|
1.I. Prieto, J. Teetsov, M. A. Fox, D. A. Vanden and A. J. Bard, A Study of Excimer Emission in Solutions of Poly (9, 9-dioctylfluorene) Using Electrogenerated Chemiluminescence, J. Phys. Chem. A., 2001, 105, 520‒523. 2.Jr. W. W. Schloman and H. Morrison, Organic photochemistry. 35. Structural effects on the nonradiative decay of alkylbenzenes. The nature of the ".alpha.-substitution effect", J. Am. Chem. Soc., 1977, 99, 3342−3345. 3.E. Buhleier, W. Wehner and F. Vogtle, Ligandstruktur und Komplexierung, XIII: 2, 2’‐Bipyridin als Baustein für neue Aza‐Kronenether und Cryptanden, Adv. Synth. Catal., 1978, 9, 155‒158. 4.D. A. Tomalia, H. Baker, J. Dewald, M. Hall, G. Kallos, S. Martin, J. Ryder and P. J. Smith, Genealogically directed synthesis: Starburst/cascade dendrimers and hyperbranched structures, Prog. Polym. Sci., 1985, 17, 117‒132. 5.G. R. Newkome, Z. Yao, G. R. Baker and V. K. Gupta, Micelles. Part 1. Cascade molecules: a new approach to micelles. A [27]-arborol, J. Org. Chem. 1985, 50, 2003‒2004. 6.D.A. Tomalia, H. Baker, J. Dewald, M. Hall, G. Kallos, S. Martin, J. Roeck, J. Ryder and P. Smith, Dendritic macromolecules: synthesis of starburst dendrimers, Macromolecules, 1986, 19, 2466‒2468. 7.O. Flomenbom, R. J. Amir, D. Shabat and J. Klafter, Some new aspects of dendrimer applications, J. Lumin., 2005, 111,315‒325. 8.C. Dufès, I. F. Uchegbu and A. G. Schätzlein, Dendrimers in gene delivery, Adv. Drug Deliv. Rev., 2005, 57, 2177‒2202. 9.C. J. Hawker and J. M. J. Frechet, Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules, J. Am. Chem. Soc., 1990, 112, 7638‒7647. 10.J. M. J. Frechet, Y. Jiang, C. J. Hawker and A. E. Philippides, Approaches to the control of architecture in reactive polymers: synthesis of new dendritic and comb-type macromolecules, Macromolecules, 1989, 19‒20. 11.J. Zhai, C. Fong, N Tran, and C. J. Drummond, Non-Lamellar Lyotropic Liquid Crystalline Lipid Nanoparticles for the Next Generation of Nanomedicine, ACS Nano, 2019, 13, 6178‒6206. 12.G. Wang, L. Fu, A. Walker, X. Chen, D. B. Lovejoy, M. Hao, A. Lee, R. Chung, H. Rizos, M. Irvine, M. Zheng, X. Liu, Y. Lu, and B. Shi, Label-Free Fluorescent Poly (amidoamine) Dendrimer for Traceable and Controlled Drug Delivery, Biomacromolecules, 2019, 20, 2148‒2158. 13.M. E. Wechsler, J. E. V. Ramirez, and N. A. Peppas, 110th Anniversary: Nanoparticle Mediated Drug Delivery for the Treatment of Alzheimer’s Disease: Crossing the Blood−Brain Barrier, Ind. Eng. Chem. Res., 2019, 58, 15079‒15087. 14.A. V. Cheng, and W. M. Wuest, Signed, Sealed, Delivered: Conjugate and Prodrug Strategies as Targeted Delivery Vectors for Antibiotics, ACS Infect. Dis., 2019, 5, 816‒828. 