跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/02 04:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:周志威
研究生(外文):Jou Jr-Wei
論文名稱:以銨鹽做為添加劑提升反式鈣鈦礦太陽能電池元件之效率
論文名稱(外文):Performance Enhancement of P-I-N Inverted Perovskite Solar Cells by Using Ammonium Salts as Additives
指導教授:詹立行
指導教授(外文):Li-Hsin Chan
口試委員:林志祥陳建亨
口試日期:2020-07-30
學位類別:碩士
校院名稱:國立暨南國際大學
系所名稱:應用材料及光電工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:109
語文別:中文
論文頁數:99
中文關鍵詞:反式鈣鈦礦太陽能電池添加劑工程氯化銨二甲基氯化銨鹽三甲基氯化銨鹽四甲基氯化銨鹽
外文關鍵詞:inverted perovskite solar celladditive engineeringammonium chloridedimethylammonium chloridetrimethylamine chloridetetramethylammonium chloride
DOI:doi:10.6837/ncnu202000249
相關次數:
  • 被引用被引用:0
  • 點閱點閱:115
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究採用添加劑工程,針對氯化銨系列的四種銨鹽作為鈣鈦礦主動層的添加劑,分別是氯化銨鹽、二甲基氯化銨鹽、三甲基氯化銨鹽和四甲基氯化銨鹽,並分別命名為AC、DMAC、TMAC和TeMAC。我們系統性的探討四種添加劑於反式鈣鈦礦太陽能電池中的摻雜比例與其光電特性及元件效率之關係。先前的文獻報導中指出,將具有兩性離子結構的胺基鹵化物作為鈣鈦礦太陽能電池中的鈍化層,能有效降低薄膜中的陷阱密度,而改善了鈣鈦礦主動層的品質,並提升了太陽能電池的效率。本研究針對胺基鹵化物的這一優勢,選擇了四種氯化銨系列的銨鹽作為添加劑,加入到鈣鈦礦前體溶液中。四種銨鹽添加劑會因為胺基上氫原子和甲基數目的不同,而有不同的溶解程度,透過分別調整四種添加劑於前體溶液中的摻混比例,可得到添加劑元件的最適化光伏表現。前體溶液中的添加劑能與溶劑和鈣鈦礦材料形成中間相,延遲了結晶的過程並從而獲得更高品質的鈣鈦礦薄膜。研究結果顯示,不同添加劑摻入元件後,其元件效率均有增益,相較於參考元件其增益值在11~36 %之間。在四種添加劑中,AC添加劑的元件展現最好的光電轉換效率,當AC的添加濃度為3 wt%時,獲得了開路電壓值為922.03 mV,短路電流密度值為22.66 mA/cm2,填充因子為69.30 %和光電轉換效率值為14.48 %,其光電轉換效率相比於參考元件增強了36 %。我們的研究證實了銨鹽的添加劑工程能有效的提升鈣鈦礦太陽能電池的元件表現。
In this study we ultilized the additive engineering using the ammonium chloride series salts as additives for the perovskite active layer. They are ammonium chloride, dimethylammonium chloride, trimethylamine chloride and tetramethylammonium chloride respectively. The four additives are named AC, DMAC, TMAC and TeMAC. We systematically investigated the relationships between thedoping ratio of the four additives in the inverted perovskite solar cell with the photoelectric characteristics and devices performance.
