跳到主要內容

臺灣博碩士論文加值系統

(18.205.192.201) 您好!臺灣時間:2021/08/05 08:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:甯鍶蒨
研究生(外文):甯鍶蒨 NING, TZU-CHIEN
論文名稱:以生物碳/過硫酸鹽混合藥錠處理受三氯乙烯污染之地下水
論文名稱(外文):Treatment of Trichloroethylene (TCE)-Contaminated Groundwater Using Biochar/Persulfate Tablets
指導教授:陳谷汎陳谷汎引用關係
指導教授(外文):Chen, KU-FAN
口試委員:蔡勇斌賴嘉祥陳廷育林家驊
口試委員(外文):TSAI, YUNG-PINLAI, CHIA-HSIANGCHENG, TING-YULIN, CHIA-HUA
口試日期:2020-07-30
學位類別:碩士
校院名稱:國立暨南國際大學
系所名稱:土木工程學系
學門:工程學門
學類:土木工程學類
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:105
中文關鍵詞:三氯乙烯過硫酸鹽竹炭黏合劑現地化學氧化法
外文關鍵詞:Trichloroethylene (TCE)persulfatebamboo charcoalbinderin-situ chemical oxidation (ISCO)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:57
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
目次
致謝辭 i
摘要 ii
Abstract iii
目次 v
表目次 ix
圖目次 xi
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 3
1.3 研究內容 4
第二章 文獻回顧 6
2.1 土壤及地下水污染概況 6
2.2 三氯乙烯特性及危害 7
2.3 現地化學氧化法(In-situ chemical oxidation, ISCO) 11
2.4 過硫酸鹽反應機制 14
2.5 過硫酸鹽降解機制 15
2.6 過硫酸鹽活化類型之降解反應 15
2.6.1 熱活化 15
2.6.2 鐵活化過硫酸鹽 16
2.6.3 鹼性活化過硫酸鹽 17
2.6.4 生物碳活化過硫酸鹽 17
2.7 生物碳介紹 18
2.7.1 製備生物碳之熱化學轉化技術 18
2.7.2 生物碳特性於環境中之應用 19
2.7.3 生物碳對有機污染物之吸附行為 19
2.8 吸附理論 21
2.9 纖維素之介紹與應用 22
2.10 纖維素衍生物之應用與介紹 23
2.10.1 羥丙基甲基纖維素(Hydroxypropyl methylcellulose, HPMC) 25
2.10.2 羥乙基纖維素(Hydroxyethyl cellulose, HEC) 27
2.10.3 聚乙烯吡咯酮(Polyvinyl pyrrolidone, PVP) 28
2.11 緩釋機制及水凝膠之溶脹 29
2.12 控釋氧化劑(Controlled-release oxidant, CRO) 30
第三章 研究材料與方法 33
3.1 實驗材料 33
3.1.1 吸附劑 33
3.2 黏合劑 33
3.3 實驗藥品 33
3.4 實驗設備 34
3.5 試劑水 34
3.6 緩釋型過酸鹽整治藥錠之設計 35
3.7 批次試驗 38
3.7.1 不同黏著劑劑量對過硫酸鹽之釋放成效 38
3.7.2 混合型過硫酸鹽整治藥錠測試 41
3.7.3 竹炭結合過硫酸鹽整治藥錠之測試 43
3.7.4 添加過硫酸鹽藥錠數量對釋放之影響 45
3.8 批次實驗與混合整治藥錠對有機污染之移除能力 47
3.9 實驗分析方法 49
3.9.1 水質分析 49
3.9.1.1 過硫酸根分析 49
3.9.1.2 氫離子濃度分析 49
3.9.1.3 氧化還原電位分析 49
