|
[1] D. Kahng and S. M. Sze, "A floating gate and its application to memory devices," Bell Syst. Tech. J., vol. 46, no. 6, pp. 1288-1295, Jul.-Aug. 1967. [2] P. Pavan, R. Bez, P. Olivo and E Zanoni, "Flash memory cells—an overview," Proceedings Of The IEEE, vol. 85, no. 8, Aug 1997. [3] W. J. N. Van Winkle, "Solid State Drive Buyer's Guide," vol. 29, pp. 1-14, 2009. [4] J. T. Evans and R. Womack, "An experimental 512-bit nonvolatile memory with ferroelectric storage cell," Solid-State Circuits, IEEE Journal of, vol. 23, pp. 1171-1175, 1988. [5] H. Ishiwara, M. Okuyama, and Y. Arimoto, Ferroelectric random access memories: fundamentals and applications. Springer Science & Business Media, 2004. [6] R. Moazzami, "Ferroelectric thin film technology for semiconductor memory," Semiconductor science and technology, vol. 10, pp. 375, 1995. [7] H. Nakamoto, D. Yamazaki, T. Yamamoto et al, “A Passive UHF RFID Tag LSI with 36.6% Efficiency CMOS-Only Rectifier and Current-Mode Demodulator in 0.35µm FeRAM Technology,”Solid-State Circuits Conference, 2006. ISSCC 2006. Digest of Technical Papers. IEEE International, pp. 1201-1210, 2006. [8] Y. Halawani, B. Mohammad, M. Al-Qutayri and H. Saleh, "Modeling of STT-MTJ for Low Power Embedded Memory Applications: A Comparative Review," IEEE 20th International Conference on Electronics, Circuits, and Systems (ICECS), Dec. 2013. [9] S. Tehrani, B. Engel, J. Slaughter, E. Chen, M. DeHerrera, M. Durlam, P. Naji, R. Whig, J. Janesky, and J. Calder, "Recent developments in magnetic tunnel junction MRAM," Magnetics, IEEE Transactions on, vol. 36, pp. 2752-2757, 2000. [10] S. Lai and T. Lowrey, "OUM-A 180 nm nonvolatile memory cell element technology for stand alone and embedded applications," International Electron Devices Meeting, pp. 36.5.1-36.5.4., 2001. [11] S. R Ovshinsky, "Reversible electrical switching phenomena in disordered structures," Physical Review Letters, vol. 21, pp. 1450-1453, 1968. [12] X. P. Wang, X. B. Li, N. K. Chen, Q. D. Chen, X. D. Han, S. Zhang, and H. B. Sun, "Element-specific amorphization of vacancy-ordered GeSbTe for ternary-state phase change memory," Acta Materialia, vol. 136, pp. 242-248, Sep. 2017. [13] H. S. Philip Wong, S. Raoux, S. B. Kim, J. Liang, J. P. Reifenberg, B. Rajendran, M. Asheghi and K. E. Goodson, "Phase Change Memory," Proceedings of the IEEE, vol. 98, no. 12, pp. 2201-2227, Dec. 2010. [14] G. Dearnale, A. M. Stoneham, and D. V. Morgan, "Electrical phenomena in amorphous oxide films," Rep. Progr. Phys., vol. 33, pp. 1129, 1970. [15] J. F. Gibbons and W. E. Beadle, "Switching properties of thin NiO films," Solid-State Electron., vol. 7, no. 11, pp. 785–790, 1964. [16] T. W. Hickmott, "Low-frequency negative resistance in thin anodic oxide films," J. Appl. Phys., vol. 33, pp. 2669, 1962. [17] A. Sawa, "Resistive switching in transition metal oxides," Mater. Today, vol. 11, no. 6, pp. 28-36, Jun. 2008. [18] J. G. Simmons, "Conduction in thin dielectric films," J. Phys. D, Appl. Phys., vol. 4, pp. 613, 1971. [19] H. S. Philip Wong, H. Y. Lee, S. Yu, Y. S. Chen, Yi Wu, P. S Chen, B Lee, F T. Chen and M. J. Tsai, "Metal–Oxide RRAM," Proceedings of the IEEE, vol. 100, no. 6, pp. 1951-1970, Jun. 2012. [20] J. S. Vetter and S. Mittal, "Opportunities for Nonvolatile Memory Systems in Extreme-Scale High-Performance Computing," Comput. Sci. Eng., vol. 17, no. 2, pp. 73-82, Mar.