跳到主要內容

臺灣博碩士論文加值系統

(44.200.122.214) 您好!臺灣時間:2024/10/06 02:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪培軒
研究生(外文):Hung, Pei-Hsuan
論文名稱:使用大氣電漿製作氧化銦镓鋅薄膜之一氧化碳感測器研究
論文名稱(外文):Enhancement of Carbon Monoxide Sensor Using IGZO Thin Films by AP-PECVD
指導教授:張國明許博淵許博淵引用關係
指導教授(外文):Chang, Kuo-MingHsu, Po-Yuan
口試委員:吳建宏鄧一中
口試委員(外文):Wu, Chien-HungTeng, Yi-Chung
口試日期:2019-12-27
學位類別:碩士
校院名稱:國立交通大學
系所名稱:工學院加速器光源科技與應用學位學程
學門:自然科學學門
學類:其他自然科學學類
論文種類:學術論文
論文出版年:2019
畢業學年度:108
語文別:英文
論文頁數:75
中文關鍵詞:氣體感測器氧化銦镓鋅二氧化碳大氣電漿
外文關鍵詞:Gas sensorIGZOCarbon MonoxideAP PECVD
相關次數:
  • 被引用被引用:0
  • 點閱點閱:122
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
氣體感測器的發展日新月異,並廣泛運用於日常生活與工業中,但現今文獻所研究的材料卻仍偏重於金屬氧化物(SMO),而像是銦鎵鋅氧這種非晶氧化半導體(AOS)卻仍在初步發展階段,有極大的發展空間。銦鎵鋅氧廣泛運用於TFT,而他有對於環境中的空氣、濕度與光源極為敏感的缺點,但這項缺點讓銦鎵鋅氧對於氣體感測器有極大的發展性,這些敏感的因素能夠改變銦鎵鋅氧當中氧空缺的比例,使得元件電性產生改變,進而達到偵測氣體的效果。
本篇研究中,我們採用了大氣壓電漿輔助化學氣相沉積(AP-PECVD)來沉積銦鎵鋅氧感測層,藉由大氣壓電漿輔助化學氣相沉積的幫助,我們可以不需要真空腔體或真空系統即可以沉積銦鎵鋅氧感測層,因此可以降低所需的成本,並提高產率。一開始的研究專注於沉積銦鎵鋅氧感測層的製程參數與對一氧化碳的感測反應,借助於氣體感測器長久以來發展的理論與公式,搭配實際實驗與量測,得出靈敏度、反應時間、回復時間…等相關參數,由此探討銦鎵鋅與金屬氧化物之間存在理論與現實的相異之處。同時也會利用AP PECVD對沉積的銦鎵鋅氧感測層做電漿表面處理,增加感測器表面的粗糙度並增加與一氧化碳的接觸面積,再使用掃描電子顯微鏡(SEM)與原子力顯微鏡(AFM)對表面進行分析,深入探討這項製程對於氣體感測器的成效。
The development of gas sensor is improved every day and is widely used in homes and industries. However, the materials studied in the literature are still focused on semiconductor metal oxides (SMO), while the amorphous oxide semiconductors (AOS) like InGaZnO still in the initial development stage, there is a lot of space for development. IGZO is widely used in TFTs, and it has the disadvantage of being extremely sensitive to the air, humidity and light source in the environment. However, this shortcoming lacks the development of IGZO for gas sensors These sensitive factors can change the proportion of IGZO oxygen vacancies and the electrical properties of the components. Further, these factors can detect the gas.
In this study, we used atmospheric-pressure PECVD (AP-PECVD) to deposit the IGZO sensing layer. With the help of AP-PECVD, we can deposit our IGZO sensing layer without vacuum chamber or vacuum system, thus reducing the cost and increasing yield. The initial research focus on the deposition of the process parameters of the amorphous IGZO(a-IGZO) sensing layer and the sensing reaction to carbon monoxide. With the