In previous literature report, the amine halide with zwitterion structure as the passivation layer in the perovskite solar cell can effectively reduced the trap density in the thin film, improving the quality of the perovskite active layer and enhancing the efficiency performance of the solar cell. Taking the advantage of amine halides, we selected four ammonium chloride series salts as additives into the perovskite precursor solution. The four ammonium salts exhibit various solubility owing to the different number of hydrogen and methyl groups on the amine group. By adjusting the doping ratio of four additives in the precursor solutions respectively, the optimal photovoltaic performances for the additives-treated devices were achiered. The additive in the precursor solution formed an intermediate phase between the solvent and the perovskite material, retarding the crystallization process and thus a higher quality perovskite film was obtained. As a result, the devices efficiencies were increased when vaeious additives were incorporated into the devices, and the enhancements were in the range of 11–36 % as compared to the reference device. Among the four additives, the devices with AC additives showed the best power conversion efficiency (PCE). When 3 wt% AC additive was added, an open circuit voltage of 922.03 mV, short circuit current density of 22.66 mA/cm2, FF of 69.30 % and a PCE of 14.48 % was obtained, which was 36 % enhancement than that of the reference device. Our study confirmed the additive engineering using ammonium salts effectively improved the devices performance of perovskite solar cells.

目次
摘要 . ...........................................................i
Abstract .......................................................ii
目次 ............................................................iv
表目次 .........................................................vii
圖目次 ........................................................viii
第一章、緒論 ......................................................1
1.1前言...........................................................1
1.2太陽能電池的發展與原理介紹 ......................................3
1.3太陽能電池的種類簡介 ............................................5
1.3.1第一世代太陽能電池 ............................................5
1.3.2第二世代太陽能電池 ............................................6
1.3.3第二世代太陽能電池 ............................................7
1.4鈣鈦礦太陽能電池簡介.............................................8
1.4.1 n-i-p型鈣鈦礦太陽能電池.......................................9
1.4.2 p-i-n型鈣鈦礦太陽能電池......................................11
第二章、文獻回顧...................................................13
2.1 添加劑工程....................................................13
2.2 季胺鹵化物和叔胺鹵化物添加劑....................................13
2.3 含胺官能基的小分子添加劑........................................19
2.4 氯鹽添加劑.................................................... 24