3.9.2 污染物分析 50
3.9.2.1 氣相層析火焰式偵測器 50
第四章 結果與討論 51
4.1 不同黏合劑/過硫酸鹽比例對放效率之影響 51
4.1.1 羥丙基甲基纖維素(#50,000)型過硫酸鹽整治藥錠之釋放 51
4.1.2 羥丙基甲基纖維素(#75,000)型過硫酸鹽整治藥錠之釋放效果 55
4.1.3 羥乙基纖維素型過硫酸鹽整治藥錠之效果 58
4.1.4 聚乙烯吡咯烷酮(K30)型過硫酸鹽整治藥錠之效果 61
4.1.5 聚乙烯吡咯烷酮(K90)型藥錠對過硫酸鹽之釋放效果 64
4.1.6 不同黏合劑之整治藥錠對過硫酸鹽之控釋效率評估 67
4.2 混合型過硫酸鹽整治藥錠 69
4.2.1 羥丙基甲基纖維素混合羥乙基纖維素型過硫酸鹽藥錠 69
4.2.2 羥丙基甲基纖維素混合聚乙烯吡咯烷酮型過硫酸鹽藥錠 72
4.2.3 混合型整治藥錠之可行性評估 75
4.3 竹炭結合過硫酸鹽整治藥錠試驗 77
4.4 不同藥錠數量對過硫酸鹽釋放之影響 81
4.5 整合型過硫酸鹽整治藥錠對TCE之去除效能 85
4.6 整治藥錠之經濟效益評估 89
第五章 結論與建議 90
5.1 結論 90
5.2 建議 91
參考文獻 92
一、 中文部份 92
二、 英文部份 92
附錄 102
附錄一 委員意見回覆 102

表目次
表2.1三氯乙烯之物理性質 8
表2.2三氯乙烯之化學性質 9
表2.3三氯乙烯對人體的危害 10
表2.4現地化學氧化法之優缺點 12
表2.5常見氧化劑及衍生自由基之氧化還原電位及強度 13
表2.6常見氧化劑之反應式及主要反應物 13
表2.7不同纖維素在產品中之應用 24
表2.8關於在地下水修復中使用控釋材料之研究概述 31
表3.1不同羥丙基甲基纖維素比例對過硫酸鹽之釋放實驗組別 40
表3.2不同羥乙基纖維素比例對過硫酸鹽之釋放實驗組別 40
表3.3不同聚乙烯吡咯烷酮比例對過硫酸鹽之釋放實驗組別 41
表3.4羥丙基甲基纖維素與羥乙基纖維素比例對過硫酸鹽之釋放實驗組別 42
表3.5羥丙基甲基纖維素與聚乙烯吡咯烷酮比例對過硫酸鹽之釋放實驗組別 42
表3.6竹炭/過硫酸鹽藥整治錠比例對過硫酸鹽之釋放實驗組別 44
表3.7不同羥丙基甲基纖維素型藥錠數量之實驗規劃 46
表3.8不同竹炭結合過硫酸鹽整治藥錠數量之實驗規劃 46
表3.9不同竹炭/過硫酸鹽整治藥錠對TCE之去除實驗組別 48
表4.1不同黏合劑之過硫酸鹽釋放率及釋放常數 68
表4.2不同混合黏合劑之過硫酸鹽釋放率及釋放常數 76
表4.3竹炭結合過硫酸鹽整治藥錠對過硫酸鹽釋放率及釋放常數 80
表4.4不同藥錠數量之過硫酸鹽釋放率及釋放常數 84
表4.5藥錠材料之成本 89
附表1.1委員意見回覆表(1/4) 102
附表1.2口試意見回覆表(2/4) 103
附表1.3委員意見回覆表(3/4) 104
附表1.4委員意見回覆表(4/4) 105

圖目次
圖1.1實驗流程圖 5
圖2.1生物碳與有機污染物相互作用之推測機制 20
圖2.2生物碳作為綠色環境吸附劑應用於污水處理之優勢 21
圖2.3纖維素分子之化學結構 22
圖2.4羥丙基甲基纖維素之結構圖 26
圖2.5羥乙基纖維素之結構圖 27
圖2.6聚乙烯吡咯烷酮之結構圖 28
圖2.7水凝膠溶脹相關狀態變化之示意圖 29
圖2.8緩釋型氧化藥劑應用於地下水整治示意圖 30
圖2.9傳統試劑及控釋材料釋放反應物之概念圖。 30
圖3.1緩釋過硫酸鹽整治藥錠制定程序 36
圖3.2生物碳結合過硫酸鹽整治藥錠 (a) 1吋藥錠;(b) 2吋藥錠 36
圖3.3油壓打片機 37
圖3.4緩釋型過硫酸鹽整治藥錠示意圖 (a) HPMC型整治藥錠;(b) HEC型整治藥錠;(c) PVP型整治藥錠 38
圖3.5緩釋型過硫酸鹽整治藥錠釋放示意圖 (a) HPMC型整治藥錠;(b) HEC型整治藥錠;(c) PVP型整治藥錠 39
圖3.6竹炭結合過硫酸鹽整治藥錠示意圖 43
圖3.7竹炭結合過硫酸鹽藥錠釋放示意圖 44
圖3.8不同緩釋型過硫酸鹽整治藥錠數量釋放示意圖 (a) HPMC型整治藥錠;(b) 竹炭結合過硫酸鹽整治藥錠 45
