跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2025/01/13 16:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王文璋
研究生(外文):WANG, WEN-CHANG
論文名稱:應用最小二乘支持向量回歸實價登錄資料於不動產價格之預測
論文名稱(外文):Using Least Squares Support Vector Regression for Real Estate Price Prediction Based on Actual Price Registration Data
指導教授:白炳豐白炳豐引用關係
指導教授(外文):PAI, PING-FENG
口試委員:林國平洪國禎張炳騰
口試委員(外文):LIN, KUO-PINGHUNG, KUO-CHENCHANG, PING-TENG
口試日期:2020-07-06
學位類別:碩士
校院名稱:國立暨南國際大學
系所名稱:資訊管理學系
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:62
中文關鍵詞:最小二乘支持向量回歸實價登錄不動產價格預測機器學習
外文關鍵詞:Least square support vector regressionActual Price Registration DataReal Estate Price PredictionMachine Learning
DOI:10.6837/ncnu202000152
相關次數:
  • 被引用被引用:2
  • 點閱點閱:220
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
不動產交易在任何國家都是一項重要的經濟活動,其單筆交易金額是鉅大的,學者及業界人士都積極投入研究,買賣雙方對於大筆金額交易也會特別在意價格,關於價格預測通常以回歸分析方法來做連續型資料的預測。
政府於2012年實行不動產交易實價登錄制度,提供公開且免費的交易資料,因此本研究以台中市2016~2019年的實價登錄資料為基礎,但由於資料中的地址欄位並非精準揭露,因此使用地理資訊圖資雲服務平台(TGOS,Taiwan Geospatial One-Stop),將模糊性的區段位置轉換成較精確性的地理坐標資訊,再將其他資料做資料預處理(Data preprocessing)以利建立模型分析,本研究應用最小二乘支持向量回歸(LSSVR)進行不動產價格預測,並與其他機器學習模型及多元線性回歸相比較,實驗結果最小二乘支持向量回歸(LSSVR)皆優於倒傳遞神經網路(BPNN)、廣義回歸神經網路(GRNN)、分類及回歸樹(CART)及多元線性回歸(MLR)。

Real estate transaction is an important economic activity in many countries and has been of great research interest to scholars and people in the industry because of the huge amount of money involved.
In 2012, the government implemented the real-value transaction registration system for real estate transactions to provide open and free transaction information. This study is based on the actual price registration data in Taichung City from 2016 to 2019. Because the address information of the data is not accurately disclosed, the Geographic Information Map Cloud Service platform (TGOS, Taiwan Geospatial One-Stop) is used to convert the ambiguous locations into more accurate geographic coordinate information, and other data are preprocessed so as to establish a model analysis. In this study, I use least squares support vector regression (LSSVR) to predict real estate prices. The results of the experiment show that the prices predicted by LSSVR are more accurate than those predicted by back propagation neural network (BPNN), generalized regression neural network (GRNN), classification and regression tree (CART) and multiple linear regression (MLR).
致謝辭 i
摘要 ii
Abstract iii
目次 iv
表目次 v
圖目次 vi
第一章 緒論 1
第二章 文獻探討 2
第一節 不動產預測議題之相關文獻回顧 2
第二節 以最小二乘支持向量回歸預測之相關文獻回顧 9
第三節 遺傳演算法(GA) 16
第四節 實價登錄 20
第三章 研究方法 33
第一節 研究架構 33
第二節 資料預處理 35
第三節 最小二乘支持向量回歸(LSSVR) 37
第四節 交叉驗證(Cross Validation) 45
第五節 誤差指標 46
第四章 實驗結果與分析 47
第一節 資料來源與預處理 47
第二節 實驗結果及討論 53
第五章 結論與未來展望 55
參考文獻 56
一、中文部分 56
二、英文部分 57
三、網路部分 62