第三章、研究動機...................................................32
第四章、實驗部分...................................................34
4.1 實驗所用之材料、溶劑...........................................34
4.2 實驗儀器......................................................36
4.3 鈣鈦礦太陽能電池元件製程........................................38
4.3.1 ITO透明導電玻璃之清洗 .......................................38
4.3.2 電洞傳輸層之塗佈.............................................39
4.3.3 鈣鈦礦主動層的製作...........................................39
4.3.4 電子傳輸層之塗佈.............................................39
4.3.5 金屬電極的蒸鍍. .............................................40
第五章、結果與討論 ...............................................41
5.1 AC添加劑應用於鈣鈦礦太陽能電池..................................41
5.1.2 添加AC之鈣鈦礦薄膜表面形態分析................................44
5.1.3 添加AC之鈣鈦礦薄膜結晶度分析..................................47
5.1.4 添加AC之鈣鈦礦薄膜光物理特性分析..............................48
5.2 DMAC添加劑應用於鈣鈦礦太陽能電池................................52
5.2.2 添加DMAC之鈣鈦礦薄膜表面形態分析..............................55
5.2.3 添加DMAC之鈣鈦礦薄膜結晶度分析................................58
5.2.4 添加DMAC之鈣鈦礦薄膜光物理特性分析............................59
5.3 TMAC添加劑應用於鈣鈦礦太陽能電池................................63
5.3.2 添加TMAC之鈣鈦礦薄膜表面形態分析..............................66
5.3.3 添加TMAC之鈣鈦礦薄膜結晶度分析................................69
5.3.4 添加TMAC之鈣鈦礦薄膜光物理特性分析............................71
5.4 TeMAC添加劑應用於鈣鈦礦太陽能電池...............................75
5.4.2 添加TeMAC之鈣鈦礦薄膜表面形態分析.............................78
5.4.3 添加TeMAC之鈣鈦礦薄膜結晶度分析...............................81
5.4.4 添加TeMAC之鈣鈦礦薄膜光物理特性分析...........................83
5.5 綜合分析..................................................... 87
第六章、結論 ......................................................92
參考文獻 .........................................................93


表目次
表2.1 不同添加比例的TACl鈣鈦礦電池之光伏參數表......................17
表2.2 添加tBP之鈣鈦礦元件光伏參數表................................22
表2.3 添加Thiazole之鈣鈦礦元件光伏參數表...........................24
表2.4 CH3NH3Cl和NH4Cl的鈣鈦礦電池之光伏參數表......................26
表2.5 不同添加比例的NH4Cl鈣鈦礦電池之光伏參數表.....................28
表2.6 A、B、C三種鈣鈦礦元件之光伏參數..............................31
表5.1 添加AC之鈣鈦礦元件之光伏參數表...............................42
表5.2 添加DMAC之鈣鈦礦元件之光伏參數表.............................53
表5.3 添加TMAC之鈣鈦礦元件之光伏參數表.............................64
表5.4 添加TeMAC之鈣鈦礦元件之光伏參數表............................76
表5.5 四種添加劑的光伏參數比較表...................................88
表5.6 四種添加劑元件的開路電壓比較表................................88
表5.7 四種添加劑元件的短路電流比較表................................91


圖目次
圖1.1 民國108~114年能源發電結構配比圖 ..............................1
圖1.2 太陽輻射光譜.................................................4
圖1.3 太陽能電池的基本工作原理示意圖.................................4
圖1.4 太陽能電池的種類和其效率發展...................................5
圖1.5 三個世代太陽能電池之發電效率與成本示意圖........................6
圖1.6 鈣鈦礦晶格結構圖..............................................9
