跳到主要內容

臺灣博碩士論文加值系統

(44.201.99.222) 您好!臺灣時間:2022/12/03 23:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳昕龍
研究生(外文):Wu, Hsin-Lung
論文名稱:針對戶外實際環境下太陽能模組內部水氣滲透情況之研究
論文名稱(外文):Study of water ingress of a PV module under different environmental condition via field testing
指導教授:余沛慈余沛慈引用關係
指導教授(外文):Yu, Peichen
口試委員:林詩淳高宗聖黎宇泰
口試委員(外文):Lin, Shih-ChunKao,Tsung-ShengLi, Yu-Tai
口試日期:2019-09-27
學位類別:碩士
校院名稱:國立交通大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:108
語文別:中文
論文頁數:43
中文關鍵詞:太陽能模組加速測試水氣擴散
外文關鍵詞:solar moduleaging testvapor diffusion
相關次數:
  • 被引用被引用:0
  • 點閱點閱:111
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著近幾年太陽能模組安裝已降低到每瓦發電成本不到一美元,全球的模組安裝量快速增加,發展市場漸漸從歐洲轉移至美國與亞洲,然而傳統太陽能模組由於受限於需要大面積土地來進行發電,導致在某些人口密集區域或土地有限的國家無法大量部屬,此外,熱帶國家因氣候因素也將影響發電量無法達到預期,所以在2016年左右亞洲許多國家開始大量部屬水上漂浮式太陽能電池並探討此應用的可行性,然而漂浮式模組除了不佔土地面積外,水氣與寬闊的水上環境所帶來的降溫效應也有助於電廠發展,反之,在潮濕環境下可能會對模組本身造成一些可靠性問題,所以本篇論文主要研究預測模組內濕度變化的方法,讓未來可以因安裝環境的不同而選擇適當封裝材料,進而降低模組發生失效的可能性。
本篇論文主要分為兩個部分,首先由於現今常見評估模組內水氣的方式皆需要縝密的校正程序以及經過繁瑣的測試設備,在此我們採用新型態的模組監控量測技術,包含加速試驗法與乾燥法,其主要利用市售微型感測器結合模組封裝技術來實際觀測模組內部濕氣變化,再以擴散模型推估出背板的水氣穿透速率,此外,在準確度與重複性方面我們也將探討國際量測標準與監控式量測方法的相關程度,而在第二部分中我們利用在實際環境長期監測模組狀態下探討外部濕度對模組內部的影響,在戶外環境部分我們分別準備了高溫濕、均溫高濕、平均溫濕三種不同環境,並且跟第一部分的透水性量測數據結合,以擴散模型模擬探討何種量測結果可以較趨近於實際狀況,做為未來模組壽命評估的參考。
在實驗結果部分我們成功透過高溫加速試驗法與乾燥法結合監控量測方式計算得到背板材料水氣穿透率,在與國際標準方法的量測結果比較之下,其準確度相關性皆高達99%,此外,整體量測時間相較於傳統監控式量測縮短約5倍左右,而在重複性方面則是與測試材料的耐熱程度有關,以目前常見背板材料而言,僅能維持在三次循環之內,然而在實際環境監控部分,我們發現模組內部水氣濃度將隨著外部環境而改變,而非持續累積在模組之中,並且在模組暴露在環境約一周後,內部相對溼度將趨於穩定變化,約在70%到80%之間,而在三種量測方法結果之中,乾燥法結果最接近實際水氣變化情況。
Due to the price of the mc-Si modules is getting cheaper, the global installed capacity of modules has increased rapidly. The development market has gradually shifted from Europe to the United States and Asia. However, many places around Asia do not have enough land for PV installations, mainly islands such as Japan, Singapore, Korea, Philippines and many others. In recent year, the floating solar photovoltaic installations open up new opportunities for scaling up solar generating capacity. Floating solar systems can be installed in water bodies like oceans, lakes, lagoons, reservoir, irrigation ponds, wastewater treatment plants, wineries, fish farms, dams etc. According to some research for the reliability of floating systems, the humidity on the water is generally higher than that onshore. The more humid environment on water may pose additional challenges for PV operation over the long run. Therefore, to ensure the long-term performance of PV modules, it is important to be able to predict the level of water ingress and the water vapor transmission rate (WVTR) of backsheet materials, which are the factors that mainly determine humidity in PV modules. In the future, the appropriate packaging materials can be selected depending on the installation environment and reduce the possibility of module failure.
There are two main parts to this study. First, the water vapor transmission rate (WVTR) of a backsheet material is investigated using the new in-situ measurement to predict the moisture content in a photovoltaic (PV) module, including highly accelerated stress test (HAST) method and dry method. According to Fick’s equation, the WVTR can be fitted to the measured water concentration of ethylene vinyl acetate with time dependence. We also discuss the accuracy and reliability between the in-situ measurement and the standard method. In the second part, the WVTRs of the backsheet material from the three different measurement methods are used to calculate humidity variations in the modules under field conditions. For the field testing, we prepare three different environmental conditions: higher temperature and humidity, average temperature and high humidity, and average temperature and humidity. This work can combine the model of diffusion to predict the impact of moisture on PV modules in the field and further evaluate module performance under field conditions.
