|
[1(1)] Mansoor Shafi, Andreas F. Molisch, Peter J. Smith, Thomas Haustein, Peiying Zhu, Prasan De Silva, Fredirk Tufvessonn, Anass benjebbour, Gerhard Wunder, “5G: A Tutorial Overview of Standards, Trials, Challenges, Dployment, and Practice,” IEEE J. Sel. Areas Commun., vol. 35, no.6, pp. 1201-1221, Jun. 2017. [1(2)] L. Hanzo, H. Haas, S. Imre, D. O’Brien, M. Rupp, and L. Gyongyosi, ‘‘Wireless myths, realities, and futures: From 3G/4G to optical and quantum wireless,’’ Proc. IEEE, vol. 100, pp. 1853-1888, May 2012. [1(3)] http://www.itu.int/en/mediacentre/backgrounders/Pages/5G-fifth-generation-of-mobile-technologies.aspx [1(4)] H. Elgala, R. Mesleh, and H. Haas, ‘‘Indoor optical wireless communication: Potential and state-of-the-art,’’ IEEE Com. Mag., vol. 49, no.9, pp. 56-62, Sep. 2011. [1(5)] H. Chen, H. P. A. van den Boom, E. Tangdiongga, and T. Koonen, ‘’30-Gb/s bidirectional transparent optical transmission with an MMF access and an indoor optical wireless link,’’ IEEE Photon, Technol. Lett., vol. 24, no. 7, pp. 572-574, Apr. 1, 2012. [1(6)] D. K. Borah, A. C. Boucouvalas, C. C. Davis, S. Hranilovic, and K. Yiannopoulos, ‘‘A review of communication-oriented optical wireless systems,’’ EURASIP J. Wireless Com. Netw., vol. 2012, p. 91, Dec. 2012. [1(7)] S. Dimitrov and H. Haas, ‘‘Information rate of OFDM-based optical wireless communication systems with nonlinear distortion,’’ J. Lightw. Technol., vol. 31, no. 6, pp. 918-929, Mar. 15, 2013. [1(8)] M. Uysal and h. Nouri, ‘‘Optical wireless communication-An emerging technology,’’ in Proc. Int. Conf. Transp. Opt. Netw., pp. 1-7, Jul. 2014. [1(9)] A. C. Boucouvalas, P. Chatzimisios, Z. Ghassemlooy, M. Uysal, and K. Yiannopoulos, ‘‘Standards for indoor optical wireless communications,’’ IEEE com. Mag., vol. 53, no. 3, pp. 24-31, Mar. 2015. [1(10)] Z. Ghassemlooy, S. Arnon, M. Uysal, Z. Xu, and J. Cheng, ‘‘Emerging optical wireless communications-advances and challenges,’’ IEEE J. Sel. Areas Com., vol. 33, no. 9, pp. 1738-1749, Sep. 2015. [1(11)] D. Karnuatilaka, F. Zafar, V. Kalavally, and Parthiban, ‘‘LED based indoor visible light communication: State of the art,’’ IEEE Commun. Surveys Tuts., vol. 17, no. 3, pp. 1649-1678, 2015. [1(12)] Y. C. Chung, Z. Q. Li, C. W. Hsu, Y. Liu, and C. W. Chow, ‘‘Visible light communication and positioning using positioning cells and machine learning algorithms, ’’ Optics Express, vol. 27, no. 11, pp. 16377-16383, 2019. [1(13)] C. W. Chow, R. J. Shiu, Y. C. Liu, C. H. Yeh, X. L. Liao, K. H. Lin, Y. C. Wang, Y. Y. Chen, ‘‘Secure mobile-phone based visible light communications with different noise-ratio light-panel, ’’ IEEE Photonics Journal, vol 10, no. 2, pp. 1-5, 2018. [1(14)] C. W. Chow, R. J. Shiu, X. L. Liao, K. H. Lin, Y. C. Wang, Y. Y. Chen, ‘‘Using advertisement light-panel and CMOS image sensor with frequency-shift-keying for visible light communication, ’’ Optics Express, vol. 26, no. 10, pp. 12530-12535, 2018. [1(15)] C. W. Chow, R. J. Shiu, Y. C. Liu, W. C. Wang, X. L. Liao, K. H. Lin, Y. C. Wang, Y. Y. Chen, ‘‘Mitigation of performance degradation due to dynamic display contents in visible light communication using TV backlight and CMOS image sensor, ’’ Optics Express, vol. 26, no. 17, pp. 22342-22347, 2018. [1(16)] Y. C. Chung, C. W. Chow, Y. Liu, C. H. Yeh, X. L. Liao, K. H. Lin, Y. Y. Chen, ‘‘Using logistic regression classification for mitigating high noise-ratio advisement light-panel in rolling-shutter based visible light communications, Optics Express, vol. 27, no. 21, pp. 29924-29929, 2019. [1(17)] G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, ‘‘3.4 Gbit/s visible optical wireless transmission based on RGB LED, ’’ Optics Express, vol. 20, no. 26, pp. 501-506, 2012. [1(18)] H. Chun, S. Rajbhandari, G. Faulkner, D. Tsonev, E. Xie, J. J. D. Mckendry, E. Gu, M. D. Dawson, D. O’Brien, and H. Haas, ‘‘LED based Wavelength Division Multiplexed 10 Gb/s Visible Light Communication, ’’ IEEE Journal of Lightwave Technology, vol. 34, issue 13, pp. 3047-3052, 2016. [1(19)] D. Tsonev, S. Videv, and H. Haas, ‘‘Towards a 100 Gb/s visible light wireless access network, ’’ Optics Express, vol. 23, no. 2, pp. 1627-1637, 2015. [1(20)] P. H. Pathak, X. Feng, P. Hu, and P. Mohapatra, ‘‘Visible light