D surface‐enhanced Raman scattering substrates for rapid detection of trace polychlorinated biphenyls, Advanced Functional Materials, vol. 22, no. 1, pp. 218-224, 2012.
[41] J. Bi, Electrodeposited silver nanoflowers as sensitive surface-enhanced Raman scattering sensing substrates, Materials Letters, vol. 236, pp. 398-402, 2019.
[42] C. Chen et al., High spatial resolution nanoslit SERS for single-molecule nucleobase sensing, Nature communications, vol. 9, no. 1, pp. 1-9, 2018.
[43] A. C. Manikas, A. Papa, F. Causa, G. Romeo, and P. A. Netti, Bimetallic Au/Ag nanoparticle loading on PNIPAAm–VAA–CS8 thermoresponsive hydrogel surfaces using ss-DNA coupling, and their SERS efficiency, RSC advances, vol. 5, no. 18, pp. 13507-13512, 2015.
[44] D. Su, S. Jiang, M. Yu, G. Zhang, H. Liu, and M.-Y. Li, Facile fabrication of configuration controllable self-assembled Al nanostructures as UV SERS substrates, Nanoscale, vol. 10, no. 48, pp. 22737-22744, 2018.
[45] Y. Zheng et al., NOVEL CARRAGEENAN/REDUCED GRAPHENE OXIDE/Ag COMPOSITE AS ADSORBENT FOR REMOVAL METHYLENE BLUE FROM AQUEOUS SOLUTION, Digest Journal of Nanomaterials & Biostructures (DJNB), vol. 10, no. 2, 2015.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top