|
參考文獻 一、中文部分 1.林明獻 編著, “太陽電池技術入門” ,全華圖書出版,2016年4月。 2.經濟部能源局,107年全國電力資源供需報告。 3.鄭晃忠、戴寶通 主編, “太陽能電池技術手冊” ,台灣電子材料與元件協會出版,2008年6月。 4.沈輝、曾祖勤 主編 “太陽能光電技術” ,五南圖書出版,2008年2月。 5.黃惠良、蕭錫鍊、周明奇、林堅楊、江雨龍、李威儀、李世昌、林惟芳,“太陽電池”,五南圖書出版,2008年12月。 6.美國國家再生能源研究室,https://www.nrel.gov/pv/cell-efficiency.html. 7.吳春桂,反式鈣鈦礦太陽能電池的研究,自然科學簡訊第三十一卷第四期,2019年11月。 8.陳新傑、岳宏霖、莊名凱、陳方中,鈣鈦礦太陽能電池 Introduction to Perovskite Solar Cells,奈米通訊第二十四卷,2017年。 二、英文部分 9.Wu, H. W.; Emadi, A.; de Graaf, G.; Leijtens, J.; Wolffenbuttel, R. F. Design and Fabrication of an Albedo Insensitive Analong Sun Sensor, Procedia Engineering, 2011, 25, 527−530. 10.Purnomo Sidi Priambodo, Nji Raden Poespawati, Djoko Hartanto, “Solar Cells Silicon Wafer-Based Technologies”, October, 2011. 11.Martin A. Green, “Third Generation Photovoltaics”, Springer, 2003. 12.Luo, S.; Daoud, W. A. Recent progress in organic-inorganic halide perovskite solar cells: Mechanisms and material design. J. Mater. Chem. A, 2015, 3, 8992–9010. 13.Kojima, A.; Teshima, K.; Shirai, K.; Miyasaka, T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc, 2009, 131, 6050–6051. 14.Brenner, T. M.; Egger, D. A.; Kronik, L.; Hodes, G.; Cahen, D. Hybrid organic—inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties . Nat. Reviews Materials, 2016, 1, 15007. 15.Sum, T. C.; Mathews, N. Advancements in perovskite solar cells: photophysics behind the photovoltaics . Energy Environ. Sci, 2014, 7, 2518– 2534. 16.Oga, H.; Saeki, A.; Ogomi, Y.; Hayase, S.; Seki, S. Improved understanding of the electronic and energetic landscapes of perovskite solar cells: high local charge carrier mobility, reduced recombination, and extremely shallow traps. J. Am. Chem. Soc, 2014, 136, 13818– 13825. 17.Kim, H. S.; Lee, C. R.; Im, J. H.; Lee, K. B.; Moehl, T.; Marchioro, A.; Moon, J. S.; Humphry-Baker, R.; Yum, J. H.; Moser, J. E.; Grätzel, M.; Park, N. G. Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. Sci. Rep, 2012, 2, 591. 18.Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science, 2012, 338, 643– 647. 19.Im, J. H.; Luo, J.; Franckevičius, M.; Pellet, N.; Gao, P.; Moehl, T.; Zakeeruddin, S. M.; Nazeeruddin, M. K.; Grätzel, M.; Park, N. G. Nanowire provskite solar cell. Nano Lett, 2015, 15, 2120–2126. 20.Li, X.; Bi, D.; Yi, C.; Décoppet, J. D.; Luo, J.; Zakeeruddin, S. M.; Hagfeldt, A.; Grätzel, M. A Vacuum Flash-Assisted Solution Process for High-Efficiency Large-Area Perovskite Solar Cells, Science, 2016, 353, 58–62. 21.Xiao, Z. G.; Q. Dong, F.; Bi, C.; Shao, Y. C.; Yuan, Y. B.; Huang, J. S. The roles of alkyl halide additives in enhancing perovskite solar cell performance, Adv. Mater, 2014, 26, 6503–6509. 22.Cao, X.; Zhi, L.; Li, Y.; Fang, F.; Cui, X.; Ci, L.; Ding, K.; Wei, J. Fabrication of Perovskite Films with Large Columnar Grains via Solvent-Mediated Ostwald Ripening for Efficient Inverted Perovskite Solar Cells, ACS Appl. Energy Mater, 2018, 1, 868–875. 23.Chiang, C. H.; Wu, C. G. A Method for the Preparation of Highly Oriented MAPbI3 Crystallites for High-Efficiency Perovskite Solar Cells to Achieve an 86% Fill Factor, ACS Nano, 2018, 12, 10355– 10364. 24.Long, R.; Liu, J.; Prezhdo, O. V. Unravelling the effects of grain boundary and chemical doping on electron–hole recombination in CH3NH3PbI3 perovskite by time-domain atomistic simulation. J. Am. Chem. Soc, 2016, 138, 3884–3890. 