long-established theory and formula of the gas sensor, combined with the actual experiment and measurement, we can obtain the sensitivity, reaction time, response time, and other related parameters. To investigate the difference between theory and reality between a-IGZO and metal oxide. At the same time, AP-PECVD is used to perform plasma surface treatment on the deposited a-IGZO sensing layer, increasing the surface roughness of the sensor and the contact area with carbon monoxide, and then using scanning electron microscopy (SEM) and atomic force microscopy. (AFM) to analyze the surface and explores the effectiveness of this process for gas sensors.
摘要 i
Abstract iii
致謝 v
Contents vi
Table Cations viii
Figure Captions viii
Chapter 1 Introduction 1
1.1 Introduction to the Gas sensor 1
1.1.1 Overview of gas sensor 1
1.1.2 Sensing materials for gas sensor 2
1.1.3 Sensing mechanism for metal oxide 3
1.2 Structure of gas sensor 6
1.2.1 Interdigital electrodes 6
1.2.2 Micro heater of gas sensor 8
1.3 Atmospheric pressure PECVD 8
1.4 Plasma surface treatment 10
Chapter 2 Literature Review 20
2.1 The power laws theory for semiconductor gas sensors 20
2.2 Gas sensor with amorphous InGaZnO4 films 21
2.3 Gas sensor with plasma treatment 23
Chapter 3 Experiment Details 29
3.1 Mask design 29
3.2 Experiment detail of IGZO gas sensor 29
Chapter 4 Results and Discussions 37
4.1 The IGZO thin film material analysis 37
4.1.1 Surface Analysis of a-IGZO thin film by Atomic force microscope(AFM) 37
4.1.2 Surface Analysis of a-IGZO thin film by Scanning Electron Microscope (SEM) 37
4.1.3 The Crystalline analysis of a-IGZO Thin Film by X-Ray Diffraction 38
4.2 a-IGZO process parameters 38
4.2.1 Thickness and Annealing temperature analysis 38
4.2.2 IGZO with Plasma treatment analysis 40
4.3 a-IGZO gas sensor's ability to sense the environment 40
4.3.1 Sensitivity of different CO concentrations and measured temperatures 40
4.3.2 Response and Recovery time of different CO concentrations and measured temperatures 42
4.3.3 n factor of a-IGZO gas sensor 43
4.3.4 Low CO concentration prediction and measurement 44
Chapter 5 Conclusions and Future Work 71
5.1 Conclusions 71
5.2 Future work 72
References 73
[1.1]Isomura, Kousuke, and Joseph Watson. The Stannic Oxide Gas Sensor Principles and Applications. CRC press, 2017.

