跳到主要內容

臺灣博碩士論文加值系統

(44.200.94.150) 您好!臺灣時間:2024/10/16 16:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃啟聖
研究生(外文):Huang, Chi-Sheng
論文名稱:具弱非完美交界面多鐵層狀複合材料之場量分佈
論文名稱(外文):Field Distributions of Laminated Multiferroic Composites with Spring-type Imperfect Interfaces
指導教授:郭心怡郭心怡引用關係
指導教授(外文):Kuo, Hsin-Yi
口試委員:陳誠直郭心怡鄒年棣
口試委員(外文):Chen, Cheng-ChihKuo, Hsin-YiTsou, Nien-Ti
口試日期:2019-09-27
學位類別:碩士
校院名稱:國立交通大學
系所名稱:土木工程系所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:108
語文別:中文
論文頁數:111
中文關鍵詞:彈性層狀複合材料多鐵層狀複合材料弱非完美交界面傳播矩陣
外文關鍵詞:Laminated elastic compositesLaminated multiferroic compositesSpring-type imperfect interfacesPropagator matrix
相關次數:
  • 被引用被引用:4
  • 點閱點閱:126
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討弱非完美交界面對多鐵層狀複合材料場量分佈的影響。壓電壓磁複合材料可以改善單相磁電材料之磁電耦合效應過低而難以應用於生活中的問題,成為近年重點研究的智能材料。過往的文獻中常假設複合物交界面為完美交界面,然而在複合材料的製造過程中必定有無法避免的瑕疵,造成交界面上場量分佈有不連續的現象,為非完美交界面。非完美交界面上常區分為曳引力不連續的強非完美交界面與勢能不連續的弱非完美交界面。
本研究運用雙重傅立葉級數表示彈性層狀複合材料之位移、法向應力與切平面向應力,及壓電壓磁層狀複合材料之廣義位移、廣義法向應力與廣義切平面向應力,並運用傳播矩陣連結層狀複合材料各場量與厚度的關係,將弱非完美交界面的性質以弱非完美交界面傳播矩陣表示,並運用傳播矩陣與弱非完美交界面條件串聯層狀複合材料兩厚度位置的場量關係,最後代入邊界條件計算各場量隨厚度位置之分佈。
從結果中可得知弱非完美交界面對彈性層狀複合材料與壓電壓磁層狀複合材料在廣義位移與廣義應力的影響。壓電壓磁層狀複合材料中在交界面為弱非完美交界面的情況下,電位移和電勢能量值在壓電材料及壓磁材料間的比值較完美交界面來的大;同樣的在弱非完美交界面下,磁通量密度和磁勢能在壓磁材料與壓電材料之間的比值也較完美交界面來的大。此外在附錄中會利用施加表面法向電位移在各材料組合中分析磁通量密度與磁勢能,及施加表面磁通量密度分析多鐵層狀複合材料之電位移與電勢能,可以得知弱非完美交界面會降低磁電耦合效應。
In this work, we study the field distributions of laminated multiferroic composites with the spring-type imperfect interfaces. Multiferroic composites were invented for enhancing magnetoelectric coupling effect and have been investigated in recent years. In early studies, potential and traction in interfaces were assumed continuous. However, some defects are unavoidable in the process of manufacturing composites. Imperfect interfaces can be divided into stress-type imperfect interfaces, which represent discontinuity in potential and spring-type interfaces, which represent discontinuity in traction.
We use double Fourier series to express displacement, in-plane stresses, and normal stresses in elastic laminated composites, and extend to the generalized displacement and generalized stresses in multiferroic laminated composites. By adopting propagator matrix, the field of two thickness locations can be connected and the feature of spring-type imperfect interfaces can transform into spring-type imperfect interface matrix. By giving boundary condition, the field distributions along the thickness can be derived.