表目次
表一 不動產預測議題之相關文獻回顧 5
表二 以最小二乘支持向量回歸預測之相關文獻回顧 13
表三 遺傳演算法之相關文獻回顧 18
表四 國外各國不動產交易資訊登錄制度之比較 21
表五 實價登錄欄位說明 31
表六 研究資料之變數說明 36
表七 單價元/平方公尺四分位距表 49
表八 總價元四分位距表 50
表九 預處理轉換後欄位對照 52
表十 最小二乘支持向量回歸預測結果 53
表十一 倒傳遞類神經網路預測結果 53
表十二 廣義回歸神經網路預測結果 53
表十三 分類及回歸樹預測結果 54
表十四 多元線性回歸預測結果 54
表十五 各模型平均預測結果 54

圖目次
圖一 最佳超平面示意圖 9
圖二 過適(overfitting)示意圖 10
圖三 最適(appropriate -fitting)示意圖 10
圖四 英國開放資料平台 22
圖五 英國不動產交易資訊網站 23
圖六 美國開放資料平台 24
圖七 美國不動產交易資訊網站 25
圖八 德國開放資料平台 26
圖九 歐洲不動產交易資訊網站 27
圖十 UROPEAN PROPERTY 德國版 27
圖十一 香港「土地註冊處」網站 28
圖十二 日本「不動産取引価格情報検索」網站 29
圖十三 內政部不動產交易實價查詢服務網 30
圖十四 研究流程架構圖 34
圖十五 交叉驗證示意圖 45
圖十六 單價元/平方公尺直條圖 49
圖十七 刪除離群值前單價元/平方公尺分布圖 49
圖十八 刪除離群值後單價元/平方公尺分布圖 50
圖十九 總價元直條圖 50
圖二十 刪除離群值前總價元分布圖 51
圖二十一 刪除離群值後總價元分布圖 51


一、中文部分
1.湯祐任(2018),應用資料探勘於臺北市房地產實價登錄資料,臺北市立大學數學系數學教育研究所碩士論文。
2.顏嘉伶(2018),我國實價登錄制度與不動產交易資訊透明度之問題研析,新北市政府地政局地價科。
3.黃惠芬 (2017),以類神經網路方法建構房價估價模型-以高雄市實價登錄資料為例,國立高雄應用科技大學金融資訊研究所碩士論文。
4.謝孟勳(2017),實價登錄資料庫結合類神經網路推估房地產市價,國立中興大學土木工程學系碩士論文。
5.徐沛曛(2017),不動產實價登錄法制之研究—以實價登錄地政三法之修正為中心,東吳大學法學院法律學系碩士論文。
6.柯采宜(2017),應用支援向量回歸建構台北市實價登錄房價預測系統,輔仁大學資訊管理學系碩士論文。
7.歐陽榆(2015),從各國不動產制度看我國實價登錄,新北市汐止地政事務所。
8.花敬群(2014),實價登錄實施成效與改善建議,台灣地區2014房地產年鑑。
9.邱司杰(2014),基於實價登錄的房價模型研究,國立交通大學網路工程研究所碩士論文。
10.陳珍華(2014),巨量資料 : 公開資料與房仲網的房價分析,交通大學資訊學院資訊學程碩士論文。
11.林昭妏(2013),實價登錄之類神經網路估價模型-以高雄市農16及美術館區大樓為例,長榮大學土地管理與開發學系碩士論文。