-Apr. 2015. [21] M. Lanza, "A Review on Resistive Switching in High-k Dielectrics: A Nanoscale Point of View Using Conductive Atomic Force Microscope," Materials IEEE Transctions On Electron Decvices., vol. 7, issue 3, pp. 2155-2182, Feb. 2014. [22] R. Waser and M. Aono, " Nanoionics-based resistive switching memories," Nature Mater., vol. 6, no. 11, pp. 833-840, Nov. 2007. [23] L. Goux and I. Valov, " Electrochemical processes and device improvement in conductive bridge RAM cells," Phys. Status Solidi A., vol. 213, issuse 2, pp. 274-288, Dec. 2015. [24] R. Waser, R. Dittmann, G. Staikov and K. Szot, "Redox-Based Resistive Switching Memories – Nanoionic Mechanisms, Prospects, and Challenges," Adv. Mater., vol. 21, no. 25-26, pp. 2632-2663, Jul. 2009. [25] R. Waser, "Electrochemical and thermochemical memories," in Proc. IEDM Tech. Dig., San Francisco, CA, USA, Dec. 2008, pp. 289-292. [26] Y. C. Yang, F. Pan, Q. Liu, M. Liu and F. Zeng, "Fully Room-Temperature-Fabricated Nonvolatile Resistive Memory for Ultrafast and High-Density Memory Application," Nano Lett., vol. 9, no. 4, pp. 1636-1643, Mar. 2009. [27] N. Xu, B. Gao, L. F. Liu, B. Sun, X. Y. Liu, R. Q. Han, J. F. Kang and B. Yu, "A unified physical model of switching behavior in oxide-based RRAM," in Proc. VLSI Symp. Tech. Dig., Honolulu, HI, USA, Jun. 2008, pp. 100-101. [28] C. Cagli, D. Ielmini, F. Nardi and A. L. Lacaita, "Evidence for threshold switching in the set process of NiO-based RRAM and physical modeling for set, reset, retention and disturb prediction," in Proc. IEDM Tech. Dig., San Francisco, CA, USA, Dec. 2008, pp. 1-4. [29] M. N. Kozicki, C. Gopalan, M. Balakrishnan, M. Park, and M. Mitkova, "Nonvolatile memory based on solid electrolytes," in Proceedings. 2004 IEEE Computational Systems Bioinformatics Conference, 2004, pp. 10-17: IEEE. [30] M. N. Kozicki, M. Park, and M. Mitkova, "Nanoscale memory elements based on solid-state electrolytes," IEEE Transctions on Nanotechnology, vol. 4, no. 3, pp. 331-338, May. 2005. [31] H. Y. Lee, P. S. Chen, C. C. Wang, S. Maikap, P. J. Tzeng, C. H. Lin, L. S. Lee, and M. J. Tsai, "Low-power switching of nonvolatile resistive memory using hafnium oxide," Japanese Journal of Applied Physics, vol. 46, no. 4S, p. 2175, 2007. [32] M. J. Lee, S. Han, S. H. Jeon, B. H. Park, B. S. Kang, S. E. Ahn, K. H. Kim, C. B. Lee, C. J. Kim, I. K. Yoo, D. H. Seo, X.-S. Li, J. B. Park, J. H. Lee, and Y. Park, "Electrical manipulation of nanofilaments in transition-metal oxides for resistance-based memory," Nano Lett., vol. 9, no. 4, pp. 1476-1481, 2009. [33] C. Rohde, B. J. Choi, D. S. Jeong, S. Choi, J. S. Zhao, and C. S. Hwang, "Identification of a determining parameter for resistive switching of TiO_2thin films," Appl. Phys. Lett., vol. 86, no. 26, p. 262907, 2005. [34] S. Seo, M. J. Lee, D. H. Seo, E. J. Jeoung, D. S. Suh, Y. S. Joung, and I. K. Yoo, "Reproducible resistance switching in polycrystalline NiO films," Appl. Phys. Lett., vol. 85, no. 23, pp. 5655-5657, 2004. [35] J. J. Yang, M. D. Pickett, X. Li, D. A. A. Ohlberg, D. R. Stewart, and R. S. Williams, "Memristive