In the results, we successfully calculated the water vapor transmission rate of the backsheet by the HAST method and dry method. The correlation of accuracy between the in-situ measurement and standard method reaches 99%. The overall measurement time of HAST method is less than the general in-situ measurement. The reliability of new in-situ measurement can maintain in three cycles due to the low heat resistance of the test material. In the monitoring of field experiment, we find that the internal water vapor concentration of the module will change with the external environment, rather than continuously accumulating in the module. After the module is exposed to field conditions for one week, the RH in the module reaches a steady state, approximately 70% to 80%. In the prediction of moisture on PV modules, the drying method is closest to replicating actual field conditions.
摘要 I
ABSTRACT III
目錄 VI
圖目錄 VII
第一章 緒論 1
1.1 太陽能發展 1
1.2 環境因子對太陽能模組影響 3
1.3 研究動機與目的 5
第二章 研究理論基礎與量測分析技術 8
2.1 太陽能模組基本架構 8
2.2 評估模組內部水氣程度方法 12
2.3 阿瑞尼斯模型 21
2.4 高度加速壽命試驗 22
第三章 實驗流程與實驗儀器操作 23
第四章 實驗結果與分析 25
4.1 監控式加速量測水氣穿透率 25
4.2 不同量測方法之間的結果比較與重複性 30
4.3 模組環境境實測結果 33
第五章 結論與未來展望 38
第六章 參考文獻 39
第七章 附錄 41
[1] International Technology Roadmap for photovoltaic (ITRPV), 2018 results, 10th Edition, March, 2019
[2] Global solar PV installations to reach record high in 2019, Wood Mackenzie, July 25, 2019
[3] Sahu, Alok, Neha Yadav, and K. Sudhakar. "Floating photovoltaic power plant: A review." Renewable and sustainable energy reviews 66 (2016): 815-824.
[4] Trapani, Kim, and Miguel Redón Santafé. "A review of floating photovoltaic installations: 2007–2013." Progress in Photovoltaics: Research and Applications 23.4 (2015): 524-532.
[5] Rosa-Clot, Marco, Giuseppe Marco Tina, and Sandro Nizetic. "Floating photovoltaic plants and wastewater basins: an Australian project." Energy Procedia 134 (2017): 664-674.
[6] Where Sun Meets Water-floating solar market report, Solar Energy Research Institute of Singapore (SERIS), June 13, 2019
[7] Review of Failures of Photovoltaic Modules, Report IEA-PVPS T13-01:2014
[8] Ndiaye, Ababacar, et al. "Degradations of silicon photovoltaic modules: A literature review." Solar Energy 96 (2013): 140-151.
[9] Hardikar, Kedar, Todd Krajewski, and Kristopher Toivola. "Assessing field performance of flexible PV modules for moisture induced degradation from accelerated testing." 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC). IEEE, 2016.
[10] Naumann, Volker, et al. "Explanation of potential-induced degradation of the shunting type by Na decoration of stacking faults in Si solar cells." Solar Energy Materials and Solar Cells120 (2014): 383-389.
[11] Hacke, Peter, et al. "Accelerated testing and modeling of potential-induced degradation as a function of temperature and relative humidity." IEEE Journal of Photovoltaics 5.6 (2015): 1549-1553.
[12] de Oliveira, Michele Cândida Carvalho, et al. "The causes and effects of degradation of encapsulant ethylene vinyl acetate copolymer (EVA) in crystalline silicon photovoltaic modules: A review." Renewable and Sustainable Energy Reviews 81 (2018): 2299-2317.
[13] Kempe, Michael D., et al. "Acetic acid production and glass transition concerns with ethylene-vinyl acetate used in photovoltaic devices." Solar Energy Materials and Solar Cells91.4 (2007): 315-329.
[14] Kraft, Achim, et al. "Investigation of acetic acid corrosion impact on printed solar cell contacts." IEEE Journal of Photovoltaics 5.3 (2015): 736-743.
[15] Miyashida, M., and A. Masuda. "Correlation between moisture ingress and performance in photovoltaic modules." 28th EU-PVSEC (2013): 2828-2831.
[16] Liu, Haohui, et al. "Field experience and performance analysis of floating PV technologies in the tropics." Progress in Photovoltaics: Research and Applications 26.12 (2018): 957-967.
[17] Jankovec, Marko, et al. "In-SituMonitoring of Moisture Ingress in PV Modules Using Digital Humidity Sensors." IEEE journal of photovoltaics 6.5 (2016): 1152-1159.
[18] Dupont: “A guide to understanding solar panel defects: from fabrication to fielded modules”, www.dupont.com
[19] Tencer, Michal. "Moisture ingress into nonhermetic enclosures and packages. A quasi-steady state model for diffusion and attenuation of ambient humidity variations." 1994 Proceedings. 44th Electronic Components and Technology Conference. IEEE, 1994.
[20] ASTM E398, Standard Test Method for Water Vapor Transmission Rate of Sheet Materials Using Dynamic Relative Humidity Measurement, American Society of Testing and Materials
[21] Kempe, Michael D. "Modeling of rates of moisture ingress into photovoltaic modules." Solar Energy Materials and Solar Cells90.16 (2006): 2720-2738.
[22] ASTM E96 vs. F1249 for WVTR Permeation Testing, “Modern barriers require more sensitive and accurate test methods. Does E96 stand up to the test?”, MOCON®
[23] Hülsmann, Philip, Karl‐Anders Weiß, and Michael Köhl. "Temperature‐dependent water vapour and oxygen permeation through different polymeric materials used in photovoltaic‐modules." Progress in Photovoltaics: Research and Applications22.4 (2014): 415-421.]
電子全文 電子全文(網際網路公開日期:20241012)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top