二、英文部分
1.Singh, A., Sharma, A., & Dubey, G. (2020). Big data analytics predicting real estate prices. International Journal of System Assurance Engineering and Management, 1-12.
2.Ahmadi, M. H., Ahmadi, M. A., Nazari, M. A., Mahian, O., & Ghasempour, R. (2019). A proposed model to predict thermal conductivity ratio of Al2O3 / EG nanofluid by applying least squares support vector machine (LSSVM) and genetic algorithm as a connectionist approach. Journal of Thermal Analysis and Calorimetry, 135(1), 271-281.
3.Manganelli, B., De Mare, G., & Nesticò, A. (2015, June). Using genetic algorithms in the housing market analysis. In International Conference on Computational Science and Its Applications (pp. 36-45). Springer, Cham..
4.Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression trees. Monterey, Calif., USA: Wadsworth.
5.Byeonghwa Park, Jae Kwon Bae (2015). Using machine learning algorithms for housing price prediction: The case of Fairfax County, Virginia housing data. Expert Systems with Applications, 42, 2928-2934.
6.Chan, C. L., Chen, C. L., Ting, H. W., & Phan, D. V. (2018). An agile mortality prediction model: hybrid logarithm least-squares support vector regression with cautious random particle swarm optimization. International Journal of Computational Intelligence Systems, 11(1), 873-881.
7.Chen, L. G., Chiang, H. D., Dong, N., & Liu, R. P. (2016). Group-based chaos genetic algorithm and non-linear ensemble of neural networks for short-term load forecasting. IET Generation, Transmission & Distribution, 10(6), 1440-1447.
8.Chun-Chang Lee, Chih-Min Liang, Jian-Zheng Chen & Cheng-Huang Tung (2018). Effects of the housing price to income ratio on tenure choice in Taiwan: forecasting performance of the hierarchical generalized linear model and traditional binary logistic regression model. Journal of Housing and the Built Environment,33,675–694.
9.Evgeny A. Antipov, Elena B. Pokryshevskaya (2012). Mass appraisal of residential apartments: An application of Random forest for valuation and a CART-based approach for model diagnostics. Expert Systems with Applications, 39, 1772-1778.
10.Feng, T., Zhong, Y., Liu, X., Ma, Y., & Liu, C. (2018, July). Application of dam deformation prediction based on LSSVR optimized by ASA-ABC. In IOP Conference Series: Earth and Environmental Science (Vol. 170, No. 2, p. 022076). IOP Publishing.
11.Hoque, M. S., Mukit, M., Bikas, M., & Naser, A. (2012). An implementation of intrusion detection system using genetic algorithm. arXiv preprint arXiv:1204.1336.
12.Li, J., Li, X., Wang, L., Li, Y., & Wang, K. (2019, May). Prediction of PM2. 5 Concentration Based on PSO-LSSVR. In 2019 IEEE 8th Data Driven Control and Learning Systems Conference (DDCLS) (pp. 723-727). IEEE.
13.Lewis, C. D. (1982). Industrial and business forecasting methods: A practical guide to exponential smoothing and curve fitting. Butterworth-Heinemann.
14.Keshavarz, S., & Javidan, R. (2011). Software quality control based on genetic algorithm. International Journal of Computer Theory and Engineering, 3(4), 579.
15.Kuşan, H., Aytekin, O., & Özdemir, İ. (2010). The use of fuzzy logic in predicting house selling price. Expert systems with Applications, 37(3), 1808-1813.
16.Kang, H., & Lee, K. (2019). Short-term Forecast Model of Apartment Jeonse Prices using Search Frequencies of News Article Keywords. KSCE Journal of Civil Engineering, 23(12), 4984-4991.
17.LasseBork, Stig V. Møller (2015). Forecasting house prices in the 50 states using Dynamic Model Averaging and Dynamic Model Selection. International Journal of Forecasting,31, 63-78.
18.Li, Z., & Li, L. (2019, February). A Hybrid Model of Least Squares Support Vector Regression Optimized by Particle Swarm Optimization for Electricity Demand Prediction. In Proceedings of the 2019 11th International Conference on Machine Learning and Computing (pp. 91-103).
19.Ma, X., Xu, S., An, F., & Lin, F. (2018). A novel real-time image restoration algorithm in edge computing. Wireless Communications and Mobile Computing, 2018.
