跳到主要內容

臺灣博碩士論文加值系統

(44.192.95.161) 您好!臺灣時間:2024/10/04 14:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:魏良育
研究生(外文):Wei, Liang-Yu
論文名稱:高速無線光通訊的研究與應用
論文名稱(外文):Research of High-Speed Optical Wireless Communication and Application
指導教授:鄒志偉
指導教授(外文):Chow, Chi-Wai
口試委員:黃建璋呂海涵賴暎杰陳智弘葉建宏
口試委員(外文):Huang, Jian-JangLu, Hai-HanLai, Yin-ChiehChen, Jye-HongYeh, Chien-Hung
口試日期:2019-12-24
學位類別:博士
校院名稱:國立交通大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:108
語文別:英文
論文頁數:111
中文關鍵詞:無線光通訊可見光通訊正交分頻多工第五代行動通訊虛擬光纖-光接取網路
外文關鍵詞:Optical Wireless CommunicationVisible Light CommunicationOrthogonal Frequency Division Multiplexing5th Generation Mobile CommunicationVirtual Fiber Optical Access NetworkFree-Space Optics
相關次數:
  • 被引用被引用:0
  • 點閱點閱:370
  • 評分評分:
  • 下載下載:22
  • 收藏至我的研究室書目清單書目收藏:2
2019年被視為第5代行動通訊(5G)元年,意味著行動通訊將邁入下一個里程碑。除了提供超高數據容量外,新型設施勢必要具備高層級的安全保護、幾乎零的延遲、大量設施的連通性及高比率能源節省的特性。由於射頻頻譜的壅塞及其費用、頻寬、規則、干擾的限制,已無法滿足未來高流量5G服務的需求。與射頻頻譜相比,光無線傳輸為主的系統能提供高容量的傳輸係因其無需執照的頻譜和較大的頻寬。然而,於光無線通訊的範疇使用可見光頻段即為眾所皆知的可見光通訊。可見光通訊的應用端包含了智慧家居、物聯網(IoT)、高精準度定位、水下通訊及機器與機器間(M2M)通訊。思科(Cisco)指出於2022年時,全球行動數據流量在機器與機間連結部份將達到52%的年均複合增長率(CAGR),這也顯示了機器間通訊在未來生活中俱有極重要的地位。本論文中,我們發展了雙向可見光通訊系統,來達成高速的機器間傳輸。因此,可見光通訊被視為一具有潛力的方案,來減輕未來巨量連結5G網路中,射頻為主系統的負擔。
第2章節中,包含了開關鍵控(OOK)、四階脈衝振幅(PAM-4)及正交振幅調變格式的基礎介紹。且運用不同的技術來了解如何於光無線通訊系統中增加傳輸速率。第3章節中,我們首先提出並示範;利用單一垂直空腔面射型雷射(VCSEL)配合一聲光調制器(AOM),可達到10.6 Gbit/s的正交分頻多工(OFDM)的下載速率與2 Mbit/s之再調制開關鍵控上傳速率。雙向系統中,上傳與下載的傳輸距離則均為3公尺。接著,引入預失真技術來增加上傳的速率到將近2.8倍,數值模擬則用來證明其通道頻寬的限制。值得一提的是,上傳的速率係因聲光調制器3-dB頻寬的限制。若是提高3-dB頻寬再引入預失真的技術,則能提供一高速雙向可見光通訊系統並用於機器與機器間的連結。
第4章節中,我們提出了一20.231 Gbit/s速率之紅/綠/藍雙向可見光通訊系統。此外,我們也利用了偏振多工的技巧來示範了一40.665 Gbit/s速率之紅/綠/藍雷射二極體為主的可見光通訊系統。此二系統均有能力提供機器間的高速傳輸,並應用於電腦伺服器室與數據中心之類的場所。第5章節中,2.898 Gbit/s速率之白光雷射同時提供了照明與通訊,我們也研究了x軸與y軸所能容忍的偏移範圍特性分析。接著,我們提出並示範了總速率為2.2333 Tbit/s之光無線傳輸為主的虛擬光纖-光接取網路,並用來提供給室內的白光可見光通訊使用。最後,我們也示範了傳輸距離1.5公尺下,6.915 Gbit/s的可見光通訊系統。
本論文提出了幾個可見光與紅外-自由空間光學的架構,及其應用於光無線傳輸領域。透過本論文,我們期待光無線通訊為主的系統應用,能在未來5G的網路中,幫忙卸載射頻為主系統的負擔。
This year (2019) is regarded as the first year of fifth-generation (5G) mobile communication, which means that mobile communication will step to the next milestone. Apart from offering ultra-high data capacity, newer infrastructures must possess the characteristic of high-level security protection, near-zero latency, massive facilities connectivity, and high-ratio energy saving. Due to radio frequency (RF) spectrum is congested and has its limitation of expense, bandwidth, regulation, and interference, it’s insufficient to fulfil the requirement of future high traffic 5G services. Compare with RF spectrum, OWC-based system can provide high-capacity transmission on account of the unlicensed spectrum and wider bandwidth. However, using visible light band in OWC field is the well-known technique called visible light communication (VLC). VLC has numerous applications in smart-home, internet-of-things (IoT), high precision positioning, underwater transmission, and machine-to-machine (M2M) communication. Cisco indicates that connection of M2M has CAGR of 52% in global mobile data traffic by 2022, which means that M2M communication has a crucial position in our future lives. In this dissertation, we developed bi-directional VLC system to realize high-speed M2M transmission. Hence, VLC has considered as a potential solution to mitigate the loading of RF-based system in future massive connective 5G network.
In chapter 2, basic introduction for modulation format of OOK, PAM-4 and QAM is included. Different techniques are applied to understand how to increase the data rate for OWC system. In chapter 3, using a single VCSEL with an AOM to reach 10.6 Gbit/s OFDM downstream and 2 Mbit/s remodulated OOK upstream is first propsed and demonstrated. Transmission distance of downstream and upstream for this bi-directional system is both 3 m. Then, pre-distortion technique is introduced to enhance the upstream remodulated data rate until ~2.8 times, numerical simulations are also performed to prove its limitations. It’s worth to said that the upstream data rate is limited by 3-dB bandwidth of AOM. If the 3-dB bandwidth is increased then introducing the technique of pre-distortion, it can supply high-speed bi-directional VLC system for M2M connection.
In chapter 4, we proposed a 20.231-Gbit/s tricolor bi-directional R/G/B VLC system. Moreover, a 40.665 Gbit/s tricolor R/G/B LD-based VLC system with technique of polarization-multiplexed is also demonstrated. Both of two systems are able to support high data rate for M2M connection in computer sever room or data center. In chapter 5, 2.898 Gbit/s phosphor-based white-light LD provides both illumination and communication, the performance tolerance offset ranges in both x and y-directions are also studied. Then, a 2.233 Tbit/s virtual-fiber optical-access-network OWC-based system is proposed and demonstrated for supporting indoor white-light VLC. Finally, a 6.915 Gbit/s white-light VLC system is also demonstrated at the transmission distance of 1.5 m.