15.X. Xu, Y. Li, Q. Liang, Z. Song, F. Li, H. He, J. Wang, L. Zhu, Z. Lin and L. Yin, Efficient Gene Delivery Mediated by a Helical Polypeptide: Controlling the Membrane Activity via Multivalency and Light-Assisted Photochemical Internalization (PCI), ACS Appl. Mater. Interfaces, 2018, 10, 256‒266. 16.P. A. Eckert, and K. J. Kubarych, Solvent Quality Controls Macromolecular Structural Dynamics of a Dendrimeric Hydrogenase Model, J. Phys. Chem. B, 2018, 122, 12154‒12163. 17.A. M. Garzon-Porras, D. L. Bertuzzi, K. Lucas, L. C. E. da Silva, M. G. de Oliveira, Nitric Oxide Releasing Polyamide Dendrimer with Anti-inflammatory Activity, and C. Ornelas, ACS Appl. Polym. Mater., 2020, 2, 2027‒2034. 18.A. Kastrati, C. G. Bochet, Photochemical Amplifier Based on Self-Immolative Dendritic Spacers, J. Org. Chem., 2019, 84, 7776–7785. 19.T. Kokab, A. Shah, J. Nisar, A. M. Khan, S. B. Khan, and A. H. Shah, Tripeptide Derivative-Modified Glassy Carbon Electrode: A Novel Electrochemical Sensor for Sensitive and Selective Detection of Cd2+ Ions, ACS Omega, 2020, 5, 10123–10132. 20.A. S. Loch, D. M. Stoltzfus, P. L. Burn, and P. E. Shaw, High-Sensitivity Poly (dendrimer)-Based Sensors for the Detection of Explosives and Taggant Vapors, Macromolecules, 2020, 53, 1652–1664. 21.M. R. Kotte, A. T. Kuvarega, S. N. Talapaneni, M. Cho, A. Coskun, A Facile and Scalable Route to the Preparation of Catalytic Membranes with in Situ Synthesized Supramolecular Dendrimer Particle Hosts for Pt(0) Nanoparticles Using a Low-Generation PAMAM Dendrimer (G1-NH2) as Precursor, ACS Appl. Mater. Interfaces, 2018, 10, 33238–33251. 22.C. Wang, X. P. Zhao, F. F. Liu, Y. Chen, X. H. Xia, and J. Li, Dendrimer-Au Nanoparticle Network Covered Alumina Membrane for Ion Rectification and Enhanced Bioanalysis, Nano Lett., 2020, 20, 1846–1854. 23.V. Glembockyte, M. Frenette, C. Mottillo, A. M. Durantini, J. Gostick, V. Strukil, T. Friscic, and G. Cosa, Highly Photostable and Fluorescent Microporous Solids Prepared via Solid-State Entrapment of Boron Dipyrromethene Dyes in a Nascent Metal–Organic Framework, J. Am. Chem. Soc, 2018, 140, 16882–16887. 24.H. Lv, D. Xu, L. Sun, J. Henzie, S. L. Suib, Y. Yamauchi, and B. Liu, Ternary Palladium–Boron–Phosphorus Alloy Mesoporous Nanospheres for Highly Efficient Electrocatalysis, ACS Nano, 2019, 13, 12052–12061. 25.M. R. Kotte, A. T. Kuvarega, S. N. Talapaneni, M. Cho, A. Coskun, A Facile and Scalable Route to the Preparation of Catalytic Membranes with in Situ Synthesized Supramolecular Dendrimer Particle Hosts for Pt(0) Nanoparticles Using a Low-Generation PAMAM Dendrimer (G1-NH2) as Precursor, ACS Appl. Mater. Interfaces, 2018, 10, 33238–33251. 