圖1.7 n-i-p型鈣鈦礦太陽能電池結構 ..................................10
圖1.8 p-i-n型鈣鈦礦太陽能電池結構 ..................................11
圖1.9 PEDOT:PSS分子結構圖..........................................12
圖1.10 PCBM分子結構圖 ............................................12
圖2.1 PCBM與兩親性分子Tween20、PE-PEG和L-α-phosphatidylcholine
之結構圖 ...................................................14
圖2.2 Choline chloride、Choline iodide之結構圖 ....................15
圖2.3 材料能階示意圖和TACl、PCDTBT1分子結構圖 ......................16
圖2.4 不同添加比例的TACl鈣鈦礦之表面SEM圖 ..........................18
圖2.5 不同添加比例的TACl鈣鈦礦之PL光譜圖 ...........................18
圖2.6 不同添加比例的TACl鈣鈦礦之XRD圖...............................18
圖2.7 多功能分子S、N、SN之分子結構圖 ...............................20
圖2.8 添加S、N、SN分子之鈣鈦礦SEM圖 ..............................20
圖2.9 添加S、N、SN分子之鈣鈦礦XRD圖 ..............................20
圖2.10 鈣鈦礦SEM表面圖(a)含有tBP添加劑(b)未添加.....................21
圖2.11 添加tBP之鈣鈦礦XRD圖 .......................................22
圖2.12 鈣鈦礦前體溶液到形成鈣鈦礦結晶之反應示意圖 ...................23
圖2.13 Thiazole和鈣鈦礦前體溶液之FTIR光譜圖 .......................23
圖2.14 CH3NH3Cl和NH4Cl的鈣鈦礦薄膜之UV-vis吸收光譜圖 ...............25
圖2.15 CH3NH3Cl和NH4Cl的鈣鈦礦薄膜之XRD圖..........................25
圖2.16 CH3NH3PbI3-xClx鈣鈦礦元件之SEM表面圖........................27
圖2.17 CH3NH3PbI3-xClx鈣鈦礦元件之JV曲線與效率.....................27
圖2.18 不同添加比例的NH4Cl鈣鈦礦電池之IPCE光譜圖....................29
圖2.19 不同添加比例的NH4Cl鈣鈦礦薄膜之OM圖(a) 0 mg, (b) 1 mg, (c) 3 mg,
(d) 5 mg 的NH4Cl .........................................29
圖2.20 A、B、C三種鈣鈦礦薄膜之XRD圖................................30
圖2.21 A、B、C三種鈣鈦礦薄膜之UV-Vis吸收光譜圖......................31
圖3.1 添加劑AC、DMAC、TMAC、TeMAC的分子結構圖......................33
圖5.1 添加AC之鈣鈦礦元件J-V曲線圖..................................43
圖5.2 添加AC之鈣鈦礦元件IPCE曲線圖.................................43
圖5.3 無添加劑之鈣鈦礦薄膜SEM圖....................................45
圖5.4 添加AC (0.5 wt%)之鈣鈦礦薄膜SEM圖............................45
圖5.5 添加AC (1 wt%)之鈣鈦礦薄膜SEM圖..............................45
圖5.6 添加AC (3 wt%)之鈣鈦礦薄膜SEM圖..............................46
圖5.7 添加AC (5 wt%)之鈣鈦礦薄膜SEM圖..............................46
圖5.8 鈣鈦礦薄膜的SEM橫截面圖,鈣鈦礦薄膜沉積在塗有PEDOT:PSS的ITO
玻璃基板。左圖是無添加劑的鈣鈦礦薄膜,右圖是添加AC (5 wt%)的鈣鈦
礦薄膜.....................................................46
圖5.9 添加AC之鈣鈦礦薄膜X光繞射圖..................................48
圖5.10 添加AC之鈣鈦礦主動層UV-Vis 吸收光譜圖.......................49
圖5.11 在電洞傳輸層上旋塗不同AC添加濃度的鈣鈦礦薄膜PL光譜圖..........50
圖5.12 Ref.與AC (3%)之純電洞元件之I-V特性曲線圖....................51
圖5.13 添加DMAC之鈣鈦礦元件J-V曲線圖...............................54
圖5.14 添加DMAC之鈣鈦礦元件IPCE曲線圖..............................54
圖5.15 添加DMAC (0.5 wt%)之鈣鈦礦薄膜SEM圖.........................56
圖5.16 添加DMAC (1 wt%)之鈣鈦礦薄膜SEM圖...........................56
圖5.17 添加DMAC (3 wt%)之鈣鈦礦薄膜SEM圖...........................57
圖5.18 添加DMAC (5 wt%)之鈣鈦礦薄膜SEM圖...........................57
圖5.19 添加DMAC (5 wt%)之鈣鈦礦薄膜的SEM橫截面圖,鈣鈦礦薄膜沉積在塗
有PEDOT:PSS的ITO玻璃基板上.................................57