25.Ye, S.; Rao, H.; Zhao, Z.; Zhang, L.; Bao, H.; Sun, W.; Li, Y.; Gu, F.; Wang, J.; Liu, Z.; Bian, Z.; Huang, C. A breakthrough efficiency of 19.9% obtained in inverted perovskite solar cells by using an efficient trap state passivator Cu(thiourea)I. J. Am. Chem. Soc, 2017, 139, 7504–7512. 26.Koscher, B. A.; Swabeck, J. K.; Bronstein, N. D.; Alivisatos, A. P. Essentially trap-free CsPbBr3 colloidal nanocrystals by postsynthetic thiocyanate surface treatment. J. Am. Chem. Soc, 2017, 139, 6566–6569. 27.Zheng, X.; Chen, B.; Dai, J.; Fang, Y.; Lin, Y.; Wei, H.; Zeng, X. C.; Huang, J. Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations. Nat. Energy, 2017, 2, 17102. 28.Cao, J.; Yin, J.; Yuan, S.; Zhao, Y.; Li, J.; Zheng, N. Thiols as interfacial modifiers to enhance the performance and stability of perovskite solar cells. Nanoscale, 2015, 7, 9443–9447. 29.Wang, Q.; Dong, Q.; Li, T.; Gruverman, A.; Huang, J. Thin insulating tunneling contacts for efficient and water-resistant perovskite solar cells. Adv. Mater, 2016, 28, 6734–6739. 30.Hailegnaw, B.; Adam, G.; Wielend, D.; Pedarnig, J. D.; Sariciftci, N. S.; Scharber, M. C. Acetylacetone improves the performance of mixed halide perovskite solar cells. J. Phys. Chem. C, 2019, 123, 23807–23816. 31.Cai, F.; Yan,Y.; Yao, J.; Wang, P.; Wang, H.; Gurney, R. S. ; Liu, D.; Wang, T. Ionic Additive Engineering Toward High‐Efficiency Perovskite Solar Cells with Reduced Grain Boundaries and Trap Density. Adv. Funct. Mater, 2018, 28, 1801985. 32.Zhao, Y.; Zhu, K. CH3NH3Cl-assisted one-step solution growth of CH3NH3PbI3: structure, charge-carrier dynamics, and photovoltaic properties of perovskite solar cells. J. Phys. Chem. C, 2014, 118, 9412–9418. 33.Bi, D.; Li, X.; Milić, J. V.; Kubicki, D. J.; Pellet, N.; Luo, J.; LaGrange, T.; Mettraux, P.; Emsley, L.; Zakeeruddin , S. M.; Grätzel, M. Multifunctional molecular modulators for perovskite solar cells with over 20% efficiency and high operational stability. Nature Commun, 2018, 9, 4482. 34.Wu, Y.; Shi, X. Q.; Ding, X. H.; Ren, Y. K.; Hayat, T.; Alsaedi, A.; Ding, Y.; Xu, P.; Dai, S. Y. Incorporating 4-tert-Butylpyridine in an Antisolvent: A Facile Approach to Obtain Highly Efficient and Stable Perovskite Solar Cells. ACS Appl. Mater. Interfaces, 2018, 10, 3602−3608. 35.Zhang, H.; Chen, H.; Stoumpos, C. C.; Ren, J.; Hou, Q.; Li, X.; Li, J.; He, H.; Lin, H.; Wang, J.; Hao, F.; Kanatzidis, M. G. Thiazole-Induced Surface Passivation and Recrystallization of CH3NH3PbI3 Films for Perovskite Solar Cells With Ultrahigh Fill Factors. ACS Appl Mater Interfaces, 2018, 49, 42436– 42443. 36.Zuo, C.; Ding, L. An 80.11% FF record achieved for perovskite solar cells by using the NH4Cl additive. Nanoscale, 2014, 6, 9935– 9938. 37.Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J. P.; Leiltens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J. Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber. Science, 2013, 342, 341– 344. 38.Xing, G.; Mathews, N.; Sun, S.; Lim, S.S.; Lam, Y. M.; Grätzel, M.; Maisalkar, S.; Sum, T. C. Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3. Science, 2013, 342, 344– 347. 