This dissertation proposed several VLC and IR-FSO architectures with their applications in optical wireless communication. Through this research, we expect that the applications of OWC-based system could offload the loading of RF-based system in the future 5G network.
Chinese Abstract......................................I
English Abstract....................................III
Acknowledgments.......................................V
Table of Contents...................................VII
List of Figures.......................................X
List of Tables.......................................XV
List of Acronyms....................................XVI
Chapter 1 Introduction................................1
1-1 General Background Information.................1
1-2 Research Motive................................3
1-3 Dissertation Outline and Structure.............6
Reference.............................................7
Chapter 2 Technique to Improve Data Rate for High-Speed
OWC System...........................................10
2-1 Introduction to Modulation Format................10
2-1-1 Pulse Amplitude Modulation (PAM-N).............10
2-1-2 Quadrature Amplitude Modulation (QAM)..........11
2-2 Methods to Improve Data Rate.....................15
2-2-1 Orthogonal Frequency Division Multiplexing (OFDM)
.....................................................15
2-2-2 Adaptive Bit-loading and Power-loading.........17
2-2-3 Wavelength Division Multiplexing (WDM).........21
2-3 Summary..........................................22
Reference............................................22
Chapter 3 Bi-directional Optical Wireless Communication
System...............................................24
3-1 Preface..........................................24
3-2 Using a Single VCSEL Source Employing OFDM
Downstream Signal and re-modulated OOK Upstream Signal
for Bi-directional VLC...............................24
3-2-1 Introduction...................................24
3-2-2 Architecture of the Bidirectional Signal
Remodulated LD-based VLC System......................27
3-2-3 Experimental Results...........................29
3-2-4 Summary........................................34
3-3 Preface..........................................36
3-4 Bidirectional VLC System Using a Single VCSEL with
Predistortion to Enhance the Upstream Remodulation...36
3-4-1 Introduction...................................36
3-4-2 Experimental Setup of Bi-directional VLC System
with Pre-distortion Technique........................38
3-4-3 Results and Discussions........................40
3-4-4 Summary........................................46
Reference............................................46
Chapter 4 High-speed 20/40 Gbit/s OWC System for M2M
Transmission.........................................53
4-1 Preface..........................................53
4-2 Over 20 Gbit/s Tricolor Red/green/blue Laser Diode
based Bidirectional Signal Remodulation VLC System...53
4-2-1 Introduction...................................53
4-2-2 Experimental Setup of Tricolor RGB LD-based Bi-
directional VLC System...............................55
4-2-3 Results and Discussions........................59
4-2-4 Summary........................................63
4-3 Preface..........................................65
4-4 Tricolor visible-light laser diodes based VLC
operated at 40.665 Gbit/s and 2 m free-space
transmission.........................................65
4-4-1 Introduction...................................65
4-4-2 Architecture of Tricolor RGB LD-based VLC
Experiment...........................................68
4-4-3 Results and Discussions........................72
4-4-4 Summary........................................76
Reference............................................77
Chapter 5 Toward Terabit/s Virtual Fiber Optical Access
Network based on OWC and its Application for Indoor VLC
.....................................................82
5-1 Preface….........................................82
5-2 Nearly 2.9 Gbit/s Phosphor-based White-light and
Blue-filter-free Visible Light Communication and
Illumination with 1 m Transmission Distance..........83
5-2-1 Introduction...................................83
5-2-2 Experimental setup of the phosphor-based white-
light and blue-filter-free VLC system................84
5-2-3 Experimental Results...........................85
5-2-4 Summary........................................91
5-3 Preface….........................................92
5-4 Beyond 2.2 Terabit/s Virtual Fiber Optical Access
Network based on Optical Wireless Communication......92
5-4-1 Introduction...................................92
5-4-2 Architecture...................................93
5-4-3 Experiment and Results.........................96
5-4-4 Summary.......................................101
Reference...........................................102
Chapter 6 Conclusion................................106
Publication List....................................107
International Journals..............................107
International Conferences...........................109
[1(1)] Mansoor Shafi, Andreas F. Molisch, Peter J. Smith, Thomas Haustein, Peiying Zhu, Prasan De Silva, Fredirk Tufvessonn, Anass benjebbour, Gerhard Wunder, “5G: A Tutorial Overview of Standards, Trials, Challenges, Dployment, and Practice,” IEEE J. Sel. Areas Commun., vol. 35, no.6, pp. 1201-1221, Jun. 2017.
[1(2)] L. Hanzo, H. Haas, S. Imre, D. O’Brien, M. Rupp, and L. Gyongyosi, ‘‘Wireless myths, realities, and futures: From 3G/4G to optical and quantum wireless,’’ Proc. IEEE, vol. 100, pp. 1853-1888, May 2012.
[1(3)] http://www.itu.int/en/mediacentre/backgrounders/Pages/5G-fifth-generation-of-mobile-technologies.aspx
[1(4)] H. Elgala, R. Mesleh, and H. Haas, ‘‘Indoor optical wireless communication: Potential and state-of-the-art,’’ IEEE Com. Mag., vol. 49, no.9, pp. 56-62, Sep. 2011.
[1(5)] H. Chen, H. P. A. van den Boom, E. Tangdiongga, and T. Koonen, ‘’30-Gb/s bidirectional transparent optical transmission with an MMF access and an indoor optical wireless link,’’ IEEE Photon, Technol. Lett., vol. 24, no. 7, pp. 572-574, Apr. 1, 2012.
[1(6)] D. K. Borah, A. C. Boucouvalas, C. C. Davis, S. Hranilovic, and K. Yiannopoulos, ‘‘A review of communication-oriented optical wireless systems,’’ EURASIP J. Wireless Com. Netw., vol. 2012, p. 91, Dec. 2012.
[1(7)] S. Dimitrov and H. Haas, ‘‘Information rate of OFDM-based optical wireless communication systems with nonlinear distortion,’’ J. Lightw. Technol., vol. 31, no. 6, pp. 918-929, Mar. 15, 2013.
[1(8)] M. Uysal and h. Nouri, ‘‘Optical wireless communication-An emerging technology,’’ in Proc. Int. Conf. Transp. Opt. Netw., pp. 1-7, Jul. 2014.
[1(9)] A. C. Boucouvalas, P. Chatzimisios, Z. Ghassemlooy, M. Uysal, and K. Yiannopoulos, ‘‘Standards for indoor optical wireless communications,’’ IEEE com. Mag., vol. 53, no. 3, pp. 24-31, Mar. 2015.
[1(10)] Z. Ghassemlooy, S. Arnon, M. Uysal, Z. Xu, and J. Cheng, ‘‘Emerging optical wireless communications-advances and challenges,’’ IEEE J. Sel. Areas Com., vol. 33, no. 9, pp. 1738-1749, Sep. 2015.
[1(11)] D. Karnuatilaka, F. Zafar, V. Kalavally, and Parthiban, ‘‘LED based indoor visible light communication: State of the art,’’ IEEE Commun. Surveys Tuts., vol. 17, no. 3, pp. 1649-1678, 2015.