圖5.20 添加DMAC之鈣鈦礦薄膜X光繞射圖...............................59
圖5.21 添加DMAC之鈣鈦礦主動層UV-Vis 吸收光譜圖.....................60
圖5.22 在電洞傳輸層上旋塗不同DMAC添加濃度的鈣鈦礦薄膜PL光譜圖........61
圖5.23 Ref.與DMAC (0.5%)之純電洞元件之I-V特性曲線圖................62
圖5.24 添加TMAC之鈣鈦礦元件J-V曲線圖..............................65
圖5.25 添加TMAC之鈣鈦礦元件IPCE曲線圖.............................65
圖5.26 添加TMAC (0.5 wt%)之鈣鈦礦薄膜SEM圖........................67
圖5.27 添加TMAC (1 wt%)之鈣鈦礦薄膜SEM圖..........................67
圖5.28 添加TMAC (3 wt%)之鈣鈦礦薄膜SEM圖..........................68
圖5.29 添加TMAC (5 wt%)之鈣鈦礦薄膜SEM圖..........................68
圖5.30 添加TMAC (5 wt%)之鈣鈦礦薄膜的SEM橫截面圖,鈣鈦礦薄膜沉積在塗
有PEDOT:PSS的ITO玻璃基板上................................68
圖5.31 添加TMAC之鈣鈦礦薄膜X光繞射圖..............................70
圖5.32 添加TMAC之鈣鈦礦主動層UV-Vis 吸收光譜圖.....................72
圖5.33 在電洞傳輸層上旋塗不同TMAC添加濃度的鈣鈦礦薄膜PL光譜圖.......73
圖5.34 Ref.與TMAC (1%)之純電洞元件之I-V特性曲線圖.................74
圖5.35 TeMAC鈣鈦礦前體溶液照片,左瓶為TeMAC (5%)、右瓶為TeMAC
(3%).....................................................76
圖5.36 添加TeMAC之鈣鈦礦元件J-V曲線圖.............................77
圖5.37 添加TeMAC之鈣鈦礦元件IPCE曲線圖............................77
圖5.38 添加TeMAC (0.1 wt%)之鈣鈦礦薄膜SEM圖.......................79
圖5.39 添加TeMAC (0.3 wt%)之鈣鈦礦薄膜SEM圖.......................79
圖5.40 添加TeMAC (0.5 wt%)之鈣鈦礦薄膜SEM圖.......................80
圖5.41 添加TeMAC (1 wt%)之鈣鈦礦薄膜SEM圖.........................80
圖5.42 添加TeMAC (5 wt%)之鈣鈦礦薄膜的SEM橫截面圖,鈣鈦礦薄膜沉積在塗
有PEDOT:PSS的ITO玻璃基板上................................80
圖5.43 添加TeMAC之鈣鈦礦薄膜X光繞射圖.............................82
圖5.44 添加TeMAC之鈣鈦礦主動層UV-Vis 吸收光譜圖...................84
圖5.45 在電洞傳輸層上旋塗不同TeMAC添加濃度的鈣鈦礦薄膜PL光譜圖 .....85
圖5.46 Ref.與TeMAC (0.1%)之純電洞元件之I-V特性曲線圖..............86
圖5.47 添加劑AC、DMAC、TMAC、TeMAC的分子結構圖....................87
圖5.48 四種添加劑的表面形態比較圖.................................90

參考文獻
一、中文部分
1.林明獻 編著, “太陽電池技術入門” ,全華圖書出版,2016年4月。
2.經濟部能源局,107年全國電力資源供需報告。
3.鄭晃忠、戴寶通 主編, “太陽能電池技術手冊” ,台灣電子材料與元件協會出版,2008年6月。
4.沈輝、曾祖勤 主編 “太陽能光電技術” ,五南圖書出版,2008年2月。
5.黃惠良、蕭錫鍊、周明奇、林堅楊、江雨龍、李威儀、李世昌、林惟芳,“太陽電池”,五南圖書出版,2008年12月。
6.美國國家再生能源研究室,https://www.nrel.gov/pv/cell-efficiency.html.
7.吳春桂,反式鈣鈦礦太陽能電池的研究,自然科學簡訊第三十一卷第四期,2019年11月。
8.陳新傑、岳宏霖、莊名凱、陳方中,鈣鈦礦太陽能電池 Introduction to Perovskite Solar Cells,奈米通訊第二十四卷,2017年。
二、英文部分
9.Wu, H. W.; Emadi, A.; de Graaf, G.; Leijtens, J.; Wolffenbuttel, R. F. Design and Fabrication of an Albedo Insensitive Analong Sun Sensor, Procedia Engineering, 2011, 25, 527−530.
10.Purnomo Sidi Priambodo, Nji Raden Poespawati, Djoko Hartanto, “Solar Cells Silicon Wafer-Based Technologies”, October, 2011.
11.Martin A. Green, “Third Generation Photovoltaics”, Springer, 2003.
12.Luo, S.; Daoud, W. A. Recent progress in organic-inorganic halide perovskite solar cells: Mechanisms and material design. J. Mater. Chem. A, 2015, 3, 8992–9010.
13.Kojima, A.; Teshima, K.; Shirai, K.; Miyasaka, T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc, 2009, 131, 6050–6051.