39.Chen, Q.; Zhou, H.; Fang, Y.; Stieg, A. Z.; Song, T. B.; Wang, H. H.; Xu, X.; Liu, Y.; Lu, S.; You, J.; Sun, P.; McKay, J.; Goorsky, M. S.; Yang, Y. The optoelectronic role of chlorine in CH3NH3PbI3(Cl)-based perovskite solar cells. Nature Communications, 2015, 6, 7269. 40.Oku, T.; Ohishi, Y.; Ueoka, N. Highly (100)-oriented CH3NH3PbI3(Cl) perovskite solar cells prepared with NH4Cl using an air blow method. RSC Adv. 2018, 8, 10389– 10395. 41.Dong, Q.; Fang, Y.; Shao, Y.; Mulligan, P.; Qiu, J.; Cao, L.; Huang, J. Electron-Hole Diffusion Lengths > 175 μm in Solution-Grown CH3NH3PbI3 Single Crystals. Science, 2015, 347, 967–970. 42.Wang, P.; Jiang, Q.; Zhao, Y.; Chen, Y.; Chu, Z.; Zhang, X.; Zhou, Y.; You, J. Synergistic Improvement of Perovskite Film Quality for Efficient Solar Cells via Multiple Chloride Salt Additives, Sci. Bull, 2018, 63, 726–731. 43.Kara, K.; Kara, K. A.; Kırbıyık, C.; Ersoz, M.; Usluer, O.; Brisenog, A. L.; Kus, M. Solvent washing with toluene enhances efficiency and increases reproducibility in perovskite solar cells, RSC Adv, 2016, 6, 26606–26611. 44.Wu, W. Q.; Wang, Q.; Fang, Y.; Shao, Y.; Tang, S.; Deng, Y.; Lu, H.; Liu, Y.; Li, T.; Yang, Z.; Gruverman, A.; Huang, J., Molecular Doping Enabled Scalable Blading of Efficient Hole-Transport-Layer-Free Perovskite Solar Cells, Nat. Commun. 2018, 9, 1625. 45.Zuo, C.; Vak, D.; Angmo, D.; Ding, L.; Gao, M., One-step roll-to-roll air processed high efficiency perovskite solar cells, Nano Energy, 2018, 46, 185–192. 46.Dualeh, A.; Tétreault, N.; Moehl, T.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. Effect of Annealing Temperature on Film Morphology of Organic−Inorganic Hybrid Pervoskite Solid-State Solar Cells, Adv. Funct. Mater, 2014, 24, 3250– 3258. 47.Huang, L. B.; Su, P. Y.; Liu, J. M.; Huang, J. F.; Chen, Y. F.; Qin, S.; Guo, J.; Xu, Y. W.; Su, C. Y., Interface engineering of perovskite solar cells with multifunctional polymer interlayer toward improved performance and stability, J. Power Sources, 2018, 378, 483– 490. 48.Zhu, W.; Kang, L.; Yu, T.; Lv, B.; Wang, Y.; Chen, X.; Wang, X.; Zhou, Y.; Zou, Z. Facile Face-Down Annealing Triggered Remarkable Texture Development in CH3NH3PbI3 Films for High-Performance Perovskite Solar Cells, ACS Appl. Mater. Interfaces, 2017, 9, 6104−6113. 49.Pockett, A.; Eperon, G. E.; Peltola, T.; Snaith, H. J.; Walker, A.; Peter, L. M.; Cameron, P. J. Characterization of Planar Lead Halide Perovskite Solar Cells by Impedance Spectroscopy, Open-Circuit Photovoltage Decay, and Intensity-Modulated Photovoltage/Photocurrent Spectroscopy, J. Phys. Chem. C, 2015, 119, 3456−3465. 50.Kieslich, G.; Sun, S.; Cheetham, A. K. Solid-state principles applied to organic–inorganic perovskites: new tricks for an old dog, Chem. Sci, 2014, 5, 4712–4715. 51.Mancini, A.; Quadrelli, P.; Amoroso, G.; Milanese, C.; Boiocchi, M.; Sironi, A.; Patrini, M.; Guizzetti, G.; Malavasi, L. Synthesis, structural and optical characterization of APbX3 (A = methylammonium, dimethylammonium, trimethylammonium; X = I, Br,Cl) hybrid organic-inorganic materials, J Solid State Chem, 2016, 240, 55–60. 52.Li, B.; Fei, C.; Zheng, K.; Qu, X.; Pullerits, T.; Cao, G.; Tian, J. Constructing water-resistant CH3NH3PbI3 perovskite films via coordination interaction, J. Mater. Chem. A, 2016, 4, 17018–17024.
|