一、中文部分
1.湯祐任(2018),應用資料探勘於臺北市房地產實價登錄資料,臺北市立大學數學系數學教育研究所碩士論文。2.顏嘉伶(2018),我國實價登錄制度與不動產交易資訊透明度之問題研析,新北市政府地政局地價科。
3.黃惠芬 (2017),以類神經網路方法建構房價估價模型-以高雄市實價登錄資料為例,國立高雄應用科技大學金融資訊研究所碩士論文。
4.謝孟勳(2017),實價登錄資料庫結合類神經網路推估房地產市價,國立中興大學土木工程學系碩士論文。
5.徐沛曛(2017),不動產實價登錄法制之研究—以實價登錄地政三法之修正為中心,東吳大學法學院法律學系碩士論文。6.柯采宜(2017),應用支援向量回歸建構台北市實價登錄房價預測系統,輔仁大學資訊管理學系碩士論文。7.歐陽榆(2015),從各國不動產制度看我國實價登錄,新北市汐止地政事務所。
8.花敬群(2014),實價登錄實施成效與改善建議,台灣地區2014房地產年鑑。
9.邱司杰(2014),基於實價登錄的房價模型研究,國立交通大學網路工程研究所碩士論文。10.陳珍華(2014),巨量資料 : 公開資料與房仲網的房價分析,交通大學資訊學院資訊學程碩士論文。11.林昭妏(2013),實價登錄之類神經網路估價模型-以高雄市農16及美術館區大樓為例,長榮大學土地管理與開發學系碩士論文。二、英文部分
1.Singh, A., Sharma, A., & Dubey, G. (2020). Big data analytics predicting real estate prices. International Journal of System Assurance Engineering and Management, 1-12.
2.Ahmadi, M. H., Ahmadi, M. A., Nazari, M. A., Mahian, O., & Ghasempour, R. (2019). A proposed model to predict thermal conductivity ratio of Al2O3 / EG nanofluid by applying least squares support vector machine (LSSVM) and genetic algorithm as a connectionist approach. Journal of Thermal Analysis and Calorimetry, 135(1), 271-281.
3.Manganelli, B., De Mare, G., & Nesticò, A. (2015, June). Using genetic algorithms in the housing market analysis. In International Conference on Computational Science and Its Applications (pp. 36-45). Springer, Cham..
4.Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression trees. Monterey, Calif., USA: Wadsworth.
5.Byeonghwa Park, Jae Kwon Bae (2015). Using machine learning algorithms for housing price prediction: The case of Fairfax County, Virginia housing data. Expert Systems with Applications, 42, 2928-2934.
6.Chan, C. L., Chen, C. L., Ting, H. W., & Phan, D. V. (2018). An agile mortality prediction model: hybrid logarithm least-squares support vector regression with cautious random particle swarm optimization. International Journal of Computational Intelligence Systems, 11(1), 873-881.
7.Chen, L. G., Chiang, H. D., Dong, N., & Liu, R. P. (2016). Group-based chaos genetic algorithm and non-linear ensemble of neural networks for short-term load forecasting. IET Generation, Transmission & Distribution, 10(6), 1440-1447.
8.Chun-Chang Lee, Chih-Min Liang, Jian-Zheng Chen & Cheng-Huang Tung (2018). Effects of the housing price to income ratio on tenure choice in Taiwan: forecasting performance of the hierarchical generalized linear model and traditional binary logistic regression model. Journal of Housing and the Built Environment,33,675–694.
9.Evgeny A. Antipov, Elena B. Pokryshevskaya (2012). Mass appraisal of residential apartments: An application of Random forest for valuation and a CART-based approach for model diagnostics. Expert Systems with Applications, 39, 1772-1778.
10.Feng, T., Zhong, Y., Liu, X., Ma, Y., & Liu, C. (2018, July). Application of dam deformation prediction based on LSSVR optimized by ASA-ABC. In IOP Conference Series: Earth and Environmental Science (Vol. 170, No. 2, p. 022076). IOP Publishing.
11.Hoque, M. S., Mukit, M., Bikas, M., & Naser, A. (2012). An implementation of intrusion detection system using genetic algorithm. arXiv preprint arXiv:1204.1336.
12.Li, J., Li, X., Wang, L., Li, Y., & Wang, K. (2019, May). Prediction of PM2. 5 Concentration Based on PSO-LSSVR. In 2019 IEEE 8th Data Driven Control and Learning Systems Conference (DDCLS) (pp. 723-727). IEEE.
13.Lewis, C. D. (1982). Industrial and business forecasting methods: A practical guide to exponential smoothing and curve fitting. Butterworth-Heinemann.
14.Keshavarz, S., & Javidan, R. (2011). Software quality control based on genetic algorithm. International Journal of Computer Theory and Engineering, 3(4), 579.
15.Kuşan, H., Aytekin, O., & Özdemir, İ. (2010). The use of fuzzy logic in predicting house selling price. Expert systems with Applications, 37(3), 1808-1813.
16.Kang, H., & Lee, K. (2019). Short-term Forecast Model of Apartment Jeonse Prices using Search Frequencies of News Article Keywords. KSCE Journal of Civil Engineering, 23(12), 4984-4991.
17.LasseBork, Stig V. Møller (2015). Forecasting house prices in the 50 states using Dynamic Model Averaging and Dynamic Model Selection. International Journal of Forecasting,31, 63-78.