communication, networking, and sensing: A survey, potential and challenges, ’’ IEEE Commun. Surveys Tuts., vol. 17, no. 4, pp. 2047-2077, 4th Quart., 2015. [1(21)] Y. J. Zhu, Z, G. Sun, J. K. Zhang, Y. Y. Zhang, and J. Zhang, ‘‘Training receivers for repetition-coded MISO outdoor visible light communication, ’’ IEEE Trans. Veh. Technol., vol. 66, no. 1, pp. 529-540, 2017. [1(22)] L. U. Khan, ‘‘Visible light communication: Applications, architecture, standardization and research challenges, ’’ Digit. Commun. Netw., vol. 3, no. 2, pp. 78-88, 2016. [1(23)] https://5g-ppp.eu/ [1(24)] https://www.5g.gov.hk/en/what-is-5g/international.html [1(25)] Cisco Visual Networking Index Global Mobile Data Traffic Forecast Update, 2017-2022. [1(26)] Cisco Visual Networking Index: Forecast and Trends, 2017-2022. [2(1)] Neal S. Bergano, F. W. Kerfoot, and C. R. Davidson, ‘‘Margin Measurements in Optical Amplifier Systems,’’ IEEE Photonics Technoloby Letters, vol. 5, no. 3, pp. 304-306, 1993. [2(2)] Dongweon Yoon, Kyongkuk Cho, Jinsock Lee, ‘‘Bit Error Probability of M-ary Quadrature Amplitude, ’’ 52nd Vehicular Technology Conference, pp. 2422-2427, 2000. [2(3)] John G. Proakis, Masoud Salehi, ‘‘Digital Communications, ’’ 5th edition, 2007. [2(4)] Rishad Ahmed Shafik, Md. Shahriar Rahman, and AHM Razibul Islam, ‘‘On the Extended Relationships Among EVM, BER and SNR as performance Metrics, ’’ 4th International Conference on Electrical and Computer Engineering (ICECE), 2006. [2(5)] Thierry Pollet, Mark Van Bladel, and Marc Moeneclaey, ‘‘BER Sensitivity of OFDM Systems to Carrier Frequency Offset and Wiener Phase Noise, ’’ IEEE Transactions on Communications, vol. 43, no. 2, 3, 4, 1995. [2(6)] Fernando Ramirez-Mireles, ‘‘On the Performance of Ultra-Wide-Band Signals in Gaussian Noise and Dense Multipath, ’’ IEEE Transaction on Vehicular Technology, vol. 50, no. 1, 2001. [2(7)] Irving Kalt, ‘‘The Multitone Channel, ’’ IEEE Transaction on Communications, vol. 37, no. 2, pp. 119-124, 1989. [2(8)] Andre Noll Barreto, and Simeon Furrer, ‘‘Adaptive Bit Loading for Wireless OFDM Systems, ’’ 12th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, pp. G88-92, 2001. [2(9)] Alexander M. Wyglinski, Fabric Labeau, and Peter Kabal, ‘‘Bit Loading with BER-Constrain for Multicarrier Systems, ’’ IEEE Transactions on Wireless Communications, vol. 4, no. 4, 2005. [2(10)] R. S. Cheng, and S. Verdu, ‘‘Gaussian multi-access channels with ISI: capacity region and multiuser water-filling, ’’ IEEE Transactions on Information Theory, vol. 39, issue: 3, pp. 773-785, 1993. [2(11)] P. Viswanath, D. N. C. Tse, and V. Anantharam, ‘‘Asymptotically optimal water-filling in vector multiple-access channels, ’’ IEEE Transations on Information Theory, vol. 47, Issue: 1, pp. 241-267, 2001. [2(12)] Y. Hsu, C. Y. Chuang, X. Wu, G. H. Chen, C. W. Hsu, Y. C. Chang, C. W. Chow, J. Chen, Y. C. Lai, C. H. Yeh, and H. K. Tsang, ’’ IEEE Photonics Tehnology Letters, vol. 30, no. 11, pp. 1052-1055, 2018. [2(13)] G. H. Chen, C. W. Chow, C. H. Yeh, C. W. Peng, P. C. Guo, J. F. Tsai, M. W. Cheng, Y. Tong, and H. K. Tsang, ‘‘Mode-Division-Multiplexing (MDM) of 9.4-Tbit/s OFDM Signals on Silicon-on-Insulator (SOI) Platform, ’’ IEEE Access, vol. 7, pp. 129104-129111, 2019. [3(1)] W. H. L. John and M. Chapin, “Mobile broadband growth, spectrum scarcity, and sustainable competition,” 39th Research Conference on Communications Information and Internet Policy, 23-25 (2011). [3(2)] H. C. Nguyen, I. Rodriguez, T. B. Sorensen, L. L. Sanchez, I. Kovacs, and P. Mogensen, “An empirical study of urban macro propagation at 10, 18 and 28 GHz,” IEEE VTC Spring, 1-5 (2016). [3(3)] C. W. Chow, C. H. Yeh, Y. Liu, and Y. F. Liu, “Digital signal processing for light emitting diode based visible light communication,” IEEE Photon. Soc. Newslett., 26, 9-13 (2012). [3(4)] Y. C. Chi, D. H. Hsieh, C. T. Tsai, H. Y. Chen, H. C. Kuo, and G. R. Lin, “450-nm GaN laser diode enables high-speed visible light communication with 9-Gbps QAM-OFDM,” Opt. Exp., 23, 13051-13059 (2015). [3(5)] J. Y. Sung, C. W. Chow, and C. H. Yeh, “Is blue optical filter necessary in high speed phosphor-based white light LED visible light communications?”, Opt. Exp., 22, 20646-20651 (2014). [3(6)] H. Le-Minh, D. C. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photon. Technol. Lett., 20, 1243-1245 (2008). [3(7)] J. Vucic, C. Kottke, S. Nerreter, K. D. Langer, and J. W. Walewski, “513 Mbit/s visible light communications link based on DMT-modulation of a white LED,” J. Lightw. Technol., 28, 3512-3518 (2010). [3(8)] C. H. Chang, C. Y. Li, H. H. Lu, C. Y. Lin, J. H. Chen, Z. W. Wan, and C. J. Cheng, “A 100-Gb/s multiple-input multiple-output visible laser light communication system,” J. Lightw. Technol., 32, 4723-4729 (2014). [3(9)] A. Mostafa and L. Lampe, “Physical-layer security for MISO visible light communication channels,” IEEE J. on Sel. Areas in Comm., 33, 1806-1818 (2015). [3(10)] Y. Liu, K. Liang, H. Y. Chen, L. Y. Wei, C. W. Hsu, C. W. Chow, and C. H. Yeh, “Light encryption scheme using light‐emitting diode and camera image sensor,” IEEE Photon. J., 8, 7801107 (2016). [3(11)] C. Wang, H. Y. Yu, and Y. J. Zhu, “A long distance underwater visible light communication system with single photon avalanche diode,” IEEE Photon. J., 8, 7906311 (2016). [3(12)] H.-H. Lu, C.-Y. Li, H.-H. Lin, W.-S. Tsai, C.-A. Chu, B.-R. Chen, and C.-J. Wu, “An 8 m/9.6 Gbps underwater wireless optical communication system,” IEEE Photon. J. 8, 7906107 (2016). [3(13)] M. Yasir, S. W. Ho, B. N. Vellambi, “Indoor positioning system using visible light and accelerometer,” J. Lightw. Technol., 32, 3306-3316 (2014). [3(14)] C. W. Hsu, J. T. Wu, H. Y. Wang, C. W. Chow, C. H. Lee, M. T. Chu, C. H. Yeh, “Visible light positioning and lighting based on identity positioning and RF carrier allocation technique using a solar cell receiver,” IEEE Photon. J., 8, 7905507 (2016). [3(15)] S. Wu, H. Wang, and C. H. Youn, “Visible light communications for 5G wireless networking systems: from fixed to mobile communications,” IEEE Network, 28, 41-45 (2014). [3(16)] C.-H. Yeh, C.-W. Chow, H.-Y. Chen, Y.-L. Liu, and D.-Z. Hsu, “Investigation of phosphor-LED lamp for real-time half-duplex wireless VLC system”, J. Opt. 18, 065701 (2016). [3(17)] N. Chi, Y. Zhou, J. Shi, Y. Wang, X. Huang, “Enabling technologies for high speed visible light communication,” Optical Fiber Communication Conference and Exposition, Th1E. 3 (2017). [3(18)] C.-H. Yeh, H.-Y. Chen, C.-W. Chow, and Y.-L. Liu, “Utilization of multi-band OFDM modulation to increase traffic rate of phosphor-LED wireless VLC”, Opt. Express 23, 1133-1138 (2015). [3(19)] M. Zhang, M. Shi, F. Wang, J. Zhao, Y. Zhou, Z. Wang, N. Chi, “4.05-Gb/s RGB LED-based VLC system utilizing PS-Manchester coded Nyquist PAM-8 modulation and hybrid time-frequency domain equalization,” Optical Fiber Communication Conference and Exposition, W2A. 42 (2017). [3(20)] C. W. Hsu, C. W. Chow, I. C. Lu, Y. L. Liu, C. H. Yeh, and Y. Liu, “High speed imaging 3× 3 MIMO phosphor white‐light LED based visible light communication system,” IEEE Photon. J, 8, 7907406 (2016). [3(21)] C.-H. Yeh, H.-Y. Chen, Y.-L. Liu, and C.-W. Chow, “Polarization-multiplexed 22 phosphor-LED wireless light communication without using analog equalization and optical blue filter”, Opt. Commun. 334, 8-11 (2015). [3(22)] H. Chun, S. Rajbhandari, G. Faulkner, D. Tsonev, E. Xie, J. J. D. McKendry, E. Gu, M. D. Dawson, D. C. O'Brien, and H. Haas, “LED based wavelength division multiplexed 10 Gb/s visible light communications,” J. Lightwave Technol. 34, 3047-3052 (2016). [3(23)] I.-C. Lu, C.-H. Lai, C.-H. Yeh, and J. Chen, “6.36 Gbit/s RGB LED-based WDM MIMO visible light communication system employing OFDM modulation,” Optical Fiber Communication Conference and Exposition, W2A. 39 (2017). [3(24)] F. Hanson and S. Radic, “High bandwidth underwater optical communication,” Appl. Opt. 47, 277-283 (2008). [3(25)] S. Watson, M. Tan, S. P. Najda, P. Perlin, M. Leszczynski, G. Targowski, S. Grzanka, and A. E. Kelly, “Visible light communications using a directly modulated 422 nm GaN laser diode,” Opt. Lett. 38, 3792-3794 (2013). [3(26)] C. H. Yeh and I. C. Lu, “0.5211.86 Gbit/s OFDM modulation for power-sharing VLC transmission by using VCSEL laser”, Opt. Exp., 24, 21113-21118 (2016). [3(27)] L. Y. Wei, C. W. Hsu, Y. Hsu, C. H. Yeh, and C. W. Chow “Bi-directional Visible Light Communication Using a Single 682-nm Visible Vertical-Cavity Surface-Emitting Laser (VCSEL) and