[1(12)] Y. C. Chung, Z. Q. Li, C. W. Hsu, Y. Liu, and C. W. Chow, ‘‘Visible light communication and positioning using positioning cells and machine learning algorithms, ’’ Optics Express, vol. 27, no. 11, pp. 16377-16383, 2019.
[1(13)] C. W. Chow, R. J. Shiu, Y. C. Liu, C. H. Yeh, X. L. Liao, K. H. Lin, Y. C. Wang, Y. Y. Chen, ‘‘Secure mobile-phone based visible light communications with different noise-ratio light-panel, ’’ IEEE Photonics Journal, vol 10, no. 2, pp. 1-5, 2018.
[1(14)] C. W. Chow, R. J. Shiu, X. L. Liao, K. H. Lin, Y. C. Wang, Y. Y. Chen, ‘‘Using advertisement light-panel and CMOS image sensor with frequency-shift-keying for visible light communication, ’’ Optics Express, vol. 26, no. 10, pp. 12530-12535, 2018.
[1(15)] C. W. Chow, R. J. Shiu, Y. C. Liu, W. C. Wang, X. L. Liao, K. H. Lin, Y. C. Wang, Y. Y. Chen, ‘‘Mitigation of performance degradation due to dynamic display contents in visible light communication using TV backlight and CMOS image sensor, ’’ Optics Express, vol. 26, no. 17, pp. 22342-22347, 2018.
[1(16)] Y. C. Chung, C. W. Chow, Y. Liu, C. H. Yeh, X. L. Liao, K. H. Lin, Y. Y. Chen, ‘‘Using logistic regression classification for mitigating high noise-ratio advisement light-panel in rolling-shutter based visible light communications, Optics Express, vol. 27, no. 21, pp. 29924-29929, 2019.
[1(17)] G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, ‘‘3.4 Gbit/s visible optical wireless transmission based on RGB LED, ’’ Optics Express, vol. 20, no. 26, pp. 501-506, 2012.
[1(18)] H. Chun, S. Rajbhandari, G. Faulkner, D. Tsonev, E. Xie, J. J. D. Mckendry, E. Gu, M. D. Dawson, D. O’Brien, and H. Haas, ‘‘LED based Wavelength Division Multiplexed 10 Gb/s Visible Light Communication, ’’ IEEE Journal of Lightwave Technology, vol. 34, issue 13, pp. 3047-3052, 2016.
[1(19)] D. Tsonev, S. Videv, and H. Haas, ‘‘Towards a 100 Gb/s visible light wireless access network, ’’ Optics Express, vol. 23, no. 2, pp. 1627-1637, 2015.
[1(20)] P. H. Pathak, X. Feng, P. Hu, and P. Mohapatra, ‘‘Visible light communication, networking, and sensing: A survey, potential and challenges, ’’ IEEE Commun. Surveys Tuts., vol. 17, no. 4, pp. 2047-2077, 4th Quart., 2015.
[1(21)] Y. J. Zhu, Z, G. Sun, J. K. Zhang, Y. Y. Zhang, and J. Zhang, ‘‘Training receivers for repetition-coded MISO outdoor visible light communication, ’’ IEEE Trans. Veh. Technol., vol. 66, no. 1, pp. 529-540, 2017.
[1(22)] L. U. Khan, ‘‘Visible light communication: Applications, architecture, standardization and research challenges, ’’ Digit. Commun. Netw., vol. 3, no. 2, pp. 78-88, 2016.
[1(23)] https://5g-ppp.eu/
[1(24)] https://www.5g.gov.hk/en/what-is-5g/international.html
[1(25)] Cisco Visual Networking Index Global Mobile Data Traffic Forecast Update, 2017-2022.
[1(26)] Cisco Visual Networking Index: Forecast and Trends, 2017-2022.
[2(1)] Neal S. Bergano, F. W. Kerfoot, and C. R. Davidson, ‘‘Margin Measurements in Optical Amplifier Systems,’’ IEEE Photonics Technoloby Letters, vol. 5, no. 3, pp. 304-306, 1993.
[2(2)] Dongweon Yoon, Kyongkuk Cho, Jinsock Lee, ‘‘Bit Error Probability of M-ary Quadrature Amplitude, ’’ 52nd Vehicular Technology Conference, pp. 2422-2427, 2000.
[2(3)] John G. Proakis, Masoud Salehi, ‘‘Digital Communications, ’’ 5th edition, 2007.
[2(4)] Rishad Ahmed Shafik, Md. Shahriar Rahman, and AHM Razibul Islam, ‘‘On the Extended Relationships Among EVM, BER and SNR as performance Metrics, ’’ 4th International Conference on Electrical and Computer Engineering (ICECE), 2006.
[2(5)] Thierry Pollet, Mark Van Bladel, and Marc Moeneclaey, ‘‘BER Sensitivity of OFDM Systems to Carrier Frequency Offset and Wiener Phase Noise, ’’ IEEE Transactions on Communications, vol. 43, no. 2, 3, 4, 1995.
[2(6)] Fernando Ramirez-Mireles, ‘‘On the Performance of Ultra-Wide-Band Signals in Gaussian Noise and Dense Multipath, ’’ IEEE Transaction on Vehicular Technology, vol. 50, no. 1, 2001.
[2(7)] Irving Kalt, ‘‘The Multitone Channel, ’’ IEEE Transaction on Communications, vol. 37, no. 2, pp. 119-124, 1989.
[2(8)] Andre Noll Barreto, and Simeon Furrer, ‘‘Adaptive Bit Loading for Wireless OFDM Systems, ’’ 12th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, pp. G88-92, 2001.
[2(9)] Alexander M. Wyglinski, Fabric Labeau, and Peter Kabal, ‘‘Bit Loading with BER-Constrain for Multicarrier Systems, ’’ IEEE Transactions on Wireless Communications, vol. 4, no. 4, 2005.
[2(10)] R. S. Cheng, and S. Verdu, ‘‘Gaussian multi-access channels with ISI: capacity region and multiuser water-filling, ’’ IEEE Transactions on Information Theory, vol. 39, issue: 3, pp. 773-785, 1993.
[2(11)] P. Viswanath, D. N. C. Tse, and V. Anantharam, ‘‘Asymptotically optimal water-filling in vector multiple-access channels, ’’ IEEE Transations on Information Theory, vol. 47, Issue: 1, pp. 241-267, 2001.
[2(12)] Y. Hsu, C. Y. Chuang, X. Wu, G. H. Chen, C. W. Hsu, Y. C. Chang, C. W. Chow, J. Chen, Y. C. Lai, C. H. Yeh, and H. K. Tsang, ’’ IEEE Photonics Tehnology Letters, vol. 30, no. 11, pp. 1052-1055, 2018.