14.Brenner, T. M.; Egger, D. A.; Kronik, L.; Hodes, G.; Cahen, D. Hybrid organic—inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties . Nat. Reviews Materials, 2016, 1, 15007.
15.Sum, T. C.; Mathews, N. Advancements in perovskite solar cells: photophysics behind the photovoltaics . Energy Environ. Sci, 2014, 7, 2518– 2534.
16.Oga, H.; Saeki, A.; Ogomi, Y.; Hayase, S.; Seki, S. Improved understanding of the electronic and energetic landscapes of perovskite solar cells: high local charge carrier mobility, reduced recombination, and extremely shallow traps. J. Am. Chem. Soc, 2014, 136, 13818– 13825.
17.Kim, H. S.; Lee, C. R.; Im, J. H.; Lee, K. B.; Moehl, T.; Marchioro, A.; Moon, J. S.; Humphry-Baker, R.; Yum, J. H.; Moser, J. E.; Grätzel, M.; Park, N. G. Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. Sci. Rep, 2012, 2, 591.
18.Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science, 2012, 338, 643– 647.
19.Im, J. H.; Luo, J.; Franckevičius, M.; Pellet, N.; Gao, P.; Moehl, T.; Zakeeruddin, S. M.; Nazeeruddin, M. K.; Grätzel, M.; Park, N. G. Nanowire provskite solar cell. Nano Lett, 2015, 15, 2120–2126.
20.Li, X.; Bi, D.; Yi, C.; Décoppet, J. D.; Luo, J.; Zakeeruddin, S. M.; Hagfeldt, A.; Grätzel, M. A Vacuum Flash-Assisted Solution Process for High-Efficiency Large-Area Perovskite Solar Cells, Science, 2016, 353, 58–62.
21.Xiao, Z. G.; Q. Dong, F.; Bi, C.; Shao, Y. C.; Yuan, Y. B.; Huang, J. S. The roles of alkyl halide additives in enhancing perovskite solar cell performance, Adv. Mater, 2014, 26, 6503–6509.
22.Cao, X.; Zhi, L.; Li, Y.; Fang, F.; Cui, X.; Ci, L.; Ding, K.; Wei, J. Fabrication of Perovskite Films with Large Columnar Grains via Solvent-Mediated Ostwald Ripening for Efficient Inverted Perovskite Solar Cells, ACS Appl. Energy Mater, 2018, 1, 868–875.
23.Chiang, C. H.; Wu, C. G. A Method for the Preparation of Highly Oriented MAPbI3 Crystallites for High-Efficiency Perovskite Solar Cells to Achieve an 86% Fill Factor, ACS Nano, 2018, 12, 10355– 10364.
24.Long, R.; Liu, J.; Prezhdo, O. V. Unravelling the effects of grain boundary and chemical doping on electron–hole recombination in CH3NH3PbI3 perovskite by time-domain atomistic simulation. J. Am. Chem. Soc, 2016, 138, 3884–3890.
25.Ye, S.; Rao, H.; Zhao, Z.; Zhang, L.; Bao, H.; Sun, W.; Li, Y.; Gu, F.; Wang, J.; Liu, Z.; Bian, Z.; Huang, C. A breakthrough efficiency of 19.9% obtained in inverted perovskite solar cells by using an efficient trap state passivator Cu(thiourea)I. J. Am. Chem. Soc, 2017, 139, 7504–7512.
26.Koscher, B. A.; Swabeck, J. K.; Bronstein, N. D.; Alivisatos, A. P. Essentially trap-free CsPbBr3 colloidal nanocrystals by postsynthetic thiocyanate surface treatment. J. Am. Chem. Soc, 2017, 139, 6566–6569.
27.Zheng, X.; Chen, B.; Dai, J.; Fang, Y.; Lin, Y.; Wei, H.; Zeng, X. C.; Huang, J. Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations. Nat. Energy, 2017, 2, 17102.