Signal Remodulation,” Proc. ECOC 2017, Paper P2.SC8.55. [3(28)] T. C. Wu, Y. C. Chi, H. Y. Wang, C. T. Tsai, Y. F. Huang, and G. R. Lin, “Tricolor R/G/B laser diode based eye-safe white lighting communication beyond 8 Gbit/s,” Sci. Rep., 7, 1-10 (2017). [3(29)] C. W. Oh, Z. Cao, E. Tangdiongga, and T. Koonen, “10 Gbps all-optical full-duplex indoor optical wireless communication with wavelength reuse,” Proc. OFC 2016, Paper Th4A.6. [3(30)] G. C. Gilbreath, W. S. Rabinovich, T. J. Meehan, M. J. Vilcheck, R. Mahon, R. Burris, M. F. Stell, I. Sokolsky, J. A. Vasquez, C. S. Bovais, K. Cochrell, K. C. Goins, R. Barbehenn, D. S. Katzer, K. Ikossi-Anastasiou, M. J. Montes, “Large-aperture multiple quantum well modulating retroreflector for free-space optical data transfer on unmanned aerial vehicles,” Opt. Eng., 40(7), 1348-1356 (2001). [3(31)] W. S. Rabinovich, G. C. Gilbreath, C. Bovais, K. Cochrell, H. R. Burris, M. Ferraro, M. Vilcheck, R. Mahon, K. Goins, I. Sokolsky, J. Vasquez, T. Meehan, R. Barbehenn, D. S. Katzer, and K. Ikossi- Ansatasiou, ‘‘Infrared data link using a multiple quantum well modulating retro-reflector on a small rotary-wing unmanned airborne vehicle,’’ Proc. IEEE Aerospace Conference 2000, 3, 93-100 (2000). [3(32)] Y. Wang, Y. Wang, N. Chi, J. Yu, and H. Shang, “Demonstration of 575-Mb/s downlink and 225-Mb/s uplink bi-directional SCM-WDM visible light communication using RGB LED and phosphor-based LED,” Opt. Express, 21, 1203-1208 (2013). [3(33)] H. Urabe, S. Haruyama, T. Shogenji, S. Ishikawa, M. Hiruta, F. Teraoka, T. Arita, H. Matsubara, and S. Nakagawa, “High data rate ground-to-train free-space optical communication system,” Opt. Eng., 51, 031204 (2012). [3(34)] H. Le Minh, et al., "High-speed visible light communications using multiple-resonant equalization," IEEE Photon. Technol. Lett., vol. 20, pp. 1243-1245, 2008. [3(35)] C. W. Chow, C. H. Yeh, Y. F. Liu and P. Y. Huang, "Background optical noises circumvention in LED optical wireless systems using OFDM," IEEE Photon. J., vol. 5, no. 2, pp. 7900709, 2013. [3(36)] J. Y. Sung, C. W. Chow, and C. H. Yeh, "Is blue optical filter necessary in high speed phosphor-based white light LED visible light communications?," Opt. Exp., vol. 22, pp. 20646-20651, 2014. [3(37)] J. Zhang, J. Wang, Y. Xu, M. Xu, F. Lu, L. Cheng, J. Yu, and G. K. Chang, "Fiber–wireless integrated mobile backhaul network based on a hybrid millimeter-wave and free-space-optics architecture with an adaptive diversity combining technique," Opt. Lett., vol. 41, pp. 1909-1912, 2016. [3(38)] C. Y. Li, H. H. Lu, C. Y. Lin, C. A. Chu, B. R. Chen, H. H. Lin, and C. J. Wu, "Fiber-wireless and fiber-IVLLC convergences based on MZM-OEO-Based BLS," IEEE Photon. J., vol. 8, pp. 7902810, 2016. [3(39)] C. W. Chow, C. H. Yeh, Y. Liu, C. W. Hsu and J. Y. Sung, "Network architecture of bidirectional visible light communication and passive optical network," IEEE Photon. J., vol. 8, pp. 7904506, 2016. [3(40)] H. H. Lu, Y. P. Lin, P. Y. Wu, C. Y. Chen, M. C. Chen, and T. W. Jhang, “A multiple-input-multiple-output visible light communication system based on VCSELs and spatial light modulators,” Opt. Express, vol. 22, pp. 3468-3474, 2014. [3(41)] B. Janjua, H. M. Oubei, J. R. Durán Retamal, T. K. Ng, C. T. Tsai, H. Y. Wang, Y. C. Chi, H. C. Kuo, G. R. Lin, J. H. He, and B. S. Ooi, “Going beyond 4 Gbps data rate by employing RGB laser diodes for visible light communication,” Opt. Express, vol. 23, pp. 18746-18753, 2015. [3(42)] T. C. Wu, Y. C. Chi, H. Y. Wang, C. T. Tsai, Y. F. Huang, and G. R. Li, “Tricolor R/G/B laser diode based eye-safe white lighting communication beyond 8 Gbit/s,” Sci. Rep., vol. 7, pp. 11, 2017. [3(43)] C. H. Chang, C. Y. Li, H. H. Lu, C. Y. Lin, J. H. Chen, Z. W. Wan, and C. J. Cheng, “A 100-Gb/s multiple-input multiple-output visible laser light communication system,” J. Lightw. Technol., vol. 32, pp. 4723-4729, 2014. [3(44)] T. C. Wu, Y. C. Chi, H. Y. Wang, C. T. Tsai, and G. R. Lin, "Blue laser diode enables underwater communication at 12.4 Gbps," Sci. Rep., vol. 7, pp. 40480, 2017. [3(45)] H. H. Lu, C. Y. Li, H. H. Lin, W. S. Tsai, C. A. Chu, B. R. Chen, and C. J. Wu, "An 8 m/9.6 Gbps underwater wireless optical communication system," IEEE