[2(13)] G. H. Chen, C. W. Chow, C. H. Yeh, C. W. Peng, P. C. Guo, J. F. Tsai, M. W. Cheng, Y. Tong, and H. K. Tsang, ‘‘Mode-Division-Multiplexing (MDM) of 9.4-Tbit/s OFDM Signals on Silicon-on-Insulator (SOI) Platform, ’’ IEEE Access, vol. 7, pp. 129104-129111, 2019.
[3(1)] W. H. L. John and M. Chapin, “Mobile broadband growth, spectrum scarcity, and sustainable competition,” 39th Research Conference on Communications Information and Internet Policy, 23-25 (2011).
[3(2)] H. C. Nguyen, I. Rodriguez, T. B. Sorensen, L. L. Sanchez, I. Kovacs, and P. Mogensen, “An empirical study of urban macro propagation at 10, 18 and 28 GHz,” IEEE VTC Spring, 1-5 (2016).
[3(3)] C. W. Chow, C. H. Yeh, Y. Liu, and Y. F. Liu, “Digital signal processing for light emitting diode based visible light communication,” IEEE Photon. Soc. Newslett., 26, 9-13 (2012).
[3(4)] Y. C. Chi, D. H. Hsieh, C. T. Tsai, H. Y. Chen, H. C. Kuo, and G. R. Lin, “450-nm GaN laser diode enables high-speed visible light communication with 9-Gbps QAM-OFDM,” Opt. Exp., 23, 13051-13059 (2015).
[3(5)] J. Y. Sung, C. W. Chow, and C. H. Yeh, “Is blue optical filter necessary in high speed phosphor-based white light LED visible light communications?”, Opt. Exp., 22, 20646-20651 (2014).
[3(6)] H. Le-Minh, D. C. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photon. Technol. Lett., 20, 1243-1245 (2008).
[3(7)] J. Vucic, C. Kottke, S. Nerreter, K. D. Langer, and J. W. Walewski, “513 Mbit/s visible light communications link based on DMT-modulation of a white LED,” J. Lightw. Technol., 28, 3512-3518 (2010).
[3(8)] C. H. Chang, C. Y. Li, H. H. Lu, C. Y. Lin, J. H. Chen, Z. W. Wan, and C. J. Cheng, “A 100-Gb/s multiple-input multiple-output visible laser light communication system,” J. Lightw. Technol., 32, 4723-4729 (2014).
[3(9)] A. Mostafa and L. Lampe, “Physical-layer security for MISO visible light communication channels,” IEEE J. on Sel. Areas in Comm., 33, 1806-1818 (2015).
[3(10)] Y. Liu, K. Liang, H. Y. Chen, L. Y. Wei, C. W. Hsu, C. W. Chow, and C. H. Yeh, “Light encryption scheme using light‐emitting diode and camera image sensor,” IEEE Photon. J., 8, 7801107 (2016).
[3(11)] C. Wang, H. Y. Yu, and Y. J. Zhu, “A long distance underwater visible light communication system with single photon avalanche diode,” IEEE Photon. J., 8, 7906311 (2016).
[3(12)] H.-H. Lu, C.-Y. Li, H.-H. Lin, W.-S. Tsai, C.-A. Chu, B.-R. Chen, and C.-J. Wu, “An 8 m/9.6 Gbps underwater wireless optical communication system,” IEEE Photon. J. 8, 7906107 (2016).
[3(13)] M. Yasir, S. W. Ho, B. N. Vellambi, “Indoor positioning system using visible light and accelerometer,” J. Lightw. Technol., 32, 3306-3316 (2014).
[3(14)] C. W. Hsu, J. T. Wu, H. Y. Wang, C. W. Chow, C. H. Lee, M. T. Chu, C. H. Yeh, “Visible light positioning and lighting based on identity positioning and RF carrier allocation technique using a solar cell receiver,” IEEE Photon. J., 8, 7905507 (2016).
[3(15)] S. Wu, H. Wang, and C. H. Youn, “Visible light communications for 5G wireless networking systems: from fixed to mobile communications,” IEEE Network, 28, 41-45 (2014).
[3(16)] C.-H. Yeh, C.-W. Chow, H.-Y. Chen, Y.-L. Liu, and D.-Z. Hsu, “Investigation of phosphor-LED lamp for real-time half-duplex wireless VLC system”, J. Opt. 18, 065701 (2016).
[3(17)] N. Chi, Y. Zhou, J. Shi, Y. Wang, X. Huang, “Enabling technologies for high speed visible light communication,” Optical Fiber Communication Conference and Exposition, Th1E. 3 (2017).
[3(18)] C.-H. Yeh, H.-Y. Chen, C.-W. Chow, and Y.-L. Liu, “Utilization of multi-band OFDM modulation to increase traffic rate of phosphor-LED wireless VLC”, Opt. Express 23, 1133-1138 (2015).
[3(19)] M. Zhang, M. Shi, F. Wang, J. Zhao, Y. Zhou, Z. Wang, N. Chi, “4.05-Gb/s RGB LED-based VLC system utilizing PS-Manchester coded Nyquist PAM-8 modulation and hybrid time-frequency domain equalization,” Optical Fiber Communication Conference and Exposition, W2A. 42 (2017).
[3(20)] C. W. Hsu, C. W. Chow, I. C. Lu, Y. L. Liu, C. H. Yeh, and Y. Liu, “High speed imaging 3× 3 MIMO phosphor white‐light LED based visible light communication system,” IEEE Photon. J, 8, 7907406 (2016).
[3(21)] C.-H. Yeh, H.-Y. Chen, Y.-L. Liu, and C.-W. Chow, “Polarization-multiplexed 22 phosphor-LED wireless light communication without using analog equalization and optical blue filter”, Opt. Commun. 334, 8-11 (2015).
[3(22)] H. Chun, S. Rajbhandari, G. Faulkner, D. Tsonev, E. Xie, J. J. D. McKendry, E. Gu, M. D. Dawson, D. C. O'Brien, and H. Haas, “LED based wavelength division multiplexed 10 Gb/s visible light communications,” J. Lightwave Technol. 34, 3047-3052 (2016).
[3(23)] I.-C. Lu, C.-H. Lai, C.-H. Yeh, and J. Chen, “6.36 Gbit/s RGB LED-based WDM MIMO visible light communication system employing OFDM modulation,” Optical Fiber Communication Conference and Exposition, W2A. 39 (2017).
[3(24)] F. Hanson and S. Radic, “High bandwidth underwater optical communication,” Appl. Opt. 47, 277-283 (2008).
[3(25)] S. Watson, M. Tan, S. P. Najda, P. Perlin, M. Leszczynski, G. Targowski, S. Grzanka, and A. E. Kelly, “Visible light communications using a directly modulated 422 nm GaN laser diode,” Opt. Lett. 38, 3792-3794 (2013).
[3(26)] C. H. Yeh and I. C. Lu, “0.5211.86 Gbit/s OFDM modulation for power-sharing VLC transmission by using VCSEL laser”, Opt. Exp., 24, 21113-21118 (2016).