switching mechanism for metal/oxide/metal nanodevices," Nature Nanotechnology, vol. 3, no. 7, p. 429, 2008. [36] N. Raghavan, "Performance and reliability trade-offs for high-κ RRAM," Microelectronics Reliability,vol. 54, no. 9-10, pp. 2253-2257, 2014. [37] C. Y. Lin, S. Y. Wang, D. Y. Lee, and T. Y. Tseng, "Electrical properties and fatigue behaviors of ZrO_2resistive switching thin films," Journal of The Electrochemical Society, vol. 155, no. 8, pp. H615-H619, 2008. [38] E. Fortunato, A. Pimentel, L. Pereira, A. Gonçalves, G. Lavareda, H. Águas, I. Ferreira, C. N. Carvalho, and R. Martins "High field-effect mobility zinc oxide thin film transistors produced at room temperature," Journal of Non-Crystalline Solids, vol. 338, pp. 806-809, 2004. [39] T. Kamiya, K. Nomura, H. Hosono, and T. o. A. Materials, "Present status of amorphous In–Ga–Zn–O thin-film transistors," Sci. Technol. Adv. Mater., vol. 11, no. 4, p. 044305, 2010. [40] K. Nomura, T. Kamiya, H. Ohta, T. Uruga, M. Hirano, and H. Hosono, "Local coordination structure and electronic structure of the large electron mobility amorphous oxide semiconductor In-Ga-Zn-O: Experiment and ab initio calculations," Physical Review B, vol. 75, no. 3, p. 035212, 2007. [41] Y. Hirose and H. Hirose, "Polarity-dependent memory switching and behavior of Ag dendrite in Ag-photodoped amorphous As2S3 films," J. Appl. Phys., vol. 47, no. 6, pp. 2767-2772, Jun. 1976. [42] S. Qin, Z. Liu, G. Zhang, J. Zhang, Y. Sun, H. Wu, H. Qian and Z. Yu, "Atomistic study of dynamics for metallic filament growth in conductive-bridge random access memory," Phys. Chem. Chem. Phys., vol. 17, no. 14, pp. 8627-8632, Jan. 2015. [43] S. Menzel, P. Kaupmann and R. Waser, "Understanding filamentary growth in electrochemical metallization memory cells using kinetic Monte Carlo simulations," Nanoscale, vol. 7, no. 29, pp. 12673-12681, Jun. 2015. [44] Y. Kang, T. Liu, T. Potnis and M. K. Orlowski, "Composite Cu/VO and VO/Cu Nanofilaments in Cu/Ta2O5/Pt Devices," ECS Solid State Letters, vol. 2, no. 7, pp. Q54-Q57, 2013. [45] S. Z. Rahaman, S. Maikap, W. S. Chen, H. Y. Lee, F. T. Chen, T. C. Tien and M. J. Tsai, "Impact of TaOx nanolayer at the GeSex/W interface on resistive switching memory performance and investigation of Cu nanofilament," Journal of Applied Physics, vol. 111, issue 6, 063710, 2012. [46] Y. Yang, P. Gao, L. Li, X. Pan, S. Tappertzhofen, S. Choi, R. Waser, I. Valov, and W. D. Lu, "Electrochemical dynamics of nanoscale metallic inclusions in dielectrics," Nature Commun., vol. 5, pp. 4232-4241, Jun. 2014. [47] L. Goux, K. Opsomer, R. Degraeve, R. Müller, C. Detavernier, D. J. Wouters, M. Jurczak, L. Altimime, and J. A. Kittl, "Influence of the Cu-Te composition and microstructure on the resistive switching of Cu-Te/Al2O3/Si cells," Appl. Phys. Lett., vol. 99, no. 5, pp. 053502-1-053502-3, Aug. 2011. [48] B. Attarimashalkoubeh, A. Prakash, S. Lee, J. Song, J. Woo, S. H. Misha, N. Tamanna, and H. Hwang, "Effects of Ti buffer layer on retention and electrical characteristics of Cu-based conductive-bridge random access memory (CBRAM)," ECS Solid State Lett., vol. 3, no. 10, pp. P120-P122, Jul. 2014. [49] S. Chandrasekaran, F. M. Simanjuntak, T. L. Tsai, C. A. Lin and