[1.2]Jimenez-Cadena, Giselle, Jordi Riu, and F. Xavier Rius. "Gas sensors based on nanostructured materials." Analyst 132.11 (2007): 1083-1099.

[1.3]PIN-PIN TSAI, MING-HAN TZENG, “Introduction, application and market of gas sensors.”

[1.4]Shankar, Prabakaran, and John Bosco Balaguru Rayappan. "Gas sensing mechanism of metal oxides: The role of ambient atmosphere, type of semiconductor and gases-A review." Sci. Lett. J 4.4 (2015): 126.

[1.5] Barsan, Nicolae, and Udo Weimar. "7.3. 3 Fundamentals of Metal Oxide Gas Sensors." Proceedings IMCS 2012 (2012): 618-621.

[1.6] Toshio Kamiya and Hideo Hosono “Tokyo Institute of Technology, NPG Asia Mater. ”

[1.7] Hosono H, Kikuchi N, Ueda N and Kawazoe H, J. “Non-Cryst. Solids”

[1.8] Kitsara, M., et al. "Single chip interdigitated electrode capacitive chemical sensor arrays." Sensors and Actuators B: Chemical127.1 (2007): 186-192.

[1.9] Mamishev, Alexander V., et al. "Interdigital sensors and transducers." Proceedings of the IEEE 92.5 (2004): 808-845.

[1.10] Mo, Yaowu, et al. "Micro-machined gas sensor array based on metal film micro-heater." Sensors and Actuators B: Chemical79.2-3 (2001): 175-181.

[1.11] M. L. Hitchman“ Special Issue:Atmospheric Pressure Plasma Enhanced CVD (AP‐PECVD) ”


[1.12] Schutze, Andreas, et al. "The atmospheric-pressure plasma jet: a review and comparison to other plasma sources." IEEE transactions on plasma science 26.6 (1998): 1685-1694.

[1.13] Laroussi, Mounir, and Tamer Akan. "Arc‐free atmospheric pressure cold plasma jets: a review." Plasma Processes and Polymers 4.9 (2007): 777-788.

[1.14] Yang, Ching-Yu, Jen-Sue Chen, and Steve Lien-Chung Hsu. "Effects of O2 and N2 plasma treatment on 6FDA-BisAAF fluorine-contained polyimide." Journal of The Electrochemical Society 153.6 (2006): F120-F125.

[1.15] Yoshida, S., et al. "Surface modification of polymers by plasma treatments for the enhancement of biocompatibility and controlled drug release." Surface and Coatings Technology 233 (2013): 99-107.

[1.16] Neri, Giovanni. "First fifty years of chamoresistive gas sensors." Chemosensors 3.1 (2015): 1-20.

[1.17] Kim, Il-Doo, Avner Rothschild, and Harry L. Tuller. "Advances and new directions in gas-sensing devices." Acta Materialia 61.3 (2013): 974-1000.

[1.18] Chang, Kow-Ming, et al. "Enhancement of the light-scattering ability of Ga-doped ZnO thin films using SiOx nano-films prepared by atmospheric pressure plasma deposition system." Thin Solid Films 548 (2013): 460-464.


[2.1] Yamazoe, Noboru, and Kengo Shimanoe. "Theory of power laws for semiconductor gas sensors." Sensors and Actuators B: Chemical 128.2 (2008): 566-573.

[2.2] Akiyama, Morito, et al. "Tungsten oxide-based semiconductor sensor highly sensitive to NO and NO2." Chemistry Letters 20.9 (1991): 1611-1614.

[2.3] D.D. Vuong, G. Sakai, K. Shimanoe, N. Yamazoe, “Preparation of grain
size-controlled tin oxide sols by hydrothermal treatment for thin film sensor
application”


[2.4] Vuong, Dang Duc, et al. "Preparation of grain size-controlled tin oxide sols by hydrothermal treatment for thin film sensor application." Sensors and Actuators B: Chemical 103.1-2 (2004): 386-391.

[2.5] Yang, Dae Jin, et al. "Amorphous InGaZnO4 films: Gas sensor response and stability." Sensors and Actuators B: Chemical 171 (2012): 1166-1171.

[2.6] Alagdal, Ibtessam A., and Anthony R. West. "Oxygen non-stoichiometry, conductivity and gas sensor response of SnO 2 pellets." Journal of Materials Chemistry A 3.46 (2015): 23213-23219.

[2.7] Rothschild, Avner, and Yigal Komem. "The effect of grain size on the sensitivity of nanocrystalline metal-oxide gas sensors." Journal of Applied Physics 95.11 (2004): 6374-6380.

[2.8] Pan, Jun, et al. "Plasma-modified SnO2 nanowires for enhanced gas sensing." The Journal of Physical Chemistry C 114.18 (2010): 8245-8250.

[2.9] Beniwal, Ajay, and Praveen Kumar Sahu. "Enhanced Sensing Performance of Nanostructured SnO 2 Sensor Through Oxygen Plasma Treatment." 2018 IEEE SENSORS. IEEE, 2018.
電子全文 電子全文(網際網路公開日期:20241225)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