26.J. Wang, B. Li, X. Pu, X. Wang, R. C. Cooper, Injectable Multicomponent Biomimetic Gel Composed of Inter-Crosslinked Dendrimeric and Mesoporous Silica Nanoparticles Exhibits Highly Tunable Elasticity and Dual Drug Release Capacity, Q. Gui, and H. Yang, ACS Appl. Mater. Interfaces, 2020, 12, 10202–10210. 27.H. Xiao, R. Wang, L. Dong, Y. Cui, S. Chen, H. Sun, G. Ma, D. Gao, and L. Wang, Biocompatible Dendrimer-Encapsulated Palladium Nanoparticles for Oxidation of Morin, ACS Omega, 2019, 4, 18685–18691. 28.T. Odoom-Wubah, Q. Li, M.Chen, H. Fang, B. B. A. Bediako, I. Adilov, J. Huang, and Q. Li, Influence of Preparation Methods on the Catalytic Activity of Pd−Cu/Mn2O3 Catalyst in the Hydrogenation of 1,3-Butadiene, ACS Omega, 2019, 4, 1300–1310. 29.Q. Wang, F. Fu, S. Yang, M. M. Moro, M. D. L. A. Ramirez, S. Moya, L. Salmon, J. Ruiz, and D. Astruc, Dramatic Synergy in CoPt Nanocatalysts Stabilized by “Click” Dendrimers for Evolution of Hydrogen from Hydrolysis of Ammonia Borane, ACS Catal., 2019, 9, 1110–1119. 30.K. Yamamoto, T. Imaoka, M. Tanabe, and T. Kambe, New Horizon of Nanoparticle and Cluster Catalysis with Dendrimers, Chem. Rev, 2020, 120, 1397–1437. 31.Y. Dong, T. Yu, L. Ding, E. Laurini, Y. Huang, M. Zhang, Y. Weng, S. Lin, P. Chen, D. Marson, Y. Jiang, S. Giorgio, S. Pricl, X. Liu, P. Rocchi, and L. Peng, A Dual Targeting Dendrimer-Mediated siRNA Delivery System for Effective Gene Silencing in Cancer Therapy, J. Am. Chem. Soc., 2018, 140, 16264–16274. 32.Y. Wu, L. hakrabortty, L. Li, L. Frank, J. Wagner, P. Andreozzi, B. Hammer, M. D’Alicarnasso, M. Pelliccia, W. Liu, S. Chakrabortty, S. Krol, J. Simon, K. Landfester, S. L. Kuan, F. Stellacci, K. Müllen, F. Kreppel, and T. Weil, Patchy Amphiphilic Dendrimers Bind Adenovirus and Control Its Host Interactions and in Vivo Distribution, ACS Nano, 2019, 13, 8749–8759. 33.S. Li, B. Chen, Y. Qu, X. Yan, W. Wang, X. Ma, B. Wang, S. Liu, and X. Yu, ROS-Response-Induced Zwitterionic Dendrimer for Gene Delivery, Langmuir, 2019, 35, 1613–1620. 34.S. Mignani, X. Shi, M. Zablocka, and J. P. Majoral, Dendrimer-Enabled Therapeutic Antisense Delivery Systems as Innovation in Medicine, Bioconjugate Chem., 2019, 30, 1938–1950. 35.M. Gosika, S. Sen, A. Kundagrami, and P. K. Maiti, Understanding the Thermodynamics of the Binding of PAMAM Dendrimers to Graphene: A Combined Analytical and Simulation Study, Langmuir, 2019, 35, 9219–9232. 36.C. Wang, X.-P. Zhao, F.-F. Liu, Y.Chen, X.-H. Xia, and J. Li, Dendrimer-Au Nanoparticle Network Covered Alumina Membrane for Ion Rectification and Enhanced Bioanalysis, Nano Lett., 2020, 20, 1846–1854. 37.K. Jayakumar, M. B. Camarada, V. Dharuman, R. Rajesh, R. Venkatesan, H. Ju, M. Maniraj, A. Rai, S. R. Barman, and Y. Wen, Layer-by-Layer-Assembled AuNPs-Decorated First-Generation Poly(amidoamine) Dendrimer with Reduced Graphene Oxide Core as Highly Sensitive Biosensing Platform with Controllable 3D Nanoarchitecture for Rapid Voltammetric Analysis of Ultratrace DNA Hybridization, ACS Appl. Mater. Interfaces, 2018, 10, 21541–21555. 