圖3.9混合型整治藥錠 47
圖3.10混合型藥錠釋放示意圖 48
圖3.11過硫酸鹽檢量線 49
圖4.1羥丙基甲基纖維素(50,000 cps)型整治藥錠之過硫酸鹽累積濃度釋放圖 53
圖4.2羥丙基甲基纖維素(50,000 cps)型整治藥錠之pH值趨勢圖 54
圖4.3羥丙基甲基纖維素(50,000 cps)型整治藥錠之ORP值趨勢圖 54
圖4.4羥丙基甲基纖維素(75,000 cps)型整治藥錠之過硫酸鹽累積濃度釋放圖 56
圖4.5羥丙基甲基纖維素(75,000 cps)型整治藥錠之pH值趨勢圖 57
圖4.6羥丙基甲基纖維素(75,000 cps)型整治藥錠之ORP值趨勢圖 57
圖4.7羥乙基纖維素型整治藥錠之過硫酸鹽累積濃度釋放圖 59
圖4.8羥乙基纖維素型整治藥錠之pH值趨勢圖 60
圖4.9羥乙基纖維素型整治藥錠之ORP值趨勢圖 60
圖4.10聚乙烯吡咯烷酮(K30)型整治藥錠之過硫酸鹽累積濃度釋放圖 62
圖4.11聚乙烯吡咯烷酮(K30)型整治藥錠之pH值趨勢圖 62
圖4.12聚乙烯吡咯烷酮(K30)型整治藥錠之ORP值趨勢圖 63
圖4.13聚乙烯吡咯烷酮(K90)型整治藥錠之過硫酸鹽累積濃度釋放圖 65
圖4.14聚乙烯吡咯烷酮(K90)型整治藥錠之pH值趨勢圖 65
圖4.15聚乙烯吡咯烷酮(K90)型整治藥錠之ORP值趨勢圖 66
圖4.16羥丙基甲基纖維素混合羥乙基纖維素型整治藥錠之過硫酸鹽累積濃度釋放圖 70
圖4.17羥丙基甲基纖維素混合羥乙基纖維素型整治藥錠之pH值趨勢圖 71
圖4.18羥丙基甲基纖維素混合羥乙基纖維素型整治藥錠之ORP值趨勢圖 71
圖4.19羥丙基甲基纖維素混合聚乙烯吡咯烷酮型整治藥錠之過硫酸鹽累積濃度釋放圖 73
圖4.20羥丙基甲基纖維素混合聚乙烯吡咯烷酮型整治藥錠之pH值趨勢圖 74
圖4.21羥丙基甲基纖維素混合聚乙烯吡咯烷酮型整治藥錠之ORP值趨勢圖 74
圖4.22竹炭結合過硫酸鹽整治藥錠之過硫酸鹽累積濃度釋放 78
圖4.23竹炭結合過硫酸鹽整治藥錠之pH值趨勢圖 78
圖4.24竹炭結合過硫酸鹽整治藥錠之ORP值趨勢圖 79
圖4.25不同過硫酸鹽整治藥錠數量之過硫酸鹽累積濃度釋放趨勢圖 82
圖4.26不同過硫酸鹽整治藥錠數量之pH值趨勢圖 83
圖4.27不同過硫酸鹽整治藥錠數量之ORP值趨勢圖 83
圖4.28不同配比之過硫酸鹽藥錠對TCE去除之趨勢圖 87
圖4.29不同類型整治藥錠之過硫酸鹽累積濃度釋放趨勢圖 88
一、中文部份
毛英智,以新穎緩釋型過硫酸鹽藥錠整治受三氯乙烯污染之地下水,國立暨南國際大學,土木工程學系,碩士論文,2017。
張育禎,以竹炭結合過硫酸鹽氧化法處理受汽油及含氯有機物污染之地下水,國立暨南國際大學,土木工程學系,博士論文,2017。
卓儀秦、林逸彬,應用過硫酸鹽於整治土壤及地下水有機污染物之發展與挑戰,國立臺灣大學,環境工程學研究所,土木水利,45卷4期,2018。
環保署(行政院環境保護署),108年度土壤及地下水污染整治年報。
環保署(行政院環境保護署),108年度土壤及地下水污染調查與整治技術參考手冊。
環保署(行政院環境保護署)土壤及地下水污染整治網,2020。
行政院環境保護署毒物及化學物質局全球資訊網,2019。
二、英文部份
Ahmad, M., Lee, S. S., Lim, J. E., Lee, S.-E., Cho, J. S., Moon, D. H., Ok, Y. S. (2014). Speciation and phytoavailability of lead and antimony in a small arms range soil amended with mussel shell, cow bone and biochar: EXAFS spectroscopy and chemical extractions. Chemosphere, 95, 433-441.