20.Segnon, M., Gupta, R., Lesame, K., & Wohar, M. E. (2020). High-Frequency Volatility Forecasting of US Housing Markets. The Journal of Real Estate Finance and Economics, 1-35.
21.Min Hwang & John M. Quigley (2010). Housing Price Dynamics in Time and Space: Predictability, Liquidity and Investor Returns. The Journal of Real Estate Finance and Economics, 41, 3–23.
22.Mo, H., Xiong, L., & Lu, R. Y. (2018, April). Material Demand Combination Forecasting Model Based on EMD-PSO-LSSVR. In 2018 International Conference on Education Reform and Management Science (ERMS 2018). Atlantis Press.
23.Bing, Q., Qu, D., Chen, X., Pan, F., & Wei, J. (2019). Arterial travel time estimation method using SCATS traffic data based on KNN-LSSVR model. Advances in Mechanical Engineering, 11(5), 1687814019841926.
24.Adnan, R. M., Liang, Z., Yuan, X., Kisi, O., Akhlaq, M., & Li, B. (2019). Comparison of LSSVR, M5RT, NF-GP, and NF-SC models for predictions of hourly wind speed and wind power based on cross-validation. Energies, 12(2), 329.
25.Rangan Gupta, Alain Kabundi, Stephen M. Miller (2011). Forecasting the US real house price index: Structural and non-structural models with and without fundamentals. Economic Modelling, 28(4), 2013-2021.
26.Rizopoulos, D., & Esztergár-Kiss, D. (2020). A Method for the Optimization of Daily Activity Chains Including Electric Vehicles. Energies, 13(4), 906.
27.Wen, S., Li, H. R., Han, H. H., & Yu, X. (2019, October). A Glucose Prediction Model based on Variational Mode Decomposition and Least Squares Support Vector Regression. In IOP Conference Series: Materials Science and Engineering (Vol. 646, No. 1, p. 012018). IOP Publishing.
28.Santos, J., Ferreira, A., & Flintsch, G. (2019). An adaptive hybrid genetic algorithm for pavement management. International Journal of Pavement Engineering, 20(3), 266-286.
29.Shengwei, W., Yanni, L., Jiayu, Z., & Jiajia, L. (2017). Agricultural price fluctuation model based on SVR. In 2017 9th International Conference on Modelling, Identification and Control (ICMIC) (pp. 545-550). IEEE.
30.Vasilios Plakandaras, Rangan Gupta, Periklis Gogas & Theophilos Papadimitriou (2015). Forecasting the U.S. real house price index.Economic Modelling, 45, 259-267.
31.Vilius Kontrimas, Antanas Verikas (2011). The mass appraisal of the real estate by computational intelligence. Applied Soft Computing, 11, 443-448
32.Del Giudice, V., De Paola, P., & Forte, F. (2017). Using genetic algorithms for real estate appraisals. Buildings, 7(2), 31.
33.Lee, W. T., Chen, J. J., & Chen, K. (2013). Determination of Housing Price in Taipei City Using Fuzzy Adaptive Networks. In Proceedings of the International MultiConference of Engineers and Computer Scientists (Vol. 2).
34.Yuansheng Huang, Yuwei Wang, Shu Gai (2011). The Application and Research of a New Combinatorial Analysis and Forecasting Method in Real Estate Area based on Grey System Theory and Multivariate Linear Regression. Procedia Engineering,15,4532-4537.
35.Zhengxiang, Y., Guimin, X., & Jinwen, W. (2010, May). Transport volume forecast based on GRNN network. In 2010 2nd International Conference on Future Computer and Communication (Vol. 3, pp. V3-629). IEEE.
36.Chen, Z. H., Tsai, C. T., Yuan, S. M., Chou, S. H., & Chern, J. (2015, August). Big data: Open data and realty website analysis. In 2015 8th International Conference on Ubi-Media Computing (UMEDIA) (pp. 84-88). IEEE.
37.Zhi, H., & Liu, S. (2019). Face recognition based on genetic algorithm. Journal of Visual Communication and Image Representation, 58, 495-502.

三、網路部分
1.德國房地產市場概況與公證人角色
https://blog.xuite.net/noeljou/twblog/122403375-%E5%BE%B7%E5%9C%8B%E4%B8%8D%E5%8B%95%E7%94%A2%E4%BA%A4%E6%98%93%E8%88%87%E5%85%AC%E8%AD%89%E4%BA%BA,存取時間:2020/03。
2.他山之石,各國實價登錄做法比較,好房網雜誌,第57期,2018.Jun,https://news.housefun.com.tw/mag/hf/57/article/1/441203197496.html,存取時間:2020/03。
3.經驗風險最小化
https://zh.wikipedia.org/wiki/%E7%BB%8F%E9%AA%8C%E9%A3%8E%E9%99%A9%E6%9C%80%E5%B0%8F%E5%8C%96,維基百科,存取時間:2020/03。
4.內政部不動產交易實價查詢服務網https://lvr.land.moi.gov.tw/,存取時間:2020/03。

電子全文 電子全文(網際網路公開日期:20250718)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