[3(27)] L. Y. Wei, C. W. Hsu, Y. Hsu, C. H. Yeh, and C. W. Chow “Bi-directional Visible Light Communication Using a Single 682-nm Visible Vertical-Cavity Surface-Emitting Laser (VCSEL) and Signal Remodulation,” Proc. ECOC 2017, Paper P2.SC8.55.
[3(28)] T. C. Wu, Y. C. Chi, H. Y. Wang, C. T. Tsai, Y. F. Huang, and G. R. Lin, “Tricolor R/G/B laser diode based eye-safe white lighting communication beyond 8 Gbit/s,” Sci. Rep., 7, 1-10 (2017).
[3(29)] C. W. Oh, Z. Cao, E. Tangdiongga, and T. Koonen, “10 Gbps all-optical full-duplex indoor optical wireless communication with wavelength reuse,” Proc. OFC 2016, Paper Th4A.6.
[3(30)] G. C. Gilbreath, W. S. Rabinovich, T. J. Meehan, M. J. Vilcheck, R. Mahon, R. Burris, M. F. Stell, I. Sokolsky, J. A. Vasquez, C. S. Bovais, K. Cochrell, K. C. Goins, R. Barbehenn, D. S. Katzer, K. Ikossi-Anastasiou, M. J. Montes, “Large-aperture multiple quantum well modulating retroreflector for free-space optical data transfer on unmanned aerial vehicles,” Opt. Eng., 40(7), 1348-1356 (2001).
[3(31)] W. S. Rabinovich, G. C. Gilbreath, C. Bovais, K. Cochrell, H. R. Burris, M. Ferraro, M. Vilcheck, R. Mahon, K. Goins, I. Sokolsky, J. Vasquez, T. Meehan, R. Barbehenn, D. S. Katzer, and K. Ikossi- Ansatasiou, ‘‘Infrared data link using a multiple quantum well modulating retro-reflector on a small rotary-wing unmanned airborne vehicle,’’ Proc. IEEE Aerospace Conference 2000, 3, 93-100 (2000).
[3(32)] Y. Wang, Y. Wang, N. Chi, J. Yu, and H. Shang, “Demonstration of 575-Mb/s downlink and 225-Mb/s uplink bi-directional SCM-WDM visible light communication using RGB LED and phosphor-based LED,” Opt. Express, 21, 1203-1208 (2013).
[3(33)] H. Urabe, S. Haruyama, T. Shogenji, S. Ishikawa, M. Hiruta, F. Teraoka, T. Arita, H. Matsubara, and S. Nakagawa, “High data rate ground-to-train free-space optical communication system,” Opt. Eng., 51, 031204 (2012).
[3(34)] H. Le Minh, et al., "High-speed visible light communications using multiple-resonant equalization," IEEE Photon. Technol. Lett., vol. 20, pp. 1243-1245, 2008.
[3(35)] C. W. Chow, C. H. Yeh, Y. F. Liu and P. Y. Huang, "Background optical noises circumvention in LED optical wireless systems using OFDM," IEEE Photon. J., vol. 5, no. 2, pp. 7900709, 2013.
[3(36)] J. Y. Sung, C. W. Chow, and C. H. Yeh, "Is blue optical filter necessary in high speed phosphor-based white light LED visible light communications?," Opt. Exp., vol. 22, pp. 20646-20651, 2014.
[3(37)] J. Zhang, J. Wang, Y. Xu, M. Xu, F. Lu, L. Cheng, J. Yu, and G. K. Chang, "Fiber–wireless integrated mobile backhaul network based on a hybrid millimeter-wave and free-space-optics architecture with an adaptive diversity combining technique," Opt. Lett., vol. 41, pp. 1909-1912, 2016.
[3(38)] C. Y. Li, H. H. Lu, C. Y. Lin, C. A. Chu, B. R. Chen, H. H. Lin, and C. J. Wu, "Fiber-wireless and fiber-IVLLC convergences based on MZM-OEO-Based BLS," IEEE Photon. J., vol. 8, pp. 7902810, 2016.
[3(39)] C. W. Chow, C. H. Yeh, Y. Liu, C. W. Hsu and J. Y. Sung, "Network architecture of bidirectional visible light communication and passive optical network," IEEE Photon. J., vol. 8, pp. 7904506, 2016.
[3(40)] H. H. Lu, Y. P. Lin, P. Y. Wu, C. Y. Chen, M. C. Chen, and T. W. Jhang, “A multiple-input-multiple-output visible light communication system based on VCSELs and spatial light modulators,” Opt. Express, vol. 22, pp. 3468-3474, 2014.
[3(41)] B. Janjua, H. M. Oubei, J. R. Durán Retamal, T. K. Ng, C. T. Tsai, H. Y. Wang, Y. C. Chi, H. C. Kuo, G. R. Lin, J. H. He, and B. S. Ooi, “Going beyond 4 Gbps data rate by employing RGB laser diodes for visible light communication,” Opt. Express, vol. 23, pp. 18746-18753, 2015.
[3(42)] T. C. Wu, Y. C. Chi, H. Y. Wang, C. T. Tsai, Y. F. Huang, and G. R. Li, “Tricolor R/G/B laser diode based eye-safe white lighting communication beyond 8 Gbit/s,” Sci. Rep., vol. 7, pp. 11, 2017.
[3(43)] C. H. Chang, C. Y. Li, H. H. Lu, C. Y. Lin, J. H. Chen, Z. W. Wan, and C. J. Cheng, “A 100-Gb/s multiple-input multiple-output visible laser light communication system,” J. Lightw. Technol., vol. 32, pp. 4723-4729, 2014.
[3(44)] T. C. Wu, Y. C. Chi, H. Y. Wang, C. T. Tsai, and G. R. Lin, "Blue laser diode enables underwater communication at 12.4 Gbps," Sci. Rep., vol. 7, pp. 40480, 2017.
[3(45)] H. H. Lu, C. Y. Li, H. H. Lin, W. S. Tsai, C. A. Chu, B. R. Chen, and C. J. Wu, "An 8 m/9.6 Gbps underwater wireless optical communication system," IEEE Photon. J., vol. 8, pp. 7906107, 2016.
[3(46)] H. M. Oubei, J. R. Duran, B. Janjua, H. Y. Wang, C. T. Tsai, Y. C. Chi, T. K. Ng, H. C. Kuo, J. H. He, M. S. Alouini, G. R. Lin, and B. S. Ooi, "4.8 Gbit/s 16-QAM-OFDM transmission based on compact 450-nm laser for underwater wireless optical communication," Opt. Express, vol. 23, pp. 23302-23309, 2015.
[3(47)] W. Y. Lin, C. Y. Chen, H. H. Lu, C. H. Chang, Y. P. Lin, H. C. Lin, and H. W. Wu, “10m/500Mbps WDM visible light communication systems,” Opt. Express, vol. 20, pp. 9919-9924, 2012.
[3(48)] S. Watson, M. Tan, S. P. Najda, P. Perlin, M. Leszczynski, G. Targowski, S. Grzanka, and A. E. Kelly, "Visible light communications using a directly modulated 422 nm GaN laser diode," Opt. Lett., vol. 38, pp. 3792-3794, 2013.