Ahmad, M., Rajapaksha, A. U., Lim, J. E., Zhang, M., Bolan, N., Mohan, D., Ok, Y. S. (2014). Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere, 99, 19-33.
Albers, C. N., Feld, L., Ellegaard-Jensen, L., & Aamand, J. (2015). Degradation of trace concentrations of the persistent groundwater pollutant 2, 6-dichlorobenzamide (BAM) in bioaugmented rapid sand filters. Water Research, 83, 61-70.
Alexandridis, P., & Holzwarth, J. F. (1997). Differential scanning calorimetry investigation of the effect of salts on aqueous solution properties of an amphiphilic block copolymer (Poloxamer). Langmuir, 13(23), 6074-6082.
ATSDR. (2019). Toxicological Profile for Trichloroethylene.
Bahrami, H., Eslami, A., Nabizadeh, R., Mohseni-Bandpi, A., Asadi, A., & Sillanpää, M. (2018). Degradation of trichloroethylene by sonophotolytic-activated persulfate processes: Optimization using response surface methodology. Journal of Cleaner Production, 198, 1210-1218.
Baker, R. S., Nielsen, S. G., Heron, G., & Ploug, N. (2016). How effective is thermal remediation of DNAPL source zones in reducing groundwater concentrations? Groundwater Monitoring & Remediation, 36(1), 38-53.
Besha, A. T., Bekele, D. N., Naidu, R., & Chadalavada, S. (2018). Recent advances in surfactant-enhanced In-Situ Chemical Oxidation for the remediation of non-aqueous phase liquid contaminated soils and aquifers. Environmental Technology & Innovation, 9, 303-322.
Burri, N. M., Weatherl, R., Moeck, C., & Schirmer, M. (2019). A review of threats to groundwater quality in the anthropocene. Science of the Total Environment, 684, 136-154.
Chen, Y., Zhang, X., Chen, W., Yang, H., & Chen, H. (2017). The structure evolution of biochar from biomass pyrolysis and its correlation with gas pollutant adsorption performance. Bioresource technology, 246, 101-109.