In numerical studies, we can learn that electric displacement ratio and electric potential ratio of in piezoelectric material and in piezomagnetic material with spring-type imperfect interfaces are larger than perfect interfaces. Similarly, magnetic potential ratio and magnetic flux density ratio of in piezomagnetic material and in piezoelectric material with spring-type imperfect interfaces are larger than perfect interfaces. By the result of exerting the surface normal electric displacement and surface normal magnetic flux density on laminated multiferroic composites, we find that spring-type imperfect interfaces reduce the magnetoelectric coupling effect.
中文摘要 I
Abstract II
誌謝 IV
目錄 V
圖目錄 VIII
表目錄 XII
符號表 XIII
第一章 導論 1
1-1 研究背景與目的 1
1-2 多鐵性材料 2
1-2-1 壓電材料 3
1-2-2 磁致伸縮材料 4
1-2-2 壓磁材料 4
1-2-3 磁電材料 5
1-2-4 非完美交界面 5
1-3 複合材料結構形式 6
1-4 文獻回顧 6
1-4-1 雙相多鐵性複合材料 6
1-4-2 交界面問題 7
1-5 本文架構 8
第二章 彈性層狀複合材料 9
2-1 材料組成律與傳播矩陣 9
2-1-1 材料組成律 9
2-1-2 彈性層狀材料的通解 11
2-1-3 彈性層狀複合材料的傳播矩陣(Propagator Matrix) 16
2-1-4 材料選擇 19
2-2交界面問題 20
2-2-1 完美交界面 20
2-2-2 弱非完美交界面 22
2-3結果與分析 25
2-3-1 Ag/Ag 28
2-3-2 Ag/Ni 32
2-3-3 Ag/Ni/Ag 36
第三章 壓電壓磁層狀複合材料 40
3-1壓電壓磁材料的材料組成律與傳播矩陣 40
3-1-1 磁、電、彈耦合之材料組成律 40
3-1-2 壓電壓磁層狀材料的通解 44
3-1-3 壓電壓磁層狀複合材料的傳播矩陣 48
3-1-4 材料選擇 51
3-2 交界面性質與傳播矩陣的關係 53
3-2-1 完美交界面 53
3-2-2 弱非完美交界面 55
3-3 結果與分析 58
3-3-1 BTO/BTO 61
3-3-2 BTO/CFO 67
3-3-4 CFO/BTO/CFO 80
第四章 結論與未來展望 87
4-1 結論 87
4-2 未來展望 88
參考文獻 90
附錄A 弱非完美交界面條件 94
附錄B 多鐵性層狀複合材料在弱非完美交界面之磁電耦合效應 97
B-1 BTO/CFO 99
B-2 CFO/BTO 102
B-3 BTO/CFO/BTO 105
B-4 CFO/BTO/CFO 108
Benveniste, Y., 2014. “Exact results for the local fields and the effective moduli of fibrous composites with thickly coated fibers,” Journal of the Mechanics and Physics of Solids , 71, 219-238.
Benveniste, Y. ,2006. “A general interface model for a three-dimensional curved thin anisotropic interphase between two anisotropic media,” Journal of the Mechanics and Physics of Solids, 54, 708-734.
Benveniste, Y., Miloh, T., 2001. “Imperfect soft and stiff interfaces in two-dimensional elasticity.” Mechanics of Materials, 33, 309-323.
Bisegna, P., Maceri, F., 1996. “An exact three-dimensional solution for simply supported rectangular piezoelectric plates,” Journal of Applied Mechanics, 63, 628-638.
Bövik, P., 1994. “On the modelling of thin interface layers in elastic and acoustic scattering problems,” The Quarterly Journal of Mechanics and Applied Mathematics, 47, 17-42.
Cullity, B. D, 1971. “Fundamentals of magnetostriction,” Journal of Metals, 23, 35-41.
Datta, S. K., 2000. “Wave propagation in composite plates and shells,” Comprehensive Composite Materials, 1, 511-558.
Dzyaloshinskii, I. E., 1960. “On the magneto-electrical effects in antiferromagnets,” Soviet Physics JETP, 10, 628-629.
Harshe, G., Dougherty, J. P., Newnham, R. E., 1993. “Theoretical modeling of 3-0/0-3 magnetoelectric composites,” International Journal of Applied Electromagnetics in Materials, 4 ,161-171.
Hashin, Z., 1991. “The spherical inclusion with imperfect interface,” ASME, Transactions, Journal of Applied Mechanics, 58, 444-449.