[3(49)] C. H. Yeh, L. Y. Wei, and C. W. Chow, “Using a single VCSEL source employing OFDM downstream signal and remodulated OOK upstream signal for bi-directional visible light communications,” Sci. Rep., vol. 7, pp. 15846, 2017.
[3(50)] G. C. Gilbreath, et al, “Large-aperture multiple quantum well modulating retroreflector for free-space optical data transfer on unmanned aerial vehicles,” Opt. Eng., vol. 40, pp. 1348-1356, 2001.
[3(51)] J. T. Wu, C. W. Chow, Y. Liu, C. W. Hsu, and C. H. Yeh, "Performance enhancement technique of visible light communications using passive photovoltaic cell," Opt. Comm., vol. 392, pp. 119-122, 2017.
[3(52)] H. Y. Wang, J. T. Wu, C. W. Chow, Y. Liu, C. H. Yeh, X. L. Liao, K. H. Lin, W. L. Wu, and Y. Y. Chen, "Using pre-distorted PAM-4 signal and parallel resistance circuit to enhance the passive solar cell based visible light communication," Opt. Comm., vol. 407, pp. 245-249, 2018.
[4(1)] S. Wu, H. Wang, and C. H. Youn, “Visible light communications for 5G wireless networking systems: from fixed to mobile communications,” IEEE Netw. 28, 41–45 (2014).
[4(2)] C. W. Chow, C. H. Yeh, Y. Liu, and Y. F. Liu, “Digital signal processing for light emitting diode based visible light communication,” IEEE Photon. Soc. Newsl. 26, 9–13 (2012).
[4(3)] F. Zafar, M. Bakaul, and R. Parthiban, “Laser-diode-based visible lightcommunication: toward gigabit class communication,” IEEE Commun. Mag. 55, 144–151 (2017).
[4(4)] Y. C. Chi, D. H. Hsieh, C. Y. Lin, H. Y. Chen, C. Y. Huang, J. H. He, B. Ooi, S. P. DenBaars, S. Nakamura, H. C. Kuo, and G. R. Lin, “Phosphorous diffuser diverged blue laser diode for indoor lighting and communication,” Sci. Rep. 5, 18690 (2015).
[4(5)] D. H. Hsieh, T. C. Wu, Y. C. Chi, Y. R. Chen, C. Y. Huang, H. C. Kuo, and G. R. Lin, “The effect of phosphor concentration on laser-based white light communication system,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2016), paper SW1F.7.
[4(6)] T. C. Wu, Y. C. Chi, H. Y. Wang, C. T. Tsai, Y. F. Huang, and G. R. Li, “Tricolor R/G/B laser diode based eye-safe white lighting communication beyond 8 Gbit/s,” Sci. Rep. 7, 11 (2017).
[4(7)] C. H. Chang, C. Y. Li, H. H. Lu, C. Y. Lin, J. H. Chen, Z. W. Wan, and C. J. Cheng, “A 100-Gb/s multiple-input multiple-output visible laser light communication system,” J. Lightwave Technol. 32, 4723–4729 (2014).
[4(8)] W. Y. Lin, C. Y. Chen, H. H. Lu, C. H. Chang, Y. P. Lin, H. C. Lin, and H. W. Wu, “10 m/500 Mbps WDM visible light communication systems,” Opt. Express 20, 9919–9924 (2012).
[4(9)] S. Watson, M. Tan, S. P. Najda, P. Perlin, M. Leszczynski, G. Targowski, S. Grzanka, and A. E. Kelly, “Visible light communications using a directly modulated 422 nm GaN laser diode,” Opt. Lett. 38, 3792–3794 (2013).
[4(10)] C. Lee, C. Zhang, M. Cantore, R. M. Farrell, S. H. Oh, T. Margalith, J. S. Speck, S. Nakamura, J. E. Bowers, and S. P. DenBaars, “4 Gbps direct modulation of 450 nm GaN laser for high-speed visible light communication,” Opt. Express 23, 16232–16237 (2015).
[4(11)] H. M. Oubei, J. R. Duran, B. Janjua, H. Y. Wang, C. T. Tsai, Y. C. Chi, T. K. Ng, H. C. Kuo, J. H. He, M. S. Alouini, G. R. Lin, and B. S. Ooi, “4.8 Gbit/s 16-QAM-OFDM transmission based on compact 450-nm laser for underwater wireless optical communication,” Opt. Express 23, 23302–23309 (2015).
[4(12)] Y. C. Chi, D. H. Hsieh, C. T. Tsai, H. Y. Chen, H. C. Kuo, and G. R. Lin, “450-nm GaN laser diode enables high-speed visible light communication with 9-Gbps QAM-OFDM,” Opt. Express 23, 13051–13059 (2015).
[4(13)] S. Pergoloni, A. Petroni, T. C. Bui, G. Scarano, R. Cusani, and M. Biagi, “ASK-based spatial multiplexing RGB scheme using symbol-dependent self-interference for detection,” Opt. Express 25, 15028–15042 (2017).
[4(14)] S. Pergoloni, M. Biagi, S. Rinauro, S. Colonnese, R. Cusani, and G. Scarano, “Merging color shift keying and complementary pulse position modulation for visible light illumination and communication,” J. Lightwave Technol. 33, 192–200 (2015).
[4(15)] Y. Qiu, H. H. Chen, and W. X. Meng, “Channel modeling for visible light communications—a survey,” Wireless Commun. Mobile Comput. 16, 2016–2034 (2016).
[4(16)] J. Cho, C. Xie, and P. J. Winzer, “Analysis of soft-decision FEC on non-AWGN channels,” Opt. Express 20, 7915–7928 (2012).
[4(17)] T. Koonen, "Indoor optical wireless systems: technology, trends, and applications," J. Lightw. Technol., vol. 36, no. 8, pp. 1459-1467, 2018.
[4(18)] J. Vučić and K. D. Langer, "High-speed visible light communications: state-of-the-art," Proc. OFC 2012, Paper OTh3G.3.
[4(19)] H. Haas, "Visible light communication," Proc. OFC 2015, Paper Tu2G.5.
[4(20)] D. C. O’Brien, “Optical wireless communications: Current status and future prospects,” Proc. IEEE Summer Top., Newport Beach, CA, USA, Jul. 2016.
[4(21)] K. Ying, Z. Yu, R. J. Baxley, H. Qian, G. K. Chang, and G. T. Zhou, “Nonlinear distortion mitigation in visible light communications,” IEEE Wireless Commun., vol. 22, no. 2, pp. 36–45, Apr. 2015.
[4(22)] N. Chi, Y. Zhou, J. Shi, Y. Wang, X. Huang, “Enabling technologies for high speed visible light communication,” Proc. OFC 2017, Paper Th1E.3.
[4(23)] C. W. Chow, C. H. Yeh, Y. Liu, and Y. F. Liu, ‘‘Digital signal processing for light emitting diode based visible light communication,” IEEE Photon. Soc. Newslett., vol. 26, pp. 9-13, 2012.