18.Li, Z., & Li, L. (2019, February). A Hybrid Model of Least Squares Support Vector Regression Optimized by Particle Swarm Optimization for Electricity Demand Prediction. In Proceedings of the 2019 11th International Conference on Machine Learning and Computing (pp. 91-103).
19.Ma, X., Xu, S., An, F., & Lin, F. (2018). A novel real-time image restoration algorithm in edge computing. Wireless Communications and Mobile Computing, 2018.
20.Segnon, M., Gupta, R., Lesame, K., & Wohar, M. E. (2020). High-Frequency Volatility Forecasting of US Housing Markets. The Journal of Real Estate Finance and Economics, 1-35.
21.Min Hwang & John M. Quigley (2010). Housing Price Dynamics in Time and Space: Predictability, Liquidity and Investor Returns. The Journal of Real Estate Finance and Economics, 41, 3–23.
22.Mo, H., Xiong, L., & Lu, R. Y. (2018, April). Material Demand Combination Forecasting Model Based on EMD-PSO-LSSVR. In 2018 International Conference on Education Reform and Management Science (ERMS 2018). Atlantis Press.
23.Bing, Q., Qu, D., Chen, X., Pan, F., & Wei, J. (2019). Arterial travel time estimation method using SCATS traffic data based on KNN-LSSVR model. Advances in Mechanical Engineering, 11(5), 1687814019841926.
24.Adnan, R. M., Liang, Z., Yuan, X., Kisi, O., Akhlaq, M., & Li, B. (2019). Comparison of LSSVR, M5RT, NF-GP, and NF-SC models for predictions of hourly wind speed and wind power based on cross-validation. Energies, 12(2), 329.
25.Rangan Gupta, Alain Kabundi, Stephen M. Miller (2011). Forecasting the US real house price index: Structural and non-structural models with and without fundamentals. Economic Modelling, 28(4), 2013-2021.
26.Rizopoulos, D., & Esztergár-Kiss, D. (2020). A Method for the Optimization of Daily Activity Chains Including Electric Vehicles. Energies, 13(4), 906.
27.Wen, S., Li, H. R., Han, H. H., & Yu, X. (2019, October). A Glucose Prediction Model based on Variational Mode Decomposition and Least Squares Support Vector Regression. In IOP Conference Series: Materials Science and Engineering (Vol. 646, No. 1, p. 012018). IOP Publishing.
28.Santos, J., Ferreira, A., & Flintsch, G. (2019). An adaptive hybrid genetic algorithm for pavement management. International Journal of Pavement Engineering, 20(3), 266-286.
29.Shengwei, W., Yanni, L., Jiayu, Z., & Jiajia, L. (2017). Agricultural price fluctuation model based on SVR. In 2017 9th International Conference on Modelling, Identification and Control (ICMIC) (pp. 545-550). IEEE.
30.Vasilios Plakandaras, Rangan Gupta, Periklis Gogas & Theophilos Papadimitriou (2015). Forecasting the U.S. real house price index.Economic Modelling, 45, 259-267.
31.Vilius Kontrimas, Antanas Verikas (2011). The mass appraisal of the real estate by computational intelligence. Applied Soft Computing, 11, 443-448
32.Del Giudice, V., De Paola, P., & Forte, F. (2017). Using genetic algorithms for real estate appraisals. Buildings, 7(2), 31.
33.Lee, W. T., Chen, J. J., & Chen, K. (2013). Determination of Housing Price in Taipei City Using Fuzzy Adaptive Networks. In Proceedings of the International MultiConference of Engineers and Computer Scientists (Vol. 2).
34.Yuansheng Huang, Yuwei Wang, Shu Gai (2011). The Application and Research of a New Combinatorial Analysis and Forecasting Method in Real Estate Area based on Grey System Theory and Multivariate Linear Regression. Procedia Engineering,15,4532-4537.
35.Zhengxiang, Y., Guimin, X., & Jinwen, W. (2010, May). Transport volume forecast based on GRNN network. In 2010 2nd International Conference on Future Computer and Communication (Vol. 3, pp. V3-629). IEEE.
36.Chen, Z. H., Tsai, C. T., Yuan, S. M., Chou, S. H., & Chern, J. (2015, August). Big data: Open data and realty website analysis. In 2015 8th International Conference on Ubi-Media Computing (UMEDIA) (pp. 84-88). IEEE.
37.Zhi, H., & Liu, S. (2019). Face recognition based on genetic algorithm. Journal of Visual Communication and Image Representation, 58, 495-502.
三、網路部分
1.德國房地產市場概況與公證人角色
https://blog.xuite.net/noeljou/twblog/122403375-%E5%BE%B7%E5%9C%8B%E4%B8%8D%E5%8B%95%E7%94%A2%E4%BA%A4%E6%98%93%E8%88%87%E5%85%AC%E8%AD%89%E4%BA%BA,存取時間:2020/03。
2.他山之石,各國實價登錄做法比較,好房網雜誌,第57期,2018.Jun,https://news.housefun.com.tw/mag/hf/57/article/1/441203197496.html,存取時間:2020/03。
3.經驗風險最小化
https://zh.wikipedia.org/wiki/%E7%BB%8F%E9%AA%8C%E9%A3%8E%E9%99%A9%E6%9C%80%E5%B0%8F%E5%8C%96,維基百科,存取時間:2020/03。
4.內政部不動產交易實價查詢服務網https://lvr.land.moi.gov.tw/,存取時間:2020/03。