T. Y. Tseng, "Effect of barrier layer on switching polarity of ZrO2-based conducting-bridge random access memory," Appl. Phys. Lett., vol. 111, pp. 113108, 2017. [50] T. Kamiya, K. Nomura, and H. Hosono, "Origins of high mobility and low operation voltage of amorphous oxide TFTs: Electronic structure, electron transport, defects and doping," Journal of Display Technology, vol. 5, no. 12, pp. 468-483, 2009. [51] K. J. Gan, P. T. Liu, Y. C. Chiu, D. B. Ruan, T. C. Chien, and S. M. Sze, "TAOS based Cu/TiW/IGZO/Ga_2 O_3/Pt bilayer CBRAM for low-power display technology," Surface & Coatings Technology, vol. 354, pp. 169-174, 2018. [52] Y. C. Yang, F. Pan, and F. Zeng, "Bipolar resistance switching in high-performance Cu/ZnO: Mn/Pt nonvolatile memories: active region and influence of Joule heating," New Journal of Physics, vol. 12, no. 2, p. 023008, Feb. 2010. [53] H. Li, M. Qu, and Q. Zhang, "Influence of tungsten doping on the performance of indium–zinc–oxide thin-film transistors," IEEE Electron Device Letters, vol. 34, no. 10, pp. 1268-1270, Oct. 2013. [54] H. W. Park, K. Park, J. Y. Kwon, D. Choi, and K. B. Chung, "Effect of active layer thickness on device performance of tungsten-doped InZnO thin-film transistor," IEEE Transctions On Electron Decvices., vol. 64, no. 1, pp. 159-163, Nov. 2016. [55] S. Aikawa, T. Nabatame, and K. Tsukagoshi, "Effects of dopants in InOx-based amorphous oxide semiconductors for thin-film transistor applications," Appl. Phys. Lett., vol. 103, no. 17, p. 172105, Sep. 2013. [56] J. A. Dean, Lange's handbook of chemistry. New York; London: McGraw-Hill, Inc., 1999. [57] K. J. Gan, P. T. Liu, S. J. Lin, D.-B. Ruan, T. C. Chien, Y. C. Chiu, and S. M. Sze, "Bipolar resistive switching characteristics of tungsten-doped indium–zinc oxide conductive-bridging random access memory," Vacuum, vol. 166, pp. 226-230, Aug. 2019. [58] Y. Sato, K. Tsunoda, K. Kinoshita, H. Noshiro, M. Aoki and Y. Sugiyama, "Sub-100-μA Reset Current of Nickel Oxide Resistive Memory Through Control of Filamentary Conductance by Current Limit of MOSFET," IEEE Transctions On Electron Decvices., vol. 55, no.5, pp. 1185-1191, May. 2008. [59] J. R. Jameson, P. Blanchard, C. Cheng, J. Dinh, A. Gallo, V. Gopalakrishnan, C. Gopalan, B. Guichet, S. Hsu, D. Kamalanathan, D. Kim, F. Koushan, M. Kwan, K. Law, D. Lewis, Y. Ma, V. McCaffrey, S. Park, S. Puthenthermadam, E. Runnion, J. Sanchez, J. Shields, K. Tsai, A. Tysdal, D. Wang, R. Williams, M. N. Kozicki, J. Wang, V. Gopinath, S. Hollmer, and M. V. Buskirk, "Conductive-bridge memory (CBRAM) with excellent high-temperature retention," in Proc. IEDM Tech. Dig., Washington, DC, USA, Dec. 2013, pp. 30.1.1-30.1.4. [60] S. Q. Liu, N. J. Wu, and A. Ignatiev, "Electric-pulse-induced reversible resistance change effect in magnetoresistive films," Appl. Phys. Lett., vol. 76, no. 19, pp. 2749-2751, May 2000. [61] A. Bid, A. Bora, and A. K. Raychaudhuri, "Temperature dependence of the resistance of metallic nanowires of diameter ≥ 15 nm: Applicability of Bloch-Grüneisen theorem," Phys. Rev. B, vol. 74, no. 3, pp. 035426-1-035426-8, Jul. 2006. [62] W. Guan, M. Liu, S. Long, Q. Liu, and W. Wang, "On the resistive switching mechanisms of Cu/ZrO2:Cu/Pt," Appl. Phys. Lett., vol. 93, no. 