Cheng, H., Hill, P. W., Bastami, M. S., & Jones, D. L. (2017). Biochar stimulates the decomposition of simple organic matter and suppresses the decomposition of complex organic matter in a sandy loam soil. GCB Bioenergy, 9(6), 1110-1121.
Cheng, M., Zeng, G., Huang, D., Lai, C., Xu, P., Zhang, C., Zhu, Y. (2016). Degradation of atrazine by a novel Fenton-like process and assessment the influence on the treated soil. Journal of hazardous materials, 312, 184-191.
Dai, L., Cheng, T., Duan, C., Zhao, W., Zhang, W., Zou, X., Ni, Y. (2019). 3D printing using plant-derived cellulose and its derivatives: A review. Carbohydrate polymers, 203, 71-86.
Dai, Y., Zhang, N., Xing, C., Cui, Q., & Sun, Q. (2019). The adsorption, regeneration and engineering applications of biochar for removal organic pollutants: a review. Chemosphere, 223, 12-27.
Devi, P., Das, U., & Dalai, A. K. (2016). In-situ chemical oxidation: principle and applications of peroxide and persulfate treatments in wastewater systems. Science of the Total Environment, 571, 643-657.
Dong, H., He, Q., Zeng, G., Tang, L., Zhang, L., Xie, Y., Zhao, F. (2017). Degradation of trichloroethene by nanoscale zero-valent iron (nZVI) and nZVI activated persulfate in the absence and presence of EDTA. Chemical Engineering Journal, 316, 410-418.
Duan, X., Sun, H., Kang, J., Wang, Y., Indrawirawan, S., & Wang, S. (2015). Insights into heterogeneous catalysis of persulfate activation on dimensional-structured nanocarbons. Acs Catalysis, 5(8), 4629-4636.
Ducousso, M., Weiss-Hortala, E., Nzihou, A., & Castaldi, M. J. (2015). Reactivity enhancement of gasification biochars for catalytic applications. Fuel, 159, 491-499.
Fan, Z., Zhang, Q., Li, M., Sang, W., Qiu, Y., & Xie, C. (2019). Activation of persulfate by manganese oxide-modified sludge-derived biochar to degrade Orange G in aqueous solution. Environmental Pollutants and Bioavailability, 31(1), 70-79.
Fang, G., Liu, C., Gao, J., Dionysiou, D. D., & Zhou, D. (2015). Manipulation of persistent free radicals in biochar to activate persulfate for contaminant degradation. Environmental science & technology, 49(9), 5645-5653.
Fu, K., Yao, Y., Dai, J., & Hu, L. (2017). Progress in 3D printing of carbon materials for energy‐related applications. Advanced materials, 29(9), 1603486.
Ghanbari, F., Moradi, M., & Gohari, F. (2016). Degradation of 2, 4, 6-trichlorophenol in aqueous solutions using peroxymonosulfate/activated carbon/UV process via sulfate and hydroxyl radicals. Journal of Water Process Engineering, 9, 22-28.
Gopi, S., Balakrishnan, P., Chandradhara, D., Poovathankandy, D., & Thomas, S. (2019). General scenarios of cellulose and its use in the biomedical field. Materials Today Chemistry, 13, 59-78.
Gunasekera, D. H., Kuek, S., Hasanaj, D., He, Y., Tuck, C., Croft, A. K., & Wildman, R. D. (2016). Three dimensional ink-jet printing of biomaterials using ionic liquids and co-solvents. Faraday discussions, 190, 509-523.
Guo, J., Jia, X., & Gao, Q. (2020). Insight into the improvement of dewatering performance of waste activated sludge and the corresponding mechanism by biochar-activated persulfate oxidation. Science of the Total Environment, 140912.
Heinze, T. (2015). Cellulose: structure and properties. In Cellulose chemistry and properties: fibers, nanocelluloses and advanced materials (pp. 1-52): Springer.
Heron, G., Bierschenk, J., Swift, R., Watson, R., & Kominek, M. (2016). Thermal DNAPL source zone treatment impact on a CVOC plume. Groundwater Monitoring & Remediation, 36(1), 26-37.