Photon. J., vol. 8, pp. 7906107, 2016. [3(46)] H. M. Oubei, J. R. Duran, B. Janjua, H. Y. Wang, C. T. Tsai, Y. C. Chi, T. K. Ng, H. C. Kuo, J. H. He, M. S. Alouini, G. R. Lin, and B. S. Ooi, "4.8 Gbit/s 16-QAM-OFDM transmission based on compact 450-nm laser for underwater wireless optical communication," Opt. Express, vol. 23, pp. 23302-23309, 2015. [3(47)] W. Y. Lin, C. Y. Chen, H. H. Lu, C. H. Chang, Y. P. Lin, H. C. Lin, and H. W. Wu, “10m/500Mbps WDM visible light communication systems,” Opt. Express, vol. 20, pp. 9919-9924, 2012. [3(48)] S. Watson, M. Tan, S. P. Najda, P. Perlin, M. Leszczynski, G. Targowski, S. Grzanka, and A. E. Kelly, "Visible light communications using a directly modulated 422 nm GaN laser diode," Opt. Lett., vol. 38, pp. 3792-3794, 2013. [3(49)] C. H. Yeh, L. Y. Wei, and C. W. Chow, “Using a single VCSEL source employing OFDM downstream signal and remodulated OOK upstream signal for bi-directional visible light communications,” Sci. Rep., vol. 7, pp. 15846, 2017. [3(50)] G. C. Gilbreath, et al, “Large-aperture multiple quantum well modulating retroreflector for free-space optical data transfer on unmanned aerial vehicles,” Opt. Eng., vol. 40, pp. 1348-1356, 2001. [3(51)] J. T. Wu, C. W. Chow, Y. Liu, C. W. Hsu, and C. H. Yeh, "Performance enhancement technique of visible light communications using passive photovoltaic cell," Opt. Comm., vol. 392, pp. 119-122, 2017. [3(52)] H. Y. Wang, J. T. Wu, C. W. Chow, Y. Liu, C. H. Yeh, X. L. Liao, K. H. Lin, W. L. Wu, and Y. Y. Chen, "Using pre-distorted PAM-4 signal and parallel resistance circuit to enhance the passive solar cell based visible light communication," Opt. Comm., vol. 407, pp. 245-249, 2018. [4(1)] S. Wu, H. Wang, and C. H. Youn, “Visible light communications for 5G wireless networking systems: from fixed to mobile communications,” IEEE Netw. 28, 41–45 (2014). [4(2)] C. W. Chow, C. H. Yeh, Y. Liu, and Y. F. Liu, “Digital signal processing for light emitting diode based visible light communication,” IEEE Photon. Soc. Newsl. 26, 9–13 (2012). [4(3)] F. Zafar, M. Bakaul, and R. Parthiban, “Laser-diode-based visible lightcommunication: toward gigabit class communication,” IEEE Commun. Mag. 55, 144–151 (2017). [4(4)] Y. C. Chi, D. H. Hsieh, C. Y. Lin, H. Y. Chen, C. Y. Huang, J. H. He, B. Ooi, S. P. DenBaars, S. Nakamura, H. C. Kuo, and G. R. Lin, “Phosphorous diffuser diverged blue laser diode for indoor lighting and communication,” Sci. Rep. 5, 18690 (2015). [4(5)] D. H. Hsieh, T. C. Wu, Y. C. Chi, Y. R. Chen, C. Y. Huang, H. C. Kuo, and G. R. Lin, “The effect of phosphor concentration on laser-based white light communication system,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2016), paper SW1F.7. [4(6)] T. C. Wu, Y. C. Chi, H. Y. Wang, C. T. Tsai, Y. F. Huang, and G. R. Li, “Tricolor R/G/B laser diode based eye-safe white lighting communication beyond 8 Gbit/s,” Sci. Rep. 7, 11 (2017). [4(7)] C. H. Chang, C. Y. Li, H. H. Lu, C. Y. Lin, J. H. Chen, Z. W. Wan, and C. J. Cheng, “A 100-Gb/s multiple-input multiple-output visible laser light communication system,” J. Lightwave Technol. 32, 4723–4729 (2014). [4(8)] W. Y. Lin, C. Y. Chen, H. H. Lu, C. H. Chang, Y. P. Lin, H. C. Lin, and H. W. Wu, “10 m/500 Mbps WDM visible light communication systems,” Opt. Express 20, 9919–9924 (2012). [4(9)] S. Watson, M. Tan, S. P. Najda, P. Perlin, M. Leszczynski, G. Targowski, S. Grzanka, and A. E. Kelly, “Visible light communications using a directly modulated 422 nm GaN laser diode,” Opt. Lett. 38, 3792–3794 (2013). [4(10)] C. Lee, C. Zhang, M. Cantore, R. M. Farrell, S. H. Oh, T. Margalith, J. S. Speck, S. Nakamura, J. E. Bowers, and S. P. DenBaars, “4 Gbps direct modulation of 450 nm GaN laser for high-speed visible light communication,” Opt. Express 23, 16232–16237 (2015). [4(11)] H. M. Oubei, J. R. Duran, B. Janjua, H. Y. Wang, C. T. Tsai, Y. C. Chi, T. K. Ng, H. C. Kuo, J. H. He, M. S. Alouini, G. R. Lin, and B. S. Ooi, “4.8 Gbit/s 16-QAM-OFDM transmission based on compact 450-nm laser for underwater wireless optical communication,” Opt. Express 23, 23302–23309 (2015). [4(12)] Y. C. Chi, D. H. Hsieh, C. T. Tsai, H. Y. Chen, H. C. Kuo, and G. R. Lin, “450-nm GaN laser diode enables high-speed visible light communication with 9-Gbps QAM-OFDM,” Opt. Express 23, 13051–13059 (2015). [4(13)] S. Pergoloni, A. Petroni, T. C. Bui, G. Scarano, R. Cusani, and M. Biagi, “ASK-based spatial multiplexing RGB scheme using symbol-dependent self-interference for detection,” Opt. Express 25, 15028–15042 (2017). [4(14)] S. Pergoloni, M. Biagi, S. Rinauro, S. Colonnese, R. Cusani, and G. Scarano, “Merging color shift keying and complementary pulse position modulation for visible light illumination and communication,” J. Lightwave Technol. 