28.Cao, J.; Yin, J.; Yuan, S.; Zhao, Y.; Li, J.; Zheng, N. Thiols as interfacial modifiers to enhance the performance and stability of perovskite solar cells. Nanoscale, 2015, 7, 9443–9447.
29.Wang, Q.; Dong, Q.; Li, T.; Gruverman, A.; Huang, J. Thin insulating tunneling contacts for efficient and water-resistant perovskite solar cells. Adv. Mater, 2016, 28, 6734–6739.
30.Hailegnaw, B.; Adam, G.; Wielend, D.; Pedarnig, J. D.; Sariciftci, N. S.; Scharber, M. C. Acetylacetone improves the performance of mixed halide perovskite solar cells. J. Phys. Chem. C, 2019, 123, 23807–23816.
31.Cai, F.; Yan,Y.; Yao, J.; Wang, P.; Wang, H.; Gurney, R. S. ; Liu, D.; Wang, T. Ionic Additive Engineering Toward High‐Efficiency Perovskite Solar Cells with Reduced Grain Boundaries and Trap Density. Adv. Funct. Mater, 2018, 28, 1801985.
32.Zhao, Y.; Zhu, K. CH3NH3Cl-assisted one-step solution growth of CH3NH3PbI3: structure, charge-carrier dynamics, and photovoltaic properties of perovskite solar cells. J. Phys. Chem. C, 2014, 118, 9412–9418.
33.Bi, D.; Li, X.; Milić, J. V.; Kubicki, D. J.; Pellet, N.; Luo, J.; LaGrange, T.; Mettraux, P.; Emsley, L.; Zakeeruddin , S. M.; Grätzel, M. Multifunctional molecular modulators for perovskite solar cells with over 20% efficiency and high operational stability. Nature Commun, 2018, 9, 4482.
34.Wu, Y.; Shi, X. Q.; Ding, X. H.; Ren, Y. K.; Hayat, T.; Alsaedi, A.; Ding, Y.; Xu, P.; Dai, S. Y. Incorporating 4-tert-Butylpyridine in an Antisolvent: A Facile Approach to Obtain Highly Efficient and Stable Perovskite Solar Cells. ACS Appl. Mater. Interfaces, 2018, 10, 3602−3608.
35.Zhang, H.; Chen, H.; Stoumpos, C. C.; Ren, J.; Hou, Q.; Li, X.; Li, J.; He, H.; Lin, H.; Wang, J.; Hao, F.; Kanatzidis, M. G. Thiazole-Induced Surface Passivation and Recrystallization of CH3NH3PbI3 Films for Perovskite Solar Cells With Ultrahigh Fill Factors. ACS Appl Mater Interfaces, 2018, 49, 42436– 42443.
36.Zuo, C.; Ding, L. An 80.11% FF record achieved for perovskite solar cells by using the NH4Cl additive. Nanoscale, 2014, 6, 9935– 9938.
37.Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J. P.; Leiltens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J. Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber. Science, 2013, 342, 341– 344.
38.Xing, G.; Mathews, N.; Sun, S.; Lim, S.S.; Lam, Y. M.; Grätzel, M.; Maisalkar, S.; Sum, T. C. Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3. Science, 2013, 342, 344– 347.
39.Chen, Q.; Zhou, H.; Fang, Y.; Stieg, A. Z.; Song, T. B.; Wang, H. H.; Xu, X.; Liu, Y.; Lu, S.; You, J.; Sun, P.; McKay, J.; Goorsky, M. S.; Yang, Y. The optoelectronic role of chlorine in CH3NH3PbI3(Cl)-based perovskite solar cells. Nature Communications, 2015, 6, 7269.
40.Oku, T.; Ohishi, Y.; Ueoka, N. Highly (100)-oriented CH3NH3PbI3(Cl) perovskite solar cells prepared with NH4Cl using an air blow method. RSC Adv. 2018, 8, 10389– 10395.