Huang, B.-C., Jiang, J., Huang, G.-X., & Yu, H.-Q. (2018). Sludge biochar-based catalysts for improved pollutant degradation by activating peroxymonosulfate. Journal of Materials Chemistry A, 6(19), 8978-8985.
Huang, K.-C., Couttenye, R. A., & Hoag, G. E. (2002). Kinetics of heat-assisted persulfate oxidation of methyl tert-butyl ether (MTBE). Chemosphere, 49(4), 413-420.
Imran, M., Klouj, A., Revol-Junelles, A.-M., & Desobry, S. (2014). Controlled release of nisin from HPMC, sodium caseinate, poly-lactic acid and chitosan for active packaging applications. Journal of Food Engineering, 143, 178-185.
Julinová, M., Vaňharová, L., & Jurča, M. (2018). Water-soluble polymeric xenobiotics–polyvinyl alcohol and polyvinylpyrrolidon–and potential solutions to environmental issues: A brief review. Journal of environmental management, 228, 213-222.
Kambhu, A., Comfort, S., Chokejaroenrat, C., & Sakulthaew, C. (2012). Developing slow-release persulfate candles to treat BTEX contaminated groundwater. Chemosphere, 89(6), 656-664.
Kariduraganavar, M. Y., Kittur, A. A., & Kamble, R. R. (2014). Chapter 1 - Polymer Synthesis and Processing. In S. G. Kumbar, C. T. Laurencin, & M. Deng (Eds.), Natural and Synthetic Biomedical Polymers (pp. 1-31). Oxford: Elsevier.
Khaled, S. A., Burley, J. C., Alexander, M. R., Yang, J., & Roberts, C. J. (2015). 3D printing of five-in-one dose combination polypill with defined immediate and sustained release profiles. Journal of controlled release, 217, 308-314.
Klein, S., Seeger, N., Mehta, R., Missaghi, S., Grybos, R., & Rajabi-Siahboomi, A. (2018). Robustness of barrier membrane coated metoprolol tartrate matrix tablets: Drug release evaluation under physiologically relevant in vitro conditions. International journal of pharmaceutics, 543(1-2), 368-375.
Lee, H., Lee, E., Lee, C.-H., & Lee, K. (2011). Degradation of chlorotetracycline and bacterial disinfection in livestock wastewater by ozone-based advanced oxidation. Journal of Industrial and Engineering Chemistry, 17(3), 468-473.
Li, Y., Wang, D., Yang, G., Yuan, X., Xu, Q., Liu, X., Chen, F. (2019). The novel pretreatment of Co2+ activating peroxymonosulfate under acidic condition for dewatering waste activated sludge. Journal of the Taiwan Institute of Chemical Engineers, 102, 259-267.
Liang, C., Bruell, C. J., Marley, M. C., & Sperry, K. L. (2004). Persulfate oxidation for in situ remediation of TCE. I. Activated by ferrous ion with and without a persulfate–thiosulfate redox couple. Chemosphere, 55(9), 1213-1223.
Liang, C., & Chen, C.-Y. (2017). Characterization of a Sodium Persulfate Sustained Release Rod for in Situ Chemical Oxidation Groundwater Remediation. Industrial & Engineering Chemistry Research, 56(18), 5271-5276. doi:10.1021/acs.iecr.7b00082
Lin, K.-S., Mdlovu, N. V., Chen, C.-Y., Chiang, C.-L., & Dehvari, K. (2018). Degradation of TCE, PCE, and 1, 2–DCE DNAPLs in contaminated groundwater using polyethylenimine-modified zero-valent iron nanoparticles. Journal of Cleaner Production, 175, 456-466.
Maroni, A., Zema, L., Cerea, M., Foppoli, A., Palugan, L., & Gazzaniga, A. (2016). Erodible drug delivery systems for time-controlled release into the gastrointestinal tract. Journal of Drug Delivery Science and Technology, 32, 229-235.