33, 192–200 (2015). [4(15)] Y. Qiu, H. H. Chen, and W. X. Meng, “Channel modeling for visible light communications—a survey,” Wireless Commun. Mobile Comput. 16, 2016–2034 (2016). [4(16)] J. Cho, C. Xie, and P. J. Winzer, “Analysis of soft-decision FEC on non-AWGN channels,” Opt. Express 20, 7915–7928 (2012). [4(17)] T. Koonen, "Indoor optical wireless systems: technology, trends, and applications," J. Lightw. Technol., vol. 36, no. 8, pp. 1459-1467, 2018. [4(18)] J. Vučić and K. D. Langer, "High-speed visible light communications: state-of-the-art," Proc. OFC 2012, Paper OTh3G.3. [4(19)] H. Haas, "Visible light communication," Proc. OFC 2015, Paper Tu2G.5. [4(20)] D. C. O’Brien, “Optical wireless communications: Current status and future prospects,” Proc. IEEE Summer Top., Newport Beach, CA, USA, Jul. 2016. [4(21)] K. Ying, Z. Yu, R. J. Baxley, H. Qian, G. K. Chang, and G. T. Zhou, “Nonlinear distortion mitigation in visible light communications,” IEEE Wireless Commun., vol. 22, no. 2, pp. 36–45, Apr. 2015. [4(22)] N. Chi, Y. Zhou, J. Shi, Y. Wang, X. Huang, “Enabling technologies for high speed visible light communication,” Proc. OFC 2017, Paper Th1E.3. [4(23)] C. W. Chow, C. H. Yeh, Y. Liu, and Y. F. Liu, ‘‘Digital signal processing for light emitting diode based visible light communication,” IEEE Photon. Soc. Newslett., vol. 26, pp. 9-13, 2012. [4(24)] M. Yasir, S. W. Ho, and B. N. Vellambi, “Indoor positioning system using visible light and accelerometer,” J. Lightw. Technol., vol. 32, pp. 3306-3316, 2014. [4(25)] C. W. Hsu, S. Liu, F. Lu, C. W. Chow, C. H. Yeh, and G. K. Chang, "Accurate indoor visible light positioning system utilizing machine learning technique with height tolerance," Proc. OFC 2018, Paper M2K.2. [4(26)] C. W. Hsu, J. T. Wu, H. Y. Wang, C. W. Chow, C. H. Lee, M. T. Chu, and C. H. Yeh, “Visible light positioning and lighting based on identity positioning and RF carrier allocation technique using a solar cell receiver,” IEEE Photon. J., vol. 8, pp. 7905507, 2016. [4(27)] J. Chang, Y. Wang, D. Chen, C. Li, H. Lu, X. Huang, and W. Tsai, "Optical-based underwater communications," Proc. OFC 2018, Paper Tu2I.3. [4(28)] H. H. Lu, C. Y. Li, H. H. Lin, W. S. Tsai, C. A. Chu, B. R. Chen, and C. J. Wu, “An 8 m/9.6 Gbps underwater wireless optical communication system,” IEEE Photon. J., vol. 8, pp. 7906107, 2016. [4(29)] C. Wang, H. Y. Yu, and Y. J. Zhu, “A long distance underwater visible light communication system with single photon avalanche diode,” IEEE Photon. J., vol. 8, pp. 7906311, 2016. [4(30)] C. W. Chow, R. J. Shiu, Y. C. Liu, C. H. Yeh, X. L. Liao, K. H. Lin, Y. C. Wang, and Y. Y. Chen, "Secure mobile-phone based visible light communications with different noise-ratio light-panel," IEEE Photon. J., vol. 10, pp. 7902806, 2018. [4(31)] C. W. Chow, R. J. Shiu, Y. C. Liu, X. L. Liao, K. H. Lin, Y. C. Wang, and Y. Y. Chen, "Using advertisement light-panel and CMOS image sensor with frequency-shift-keying for visible light communication," Opt. Exp., vol. 26, pp. 12530-12535, 2018. [4(32)] C. W. Chow, R. J. Shiu, Y. C. Liu, W. C. Wang, X. L. Liao, K. H. Lin, Y. C. Wang, and Y. Y. Chen, "Mitigation of performance degradation due to dynamic display contents in visible light communication using TV backlight and CMOS image sensor," Opt. Exp., vol. 26, pp. 22342-22347, 2018. [4(33)] S. Wu, H. Wang, and C. H. Youn, “Visible light communications for 5G wireless networking systems: from fixed to mobile communications,” IEEE Network, vol. 28, pp. 41-45, 2014. [4(34)] H. L. Minh, D. O'Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. J. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a post-equalized white LED,” IEEE Photon. Technol. Lett., vol. 21, pp. 1063–1065, 2009. [4(35)] J. Vučić, C. Kottke, S. Nerreter, K. D. Langer, and J. W. Walewski, “513 Mbit/s visible light communications link based on DMT-modulation of a white LED,” J. Lightw. Technol., vol. 28, pp. 3512–3518, 2010. [4(36)] W. Y. Lin, C. Y. Chen, H. H. Lu, C. H. Chang, Y. P. Lin, H. C. Lin, and H. W. Wu, "10m/500Mbps WDM visible light communication systems," Opt. Exp., vol. 20, pp. 9919-9924, 2012. [4(37)] C. H. Chang, C. Y. Li, H. H. Lu, C. Y. Lin, J. H. Chen, Z. W. Wan, and C. J. Cheng “A 100-Gb/s multiple-input multiple-output visible laser light communication system,” J. Lightw. Technol., vol. 32, pp. 4723-4729, 2014. [4(38)] Y. Liu, Y. C. Chang, C. Chow, and C. Yeh, "Equalization and pre-distorted schemes for increasing data rate in in-door visible light communication system," Proc. OFC 2011, Paper JWA083. [4(39)] J. Y. Sung, C. W. Chow, and C. H. Yeh, “Is blue optical filter necessary in high speed phosphor-based white light LED visible light communications?”, Opt. Exp., vol. 22, pp. 20646-20651, 2014. [4(40)] C. H. Yeh, H. Y. Chen, C. W. Chow, and Y. L. Liu, "Utilization of multi-band OFDM modulation to increase traffic rate of phosphor-LED wireless VLC," Opt. Exp., vol. 23, pp. 1133-1138, 2015. [4(41)] S. Rajagopal, R. D. Roberts, and S. Lim, "IEEE 802.15.7 visible light communication: modulation schemes and dimming support," IEEE Communications Magazine, vol. 50, no. 3, pp. 72-82, March 2012. [4(42)] C. Hsu, C. Chow, I. Lu, Y. Liu, C. Yeh and Y. Liu, "High speed imaging 3 × 3 MIMO phosphor white-light LED based visible light communication system," IEEE Photon. J., vol. 8, pp. 7907406, 2016. [4(43)] G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Exp., vol. 20, no. 26, B501–B506, 2012. [4(44)] I. C. Lu, C. H. Lai, C. H. Yeh, and J. Chen, “6.36 Gbit/s RGB LED-based WDM MIMO visible light communication system employing OFDM modulation,” Proc. OFC 2017, Paper W2A39. [4(45)] S. Watson, M. Tan, S. P. Najda, P. Perlin, M. Leszczynski, G. Targowski, S. Grzanka, and A. E. Kelly, “Visible light communications using a directly modulated 422 nm GaN laser diode,” Opt. Lett., vol. 38, pp. 3792-3794, 2013. [5(1)] H. Haas, "Visible light communication," Proc. OFC, 1-72 (2015). [5(2)] N. Chi, Y. Zhou, J. Shi, Y. Wang, X. Huang, “Enabling technologies for high speed visible light communication,” Optical Fiber Communication Conference and Exposition, Th1E. 3 (2017). [5(3)] C. W. Chow, C. H. Yeh, Y. Liu, and Y. F. Liu, ‘‘Digital signal processing for light emitting diode based visible light communication,” IEEE Photon. Soc. Newslett. 26, 9-13 (2012). [5(4)] C. W. Hsu, S. Liu, F. Lu, C. W. Chow, C. H. Yeh, and G. K. Chang, "Accurate Indoor Visible Light Positioning System utilizing Machine Learning Technique with Height Tolerance," Proc. OFC, M2K.2 (2018). [5(5)] M. Yasir, S. W. Ho, B. N. Vellambi, “Indoor positioning system using visible light and accelerometer,” J. Lightw. Technol., 32, 3306-3316 (2014). [5(6)] C. W. Hsu, J. T. Wu, H. Y. Wang, C. W. Chow, C. H. Lee, M. T. Chu, C. H. Yeh, “Visible light positioning and lighting based on identity positioning and RF carrier allocation technique using a solar cell receiver,” IEEE Photon. J., 8, 7905507 (2016). [5(7)] J. Chang, Y. Wang, D. Chen, C. Li, H. Lu, X. Huang, and W. Tsai, "Optical-based underwater communications," Proc. OFC, Tu2I.3 (2018). [5(8)] H.-H. Lu, C.-Y. Li, H.-H. Lin, W.-S. Tsai, C.-A. Chu, B.-R. Chen, and C.-J. Wu, “An 8 m/9.6 Gbps underwater wireless optical communication system,” IEEE Photon. J. 8, 7906107 (2016). [5(9)] C. Wang, H. Y. Yu, and Y. J. Zhu, “A long distance underwater visible light communication system with single photon avalanche diode,” IEEE Photon. J., 8, 7906311 (2016). [5(10)] C. W. Chow, R. J. Shiu, Y. C. Liu, C. H. Yeh, X. L. Liao, K. H. Lin, Y. C. Wang, and Y. Y. Chen, "Secure mobile-phone based visible light communications with different noise-ratio light-panel," IEEE Photon. J. 10, 7902806 (2018). [5(11)] C. W. Chow, R. J. Shiu, Y. C. Liu, X. L. Liao, K. H. Lin, Y. C. Wang, and Y. Y. Chen, "Using advertisement light-panel and CMOS image sensor with frequency-shift-keying for visible light communication," Opt. Express 26, 12530-12535 (2018). [5(12)] C. W. Chow, R. J. Shiu, Y. C. Liu, W. C. Wang, X. L. Liao, K. H. Lin, Y. C. Wang, and Y. Y. Chen, "Mitigation of performance degradation due to dynamic display contents in visible light communication using TV backlight and CMOS image sensor," Opt. Express 26, 22342-22347 (2018). [5(13)] H. L. Minh, D. O'Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. J. Oh, E. T. Won, “100-Mb/s NRZ visible light communications using a post-equalized white LED,” IEEE Photon. Technol. Lett. 21, 1063–1065 (2009). [5(14)] J. Vučić, C. Kottke, S. Nerreter, K. D. Langer, and J. W. Walewski, “513 Mbit/s visible light communications link based on DMT-modulation of a white LED,” J. Lightw. Technol. 