41.Dong, Q.; Fang, Y.; Shao, Y.; Mulligan, P.; Qiu, J.; Cao, L.; Huang, J. Electron-Hole Diffusion Lengths > 175 μm in Solution-Grown CH3NH3PbI3 Single Crystals. Science, 2015, 347, 967–970.
42.Wang, P.; Jiang, Q.; Zhao, Y.; Chen, Y.; Chu, Z.; Zhang, X.; Zhou, Y.; You, J. Synergistic Improvement of Perovskite Film Quality for Efficient Solar Cells via Multiple Chloride Salt Additives, Sci. Bull, 2018, 63, 726–731.
43.Kara, K.; Kara, K. A.; Kırbıyık, C.; Ersoz, M.; Usluer, O.; Brisenog, A. L.; Kus, M. Solvent washing with toluene enhances efficiency and increases reproducibility in perovskite solar cells, RSC Adv, 2016, 6, 26606–26611.
44.Wu, W. Q.; Wang, Q.; Fang, Y.; Shao, Y.; Tang, S.; Deng, Y.; Lu, H.; Liu, Y.; Li, T.; Yang, Z.; Gruverman, A.; Huang, J., Molecular Doping Enabled Scalable Blading of Efficient Hole-Transport-Layer-Free Perovskite Solar Cells, Nat. Commun. 2018, 9, 1625.
45.Zuo, C.; Vak, D.; Angmo, D.; Ding, L.; Gao, M., One-step roll-to-roll air processed high efficiency perovskite solar cells, Nano Energy, 2018, 46, 185–192.
46.Dualeh, A.; Tétreault, N.; Moehl, T.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. Effect of Annealing Temperature on Film Morphology of Organic−Inorganic Hybrid Pervoskite Solid-State Solar Cells, Adv. Funct. Mater, 2014, 24, 3250– 3258.
47.Huang, L. B.; Su, P. Y.; Liu, J. M.; Huang, J. F.; Chen, Y. F.; Qin, S.; Guo, J.; Xu, Y. W.; Su, C. Y., Interface engineering of perovskite solar cells with multifunctional polymer interlayer toward improved performance and stability, J. Power Sources, 2018, 378, 483– 490.
48.Zhu, W.; Kang, L.; Yu, T.; Lv, B.; Wang, Y.; Chen, X.; Wang, X.; Zhou, Y.; Zou, Z. Facile Face-Down Annealing Triggered Remarkable Texture Development in CH3NH3PbI3 Films for High-Performance Perovskite Solar Cells, ACS Appl. Mater. Interfaces, 2017, 9, 6104−6113.
49.Pockett, A.; Eperon, G. E.; Peltola, T.; Snaith, H. J.; Walker, A.; Peter, L. M.; Cameron, P. J. Characterization of Planar Lead Halide Perovskite Solar Cells by Impedance Spectroscopy, Open-Circuit Photovoltage Decay, and Intensity-Modulated Photovoltage/Photocurrent Spectroscopy, J. Phys. Chem. C, 2015, 119, 3456−3465.
50.Kieslich, G.; Sun, S.; Cheetham, A. K. Solid-state principles applied to organic–inorganic perovskites: new tricks for an old dog, Chem. Sci, 2014, 5, 4712–4715.
51.Mancini, A.; Quadrelli, P.; Amoroso, G.; Milanese, C.; Boiocchi, M.; Sironi, A.; Patrini, M.; Guizzetti, G.; Malavasi, L. Synthesis, structural and optical characterization of APbX3 (A = methylammonium, dimethylammonium, trimethylammonium; X = I, Br,Cl) hybrid organic-inorganic materials, J Solid State Chem, 2016, 240, 55–60.
52.Li, B.; Fei, C.; Zheng, K.; Qu, X.; Pullerits, T.; Cao, G.; Tian, J. Constructing water-resistant CH3NH3PbI3 perovskite films via coordination interaction, J. Mater. Chem. A, 2016, 4, 17018–17024.

電子全文 電子全文(網際網路公開日期:20251229)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top