Hill, N. A., 2000. “Why Are There So Few Magnetic Ferroelectrics? ,” The Journal of Physical Chemistry B, 104, 6694-6709
IEEE Standards Committee., 1987. “IEEE Standard on Piezoelectricity,” ANSI/IEEE Std 176-1987.
IEEE Standards Committee., 1990. “IEEE Standard on Magnetostrictive Materials: Piezomagnetic Nomenclature,” IEEE Std 319-1990.
Joule, J. P. , 1847. “XVII. On the effects of magnetism upon the dimensions of iron and steel bars,” The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 30, 76-87.
Kurti, N., Rollin, B.V., Simon, F., 1936. “Preliminary experiments on temperature equilibria at very low temperatures,” Physica, 3, 266-274.
Kapitza, P. L., 1941. “The study of heat transfer in helium II." J. Phys.(Moscow) 4: 181.
Kausel, E., Roësset, J. M., 1981. “Stiffness matrices for layered soils,” Bulletin of The Seismological Society of America, 71, 1743-1761.
Kuo H. Y., Chen C. Y., 2015. “Decoupling transformation for piezoelectric-piezomagnetic fibrous composites with imperfect interfaces,” International Journal of Solids and Structures, 54, 111-120.
Kuo, H. Y., Huang, T. Y., 2016. “Effective moduli of multiferroic fibrous composites with spring-type imperfect interface under generalized plane strain with transverse electromagnetic fields,” International Journal of Solids and Structures, 80, 456-464.
Kuo, H. Y., Wang, K. H., 2017. “Size-dependent effective behaviors of multiferroic fibrous composites with interface stress,” International Journal of Solids and Structures, 106, 164-173.
Kuo, H. Y., Wu, T. J., Pan, E., 2018. “Multilayer multiferroic composites with imperfect interfaces,” Smart Materials and Structures, 27, 075032

Manbachi, A., Cobbold, R. S., 2011, “Development and application of piezoelectric materials for ultrasound generation and detection,” Ultrasound, 19, 187-196.
Miloh, T., Benveniste, Y., 1999, “On the effective conductivity of composites with ellipsoidal inhomogeneities and highly conducting interfaces,” Proceedings of The Royal Society A, 455, 2687-706.
Nan, C.W., 1994, “Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases,” Physical Review B, 50, 6082-6088.
Nan, C. W., Liu, G., Lin, Y., 2003, “Influence of interfacial bonding on giant magnetoelectric response of multiferroic laminated composites of and ,” Applied Physics Letters, 83, 4366-4368.
Nan, C. W., Bichurin, M. I., Dong, S., Viehland, D., Srinivasan, G., 2008, “Multiferroic magnetoelectric composites: Historical perspective, status, and future directions,” Journal of applied physics, 103, 031101.
Pagano, N. J., 1970. “Exact solutions for rectangular bidirectional composites and sandwich plates,” Journal of composite materials, 4, 20-34.
Pan, E., 1991. “An exact solution for transversely isotropic, simply supported and layered rectangular plates,” Journal of Elasticity, 25, 101-116.
Pan, E., 2001. “Exact solution for simply supported and multilayered magneto-electro-elastic plates,” Geophysics , 2, 326-332.
Shenoy, V. B., 2005. “Atomistic calculations of elastic properties of metallic fcc crystal surfaces,” Physical Review B, 71, 094104.
Spaldin, N. A., Fiebig, M., 2005. “The renaissance of magnetoelectric multiferroics,” Science, 309, 391-392.
Stroh, A.N., 1958. “Dislocations and cracks in anistropic elasticity,” The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics , 3, 625-646.

Ting T.C.T., 1996. Anisotropic Elasticity: Theory and Application. New York : Oxford University Press.
van Suchtelen, J., 1972. “Product Properties: A new application of composite materials,” Philips Research Reports , 27, 28-37.
朱建國、孫小松、李衛。2007。電子與光電子材料。北京:國防工業出版社。
電子全文 電子全文(網際網路公開日期:20241208)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top