22, pp. 223506-1-223506-3, Dec. 2008. [63] Z. Q. Wang, H. Y. Xu, X. H. Li, X. T. Zhang, Y. X. Liu, and Y. C. Liu, "Flexible Resistive Switching Memory Device Based on Amorphous InGaZnO Film With Excellent Mechanical Endurance," IEEE Electron Device Letters, vol. 32, no. 10, pp. 1142-1144, Oct. 2011. [64] M. Lübben, P. Karakolis, V. Ioannou-Sougleridis , P. Normand, P. Dimitrakis and I. Valov, "Graphene-Modifi ed Interface Controls Transition from VCM to ECM Switching Modes in Ta/TaOx Based Memristive Devices," Adv. Mater., vol. 27, pp. 6202-6207, 2015. [65] A. Wedig, M. Luebben, D. Y. Cho, M. Moors, K. Skaja, V. Rana, T. Hasegawa, K. K. Adepalli, B. Yildiz, R. Waser and I. Valov, "Nanoscale cation motion in TaOx, HfOx and TiOx memristive systems," Nature Nanotechnology, vol. 11, pp. 67-74, 2016. [66] S. Chandrasekaran, F. M. Simanjuntak, R. Aluguri, T. Y. Tseng, "The impact of TiW barrier layer thickness dependent transition from electrochemical metallization memory to valence change memory in ZrO2-based resistive switching random access memory devices," Thin Solid Films, Jul. 2018. [67] U. Russo, D. Jelmini, C. Cagli, A. L. Lacaita, S. Spigat, C. Wiemert, M. Peregot and M. Fanciullit, "Conductive-filament switching analysis and self accelerated thermal dissolution model for reset in NiO-based RRAM," IEEE International Electron Devices Meeting, vol. 10-12, 2007. [68] A. Belmonte, W. Kim, B. T. Chan, N. Heylen, A. Fantini, M. Houssa, M. Jurczak and L. Goux, "A Thermally Stable and High-Performance 90-nm Al2O3\Cu-Based 1T1R CBRAM Cell," IEEE Electron Device Letters, vol. 60, no. 11, pp. 3690-3695, Nov. 2013. [69] U. Chand, M. Alawein and H. Fariborzi, "Enhancement of Endurance in HfO2-Based CBRAM Device by Introduction of a TaN Diffusion Blocking Layer," ECS Transactions, vol. 77, no.11, pp. 1971-1976, 2017. [70] L. Goux, K. Sankaran, G. Kar, N. Jossart, K. Opsomer, R. Degraeve, G. Pourtois, G.-M. Rignanese, C. Detavernier, S. Clima, Y.-Y. Chen, A. Fantini, B. Govoreanu, D.J. Wouters, M. Jurczak, L. Altimime and J.A. Kittl, "Field-driven ultrafast sub-ns programming in W\Al2O3\Ti\CuTe-based 1T1R CBRAM system," Symposium on VLSI Technology Digest of Technical Papers, 2012. [71] G. Molas, E. Vianello, F. Dahmani, M. Barci, P. Blaise, J. Guy, A. Toffoli, M. Bernard, A. Roule, F. Pierre, C. Licitra, B. De Salvo, L. Perniola, "Controlling oxygen vacancies in doped oxide based CBRAM for improved memory performances," IEEE International Electron Devices Meeting, vol. 15-17, 2014. [72] D. Y. Guo, Z. P. Wu, L. J. Zhang, T. Yang, Q. R. Hu, M. Lei, P. G. Li, L. H. Li, and W. H. Tang, "Abnormal bipolar resistive switching behavior in a Pt/GaO1.3/Pt structure," Applied Physics Letters., Vol. 107, 032104, 2015. [73] K. C. Kwon, M. J. Song, K. H. Kwon, H. V. Jeoung, D. W. Kim, G. S. Lee, J. P. Hong, and J. G. Park, "Nanoscale CuO solid-electrolyte-based conductive-bridging-random-access-memory cell operating multi-level-cell and 1selector1resistor," J. Mater. Chem. C, vol. 3, no. 37, pp. 9540-9550, Jul. 2015. [74] S. Ambrogio, S. Balatti, S. Choi, and D. Ielmini, "Impact of the Mechanical Stress on Switching Characteristics of Electrochemical Resistive Memory," Adv. Mater., vol. 26, no. 23, pp. 3885-3892, Jun. 2014.
|