[4(24)] M. Yasir, S. W. Ho, and B. N. Vellambi, “Indoor positioning system using visible light and accelerometer,” J. Lightw. Technol., vol. 32, pp. 3306-3316, 2014.
[4(25)] C. W. Hsu, S. Liu, F. Lu, C. W. Chow, C. H. Yeh, and G. K. Chang, "Accurate indoor visible light positioning system utilizing machine learning technique with height tolerance," Proc. OFC 2018, Paper M2K.2.
[4(26)] C. W. Hsu, J. T. Wu, H. Y. Wang, C. W. Chow, C. H. Lee, M. T. Chu, and C. H. Yeh, “Visible light positioning and lighting based on identity positioning and RF carrier allocation technique using a solar cell receiver,” IEEE Photon. J., vol. 8, pp. 7905507, 2016.
[4(27)] J. Chang, Y. Wang, D. Chen, C. Li, H. Lu, X. Huang, and W. Tsai, "Optical-based underwater communications," Proc. OFC 2018, Paper Tu2I.3.
[4(28)] H. H. Lu, C. Y. Li, H. H. Lin, W. S. Tsai, C. A. Chu, B. R. Chen, and C. J. Wu, “An 8 m/9.6 Gbps underwater wireless optical communication system,” IEEE Photon. J., vol. 8, pp. 7906107, 2016.
[4(29)] C. Wang, H. Y. Yu, and Y. J. Zhu, “A long distance underwater visible light communication system with single photon avalanche diode,” IEEE Photon. J., vol. 8, pp. 7906311, 2016.
[4(30)] C. W. Chow, R. J. Shiu, Y. C. Liu, C. H. Yeh, X. L. Liao, K. H. Lin, Y. C. Wang, and Y. Y. Chen, "Secure mobile-phone based visible light communications with different noise-ratio light-panel," IEEE Photon. J., vol. 10, pp. 7902806, 2018.
[4(31)] C. W. Chow, R. J. Shiu, Y. C. Liu, X. L. Liao, K. H. Lin, Y. C. Wang, and Y. Y. Chen, "Using advertisement light-panel and CMOS image sensor with frequency-shift-keying for visible light communication," Opt. Exp., vol. 26, pp. 12530-12535, 2018.
[4(32)] C. W. Chow, R. J. Shiu, Y. C. Liu, W. C. Wang, X. L. Liao, K. H. Lin, Y. C. Wang, and Y. Y. Chen, "Mitigation of performance degradation due to dynamic display contents in visible light communication using TV backlight and CMOS image sensor," Opt. Exp., vol. 26, pp. 22342-22347, 2018.
[4(33)] S. Wu, H. Wang, and C. H. Youn, “Visible light communications for 5G wireless networking systems: from fixed to mobile communications,” IEEE Network, vol. 28, pp. 41-45, 2014.
[4(34)] H. L. Minh, D. O'Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. J. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a post-equalized white LED,” IEEE Photon. Technol. Lett., vol. 21, pp. 1063–1065, 2009.
[4(35)] J. Vučić, C. Kottke, S. Nerreter, K. D. Langer, and J. W. Walewski, “513 Mbit/s visible light communications link based on DMT-modulation of a white LED,” J. Lightw. Technol., vol. 28, pp. 3512–3518, 2010.
[4(36)] W. Y. Lin, C. Y. Chen, H. H. Lu, C. H. Chang, Y. P. Lin, H. C. Lin, and H. W. Wu, "10m/500Mbps WDM visible light communication systems," Opt. Exp., vol. 20, pp. 9919-9924, 2012.
[4(37)] C. H. Chang, C. Y. Li, H. H. Lu, C. Y. Lin, J. H. Chen, Z. W. Wan, and C. J. Cheng “A 100-Gb/s multiple-input multiple-output visible laser light communication system,” J. Lightw. Technol., vol. 32, pp. 4723-4729, 2014.
[4(38)] Y. Liu, Y. C. Chang, C. Chow, and C. Yeh, "Equalization and pre-distorted schemes for increasing data rate in in-door visible light communication system," Proc. OFC 2011, Paper JWA083.
[4(39)] J. Y. Sung, C. W. Chow, and C. H. Yeh, “Is blue optical filter necessary in high speed phosphor-based white light LED visible light communications?”, Opt. Exp., vol. 22, pp. 20646-20651, 2014.
[4(40)] C. H. Yeh, H. Y. Chen, C. W. Chow, and Y. L. Liu, "Utilization of multi-band OFDM modulation to increase traffic rate of phosphor-LED wireless VLC," Opt. Exp., vol. 23, pp. 1133-1138, 2015.
[4(41)] S. Rajagopal, R. D. Roberts, and S. Lim, "IEEE 802.15.7 visible light communication: modulation schemes and dimming support," IEEE Communications Magazine, vol. 50, no. 3, pp. 72-82, March 2012.
[4(42)] C. Hsu, C. Chow, I. Lu, Y. Liu, C. Yeh and Y. Liu, "High speed imaging 3 × 3 MIMO phosphor white-light LED based visible light communication system," IEEE Photon. J., vol. 8, pp. 7907406, 2016.
[4(43)] G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Exp., vol. 20, no. 26, B501–B506, 2012.
[4(44)] I. C. Lu, C. H. Lai, C. H. Yeh, and J. Chen, “6.36 Gbit/s RGB LED-based WDM MIMO visible light communication system employing OFDM modulation,” Proc. OFC 2017, Paper W2A39.
[4(45)] S. Watson, M. Tan, S. P. Najda, P. Perlin, M. Leszczynski, G. Targowski, S. Grzanka, and A. E. Kelly, “Visible light communications using a directly modulated 422 nm GaN laser diode,” Opt. Lett., vol. 38, pp. 3792-3794, 2013.
[5(1)] H. Haas, "Visible light communication," Proc. OFC, 1-72 (2015).
[5(2)] N. Chi, Y. Zhou, J. Shi, Y. Wang, X. Huang, “Enabling technologies for high speed visible light communication,” Optical Fiber Communication Conference and Exposition, Th1E. 3 (2017).
[5(3)] C. W. Chow, C. H. Yeh, Y. Liu, and Y. F. Liu, ‘‘Digital signal processing for light emitting diode based visible light communication,” IEEE Photon. Soc. Newslett. 26, 9-13 (2012).
[5(4)] C. W. Hsu, S. Liu, F. Lu, C. W. Chow, C. H. Yeh, and G. K. Chang, "Accurate Indoor Visible Light Positioning System utilizing Machine Learning Technique with Height Tolerance," Proc. OFC, M2K.2 (2018).
[5(5)] M. Yasir, S. W. Ho, B. N. Vellambi, “Indoor positioning system using visible light and accelerometer,” J. Lightw. Technol., 32, 3306-3316 (2014).
[5(6)] C. W. Hsu, J. T. Wu, H. Y. Wang, C. W. Chow, C. H. Lee, M. T. Chu, C. H. Yeh, “Visible light positioning and lighting based on identity positioning and RF carrier allocation technique using a solar cell receiver,” IEEE Photon. J., 8, 7905507 (2016).