28, 3512–3518 (2010). [5(15)] Wen-Yi Lin, Chia-Yi Chen, Hai-Han Lu, Ching-Hung Chang, Ying-Pyng Lin, Huang-Chang Lin, and Hsiao-Wen Wu, "10m/500Mbps WDM visible light communication systems," Opt. Express 20, 9919-9924 (2012). [5(16)] C. H. Yeh, H. Y. Chen, C. W. Chow, and Y. L. Liu, "Utilization of multi-band OFDM modulation to increase traffic rate of phosphor-LED wireless VLC," Opt. Exp. 23, 1133-1138 (2015). [5(17)] C. Hsu, C. Chow, I. Lu, Y. Liu, C. Yeh and Y. Liu, "High speed imaging 3 × 3 MIMO phosphor white-light LED based visible light communication system," IEEE Photon. J. 8, 7907406 (2016). [5(18)] J. Y. Sung, C. W. Chow, and C. H. Yeh, “Is blue optical filter necessary in high speed phosphor-based white light LED visible light communications?”, Opt. Exp., 22, 20646-20651 (2014). [5(19)] S. Wu, H. Wang, and C. H. Youn, “Visible light communications for 5G wireless networking systems: from fixed to mobile communications,” IEEE Network, 28, 41-45 (2014). [5(20)] S. Watson, M. Tan, S. P. Najda, P. Perlin, M. Leszczynski, G. Targowski, S. Grzanka, and A. E. Kelly, "Visible light communications using a directly modulated 422 nm GaN laser diode," Opt. Lett. 38, 3792-3794 (2013). [5(21)] C. Lee, C. Zhang, M. Cantore, R. M. Farrell, S. H. Oh, T. Margalith, J. S. Speck, S. Nakamura, J. E. Bowers, and S. P. DenBaars, "4 Gbps direct modulation of 450 nm GaN laser for high-speed visible light communication," Opt. Exp. 23, 16232-16237 (2015). [5(22)] C. H. Yeh, L. Y. Wei, and C. W. Chow, "Using a single VCSEL source employing OFDM downstream signal and remodulated OOK upstream signal for bi-directional visible light communications," Sci. Rep., 7, 15846 (2017). [5(23)] T. C. Wu, Y. C. Chi, H. Y. Wang, C. T. Tsai, Y. F. Huang, and G. R. Lin, " Tricolor R/G/B laser diode based eye-safe white lighting communication beyond 8 Gbit/s," Sci. Rep. 7, 11 (2017). [5(24)] M. Zhang, M. Shi, F. Wang, J. Zhao, Y. Zhou, Z. Wang, N. Chi, “4.05-Gb/s RGB LED-based VLC system utilizing PS-Manchester coded Nyquist PAM-8 modulation and hybrid time-frequency domain equalization,” Proc. OFC, W2A. 42 (2017). [5(25)] L. Y. Wei, C. W. Hsu, C. W. Chow, and C. H. Yeh, "20.231 Gbit/s tricolor red/green/blue laser diode based bidirectional signal remodulation visible-light communication system," Photon. Res. 6, 422-426 (2018). [5(26)] Y. C. Chi, D. H. Hsieh, C. Y. Lin, H. Y. Chen, C. Y. Huang, J. H. He, B. Ooi, S. P. DenBaars, S. Nakamura, H. C. Kuo, and G. R. Lin, “Phosphorous diffuser diverged blue laser diode for indoor lighting and communication,” Sci. Rep. 5, 1-9 (2015). [5(27)] G. K. Chang, et al., "Key technologies of WDM-PON for future converged optical broadband access networks [Invited]," J. Opt. Comm. and Net. 1, C35 (2009). [5(28)] C. Liu, et al., "Key microwave-photonics technologies for next-generation cloud-based radio access networks," J. Lightw. Technol. 32, 3452-3460 (2014). [5(29)] G. K. Chang, et al., "Key fiber wireless integrated radio access technologies for 5G and beyond," Proc. OECC, 2019. [5(30)] https://www.telekom.com/en/company/details/virtual-fiber-563322 [5(31)] T. Koonen, "Indoor optical wireless systems: technology, trends, and applications," J. Lightw. Technol. 36, 1459 (2018). [5(32)] C. W. Chow, et al., "Digital signal processing for light emitting diode based visible light communication," IEEE Photon. Soc. News., 26, 9 (2012). [5(33)] I. Chih-Lin, et al., "RAN revolution with NGFI (xHaul) for 5G," Proc. OFC, paper W1C.7 (2017). [5(34)] Y. Alfadhli, et al., "Real-time demonstration of adaptive functional split in 5G flexible mobile fronthaul networks," Proc. OFC, paper Th2A.48 (2018).
|