Mašková, E., Kubová, K., Raimi-Abraham, B. T., Vllasaliu, D., Vohlídalová, E., Turánek, J., & Mašek, J. (2020). Hypromellose–A traditional pharmaceutical excipient with modern applications in oral and oromucosal drug delivery. Journal of controlled release.
Moccia, E., Intiso, A., Cicatelli, A., Proto, A., Guarino, F., Iannece, P., Rossi, F. (2017). Use of Zea mays L. in phytoremediation of trichloroethylene. Environmental Science and Pollution Research, 24(12), 11053-11060.
Mohamed, R. R., Elella, M. H. A., Sabaa, M. W., & Saad, G. R. (2018). Synthesis of an efficient adsorbent hydrogel based on biodegradable polymers for removing crystal violet dye from aqueous solution. Cellulose, 25(11), 6513-6529.
Noreen, A., Zia, K. M., Tabasum, S., Khalid, S., & Shareef, R. (2020). A review on grafting of hydroxyethylcellulose for versatile applications. International Journal of Biological Macromolecules, 150, 289-303.
O'Connor, D., Hou, D., Ok, Y. S., Song, Y., Sarmah, A. K., Li, X., & Tack, F. M. (2018a). Sustainable in situ remediation of recalcitrant organic pollutants in groundwater with controlled release materials: A review. Journal of controlled release, 283, 200-213.
O'Connor, D., Hou, D., Ok, Y. S., Song, Y., Sarmah, A. K., Li, X., & Tack, F. M. G. (2018b). Sustainable in situ remediation of recalcitrant organic pollutants in groundwater with controlled release materials: A review. Journal of controlled release, 283, 200-213. doi:https://doi.org/10.1016/j.jconrel.2018.06.007
Pang, L., Gao, Z., Feng, H., Wang, S., & Wang, Q. (2019). Cellulose based materials for controlled release formulations of agrochemicals: A review of modifications and applications. Journal of controlled release, 316, 105-115.
Pham, P. H., Federico-Perez, R. A., Fine, K. L., Matzek, L. W., Carter, K. E., Palomino, A. M., & Xue, Z.-L. (2020). Sustained release of persulfate from inert inorganic materials for groundwater remediation. Chemosphere, 127508.
Qambrani, N. A., Rahman, M. M., Won, S., Shim, S., & Ra, C. (2017). Biochar properties and eco-friendly applications for climate change mitigation, waste management, and wastewater treatment: A review. Renewable and Sustainable Energy Reviews, 79, 255-273.
Qi, C., Liu, X., Ma, J., Lin, C., Li, X., & Zhang, H. (2016). Activation of peroxymonosulfate by base: implications for the degradation of organic pollutants. Chemosphere, 151, 280-288.
Qureshi, D., Nayak, S. K., Maji, S., Anis, A., Kim, D., & Pal, K. (2019). Environment sensitive hydrogels for drug delivery applications. European Polymer Journal, 120, 109220.
Rai, P. K., Lee, J., Kailasa, S. K., Kwon, E. E., Tsang, Y. F., Ok, Y. S., & Kim, K.-H. (2018). A critical review of ferrate (VI)-based remediation of soil and groundwater. Environmental research, 160, 420-448.
Rasse, D. P., Budai, A., O’Toole, A., Ma, X., Rumpel, C., & Abiven, S. (2017). Persistence in soil of Miscanthus biochar in laboratory and field conditions. PloS one, 12(9), e0184383.
Richbourg, N. R., & Peppas, N. A. (2020). The swollen polymer network hypothesis: Quantitative models of hydrogel swelling, stiffness, and solute transport. Progress in polymer science, 101243.
Robinson, B. V., Sullivan, F., Borzelleca, J. F., & Schwartz, S. (2018). PVP: A Critical Review of the Kinetics and Toxicology of Polyvinylpyrrolidone (Providone): CRC Press.