[5(7)] J. Chang, Y. Wang, D. Chen, C. Li, H. Lu, X. Huang, and W. Tsai, "Optical-based underwater communications," Proc. OFC, Tu2I.3 (2018).
[5(8)] H.-H. Lu, C.-Y. Li, H.-H. Lin, W.-S. Tsai, C.-A. Chu, B.-R. Chen, and C.-J. Wu, “An 8 m/9.6 Gbps underwater wireless optical communication system,” IEEE Photon. J. 8, 7906107 (2016).
[5(9)] C. Wang, H. Y. Yu, and Y. J. Zhu, “A long distance underwater visible light communication system with single photon avalanche diode,” IEEE Photon. J., 8, 7906311 (2016).
[5(10)] C. W. Chow, R. J. Shiu, Y. C. Liu, C. H. Yeh, X. L. Liao, K. H. Lin, Y. C. Wang, and Y. Y. Chen, "Secure mobile-phone based visible light communications with different noise-ratio light-panel," IEEE Photon. J. 10, 7902806 (2018).
[5(11)] C. W. Chow, R. J. Shiu, Y. C. Liu, X. L. Liao, K. H. Lin, Y. C. Wang, and Y. Y. Chen, "Using advertisement light-panel and CMOS image sensor with frequency-shift-keying for visible light communication," Opt. Express 26, 12530-12535 (2018).
[5(12)] C. W. Chow, R. J. Shiu, Y. C. Liu, W. C. Wang, X. L. Liao, K. H. Lin, Y. C. Wang, and Y. Y. Chen, "Mitigation of performance degradation due to dynamic display contents in visible light communication using TV backlight and CMOS image sensor," Opt. Express 26, 22342-22347 (2018).
[5(13)] H. L. Minh, D. O'Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. J. Oh, E. T. Won, “100-Mb/s NRZ visible light communications using a post-equalized white LED,” IEEE Photon. Technol. Lett. 21, 1063–1065 (2009).
[5(14)] J. Vučić, C. Kottke, S. Nerreter, K. D. Langer, and J. W. Walewski, “513 Mbit/s visible light communications link based on DMT-modulation of a white LED,” J. Lightw. Technol. 28, 3512–3518 (2010).
[5(15)] Wen-Yi Lin, Chia-Yi Chen, Hai-Han Lu, Ching-Hung Chang, Ying-Pyng Lin, Huang-Chang Lin, and Hsiao-Wen Wu, "10m/500Mbps WDM visible light communication systems," Opt. Express 20, 9919-9924 (2012).
[5(16)] C. H. Yeh, H. Y. Chen, C. W. Chow, and Y. L. Liu, "Utilization of multi-band OFDM modulation to increase traffic rate of phosphor-LED wireless VLC," Opt. Exp. 23, 1133-1138 (2015).
[5(17)] C. Hsu, C. Chow, I. Lu, Y. Liu, C. Yeh and Y. Liu, "High speed imaging 3 × 3 MIMO phosphor white-light LED based visible light communication system," IEEE Photon. J. 8, 7907406 (2016).
[5(18)] J. Y. Sung, C. W. Chow, and C. H. Yeh, “Is blue optical filter necessary in high speed phosphor-based white light LED visible light communications?”, Opt. Exp., 22, 20646-20651 (2014).
[5(19)] S. Wu, H. Wang, and C. H. Youn, “Visible light communications for 5G wireless networking systems: from fixed to mobile communications,” IEEE Network, 28, 41-45 (2014).
[5(20)] S. Watson, M. Tan, S. P. Najda, P. Perlin, M. Leszczynski, G. Targowski, S. Grzanka, and A. E. Kelly, "Visible light communications using a directly modulated 422 nm GaN laser diode," Opt. Lett. 38, 3792-3794 (2013).
[5(21)] C. Lee, C. Zhang, M. Cantore, R. M. Farrell, S. H. Oh, T. Margalith, J. S. Speck, S. Nakamura, J. E. Bowers, and S. P. DenBaars, "4 Gbps direct modulation of 450 nm GaN laser for high-speed visible light communication," Opt. Exp. 23, 16232-16237 (2015).
[5(22)] C. H. Yeh, L. Y. Wei, and C. W. Chow, "Using a single VCSEL source employing OFDM downstream signal and remodulated OOK upstream signal for bi-directional visible light communications," Sci. Rep., 7, 15846 (2017).
[5(23)] T. C. Wu, Y. C. Chi, H. Y. Wang, C. T. Tsai, Y. F. Huang, and G. R. Lin, " Tricolor R/G/B laser diode based eye-safe white lighting communication beyond 8 Gbit/s," Sci. Rep. 7, 11 (2017).
[5(24)] M. Zhang, M. Shi, F. Wang, J. Zhao, Y. Zhou, Z. Wang, N. Chi, “4.05-Gb/s RGB LED-based VLC system utilizing PS-Manchester coded Nyquist PAM-8 modulation and hybrid time-frequency domain equalization,” Proc. OFC, W2A. 42 (2017).
[5(25)] L. Y. Wei, C. W. Hsu, C. W. Chow, and C. H. Yeh, "20.231  Gbit/s tricolor red/green/blue laser diode based bidirectional signal remodulation visible-light communication system," Photon. Res. 6, 422-426 (2018).
[5(26)] Y. C. Chi, D. H. Hsieh, C. Y. Lin, H. Y. Chen, C. Y. Huang, J. H. He, B. Ooi, S. P. DenBaars, S. Nakamura, H. C. Kuo, and G. R. Lin, “Phosphorous diffuser diverged blue laser diode for indoor lighting and communication,” Sci. Rep. 5, 1-9 (2015).
[5(27)] G. K. Chang, et al., "Key technologies of WDM-PON for future converged optical broadband access networks [Invited]," J. Opt. Comm. and Net. 1, C35 (2009).
[5(28)] C. Liu, et al., "Key microwave-photonics technologies for next-generation cloud-based radio access networks," J. Lightw. Technol. 32, 3452-3460 (2014).
[5(29)] G. K. Chang, et al., "Key fiber wireless integrated radio access technologies for 5G and beyond," Proc. OECC, 2019.
[5(30)] https://www.telekom.com/en/company/details/virtual-fiber-563322
[5(31)] T. Koonen, "Indoor optical wireless systems: technology, trends, and applications," J. Lightw. Technol. 36, 1459 (2018).
[5(32)] C. W. Chow, et al., "Digital signal processing for light emitting diode based visible light communication," IEEE Photon. Soc. News., 26, 9 (2012).
[5(33)] I. Chih-Lin, et al., "RAN revolution with NGFI (xHaul) for 5G," Proc. OFC, paper W1C.7 (2017).
[5(34)] Y. Alfadhli, et al., "Real-time demonstration of adaptive functional split in 5G flexible mobile fronthaul networks," Proc. OFC, paper Th2A.48 (2018).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