38.M. Inoue, M. Ueda, T. Higashi, T. Anno, K. Fujisawa, K. Motoyama, M. Mizuguchi, Y. Ando, H. Jono, and H. Arima, Therapeutic Potential of Polyamidoamine Dendrimer for Amyloidogenic Transthyretin Amyloidosis, ACS Chem. Neurosci., 2019, 10, 2584–2590. 39.W. Jiang, H. Jin, M. Stolterfoht, P. E. Shaw, R. C. R. Nagiri, N. Kopidakis, and P. L. Burn, Loss Mechanisms in Fullerene-Based Low-Donor Content Organic Solar Cells, J. Phys. Chem. C, 2018, 122, 20611–20618. 40.W. Jiang, M. Stolterfoht, H. Jin, and P. L. Burn, Hole-Transporting Poly (dendrimer) s as Electron Donors for Low Donor Organic Solar Cells with Efficient Charge Transport, Macromolecules, 2020, 53, 2902–2911. 41.M. Grandl, J. Schepper, S. Maity, A. Peukert, E. V. Hauff, and F. Pammer, N→B Ladder Polymers Prepared by Postfunctionalization: Tuning of Electron Affinity and Evaluation as Acceptors in All-Polymer Solar Cells, Macromolecules, 2019, 52, 1013–1024. 42.P. Karimineghlani, A. Palanisamy, and S. A. Sukhishvili, Self-Healing Phase Change Salogels with Tunable Gelation Temperature, ACS Appl. Mater. Interfaces, 2018, 10, 14786–14795. 43.K. C. Elbert, T. Vo, N. M. Krook, W. Zygmunt, J. Park, K. G. Yager, R. J. Composto, S. C. Glotzer, and C. B. Murray, Dendrimer Ligand Directed Nanoplate Assembly, ACS Nano, 2019, 13, 14241–14251. 44.K. M. Gattás-Asfura, N. J. Abuid, I. Labrada, and C. L. Stabler, Promoting Dendrimer Self-Assembly Enhances Covalent Layer-by-Layer Encapsulation of Pancreatic Islets, ACS Biomater. Sci. Eng, 2020, 6, 2641–2651. 45.Z. An, S. Chen, X. Tong, H. He, J. Han, M. Ma, Y. Shi, and X. Wang, Widely Applicable AIE Chemosensor for On-Site Fast Detection of Drugs Based on the POSS-Core Dendrimer with the Controlled Self-Assembly Mechanism, Langmuir, 2019, 35, 2649–2654. 46.K. M. Psutka, J. LeDrew, H. Taing, S. H. Eichhorn, and K. E. Maly, Synthesis and Self-Assembly of Liquid Crystalline Triphenylenedicarboxythioimides, J. Org. Chem., 2019, 84, 10796–10804. 47.W. Kung, K. Saunders and M. C. Marchetti, Hydrodynamics of polar liquid crystals, Phys. Rev.,2006, 73, 031708. 48.F. Reinitzer, Beiträge zur Kenntniss des Cholesterins, Monatsch Chem. 1888, 9, 421−441. 49.O. Lehmann, Über fliessende Krystalle, Z Phys Chem (N F), Chem. 1889, 4, 42−53. 50.G. Friedel, Les états mésomorphes de la matière, Ann. Phys. 1922, 18, 273−474. 51.S. Chandrasekhar, Liquid crystals of disc-like molecules, B. K. Sadashiva and K. A. Suresh, Pramana, 1977, 9, 471−480. 52.K. Yamamoto, T. Imaoka, Precision Synthesis of Subnanoparticles Using Dendrimers as a Superatom Synthesizer, Acc. Chem. Res., 2014, 47, 1127−1136
|