Rombolà, A. G., Fabbri, D., Baronti, S., Vaccari, F. P., Genesio, L., & Miglietta, F. (2019). Changes in the pattern of polycyclic aromatic hydrocarbons in soil treated with biochar from a multiyear field experiment. Chemosphere, 219, 662-670.
Ruan, X., Sun, Y., Du, W., Tang, Y., Liu, Q., Zhang, Z., Tsang, D. C. (2019). Formation, characteristics, and applications of environmentally persistent free radicals in biochars: a review. Bioresource technology, 281, 457-468.
Sanchez-Monedero, M., Cayuela, M., Roig, A., Jindo, K., Mondini, C., & Bolan, N. (2018). Role of biochar as an additive in organic waste composting. Bioresource technology, 247, 1155-1164.
Shan, R., Han, J., Gu, J., Yuan, H., Luo, B., & Chen, Y. (2020). A review of recent developments in catalytic applications of biochar-based materials. Resources, Conservation and Recycling, 162, 105036.
Siegrist, R. L. (2001). Principles and practices of in situ chemical oxidation using permanganate: Battelle Press.
Tan, X., Liu, Y., Zeng, G., Wang, X., Hu, X., Gu, Y., & Yang, Z. (2015). Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere, 125, 70-85.
Teodorescu, M., & Bercea, M. (2015). Poly (vinylpyrrolidone)–a versatile polymer for biomedical and beyond medical applications. Polymer-Plastics Technology and Engineering, 54(9), 923-943.
Timmins, P., Pygall, S. R., & Melia, C. D. (2014). Hydrophilic matrix tablets for oral controlled release: Springer.
Wacławek, S., Lutze, H. V., Grübel, K., Padil, V. V., Černík, M., & Dionysiou, D. D. (2017). Chemistry of persulfates in water and wastewater treatment: a review. Chemical Engineering Journal, 330, 44-62.
Wang, C.-W., & Liang, C. (2014). Oxidative degradation of TMAH solution with UV persulfate activation. Chemical Engineering Journal, 254, 472-478.
Wang, J., & Wang, S. (2018). Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants. Chemical Engineering Journal, 334, 1502-1517.
Wang, J., & Wang, S. (2019). Preparation, modification and environmental application of biochar: a review. Journal of Cleaner Production, 227, 1002-1022.
Wang, Y., Yu, L., Xie, F., Zhang, L., Liao, L., Liu, H., & Chen, L. (2016). Morphology and properties of thermal/cooling-gel bi-phasic systems based on hydroxypropyl methylcellulose and hydroxypropyl starch. Composites Part B: Engineering, 101, 46-52.
Yang, Y., Pignatello, J. J., Ma, J., & Mitch, W. A. (2016). Effect of matrix components on UV/H2O2 and UV/S2O82− advanced oxidation processes for trace organic degradation in reverse osmosis brines from municipal wastewater reuse facilities. Water Research, 89, 192-200.
Zhang, B.-T., Zhang, Y., Teng, Y., & Fan, M. (2015). Sulfate Radical and Its Application in Decontamination Technologies. Critical Reviews in Environmental Science and Technology, 45(16), 1756-1800. doi:10.1080/10643389.2014.970681
Zhang, J., Yang, W., Vo, A. Q., Feng, X., Ye, X., Kim, D. W., & Repka, M. A. (2017). Hydroxypropyl methylcellulose-based controlled release dosage by melt extrusion and 3D printing: Structure and drug release correlation. Carbohydrate polymers, 177, 49-57.
Zhang, M., Chen, X., Zhou, H., Murugananthan, M., & Zhang, Y. (2015). Degradation of p-nitrophenol by heat and metal ions co-activated persulfate. Chemical Engineering Journal, 264, 39-47.
Zhou, Y., Liu, X., Xiang, Y., Wang, P., Zhang, J., Zhang, F., Tang, L. (2017). Modification of biochar derived from sawdust and its application in removal of tetracycline and copper from aqueous solution: adsorption mechanism and modelling. Bioresource technology, 245, 266-273.
電子全文 電子全文(網際網路公開日期:20250908)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top