跳到主要內容

臺灣博碩士論文加值系統

(44.201.92.114) 您好!臺灣時間:2023/03/31 12:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:沈志強
研究生(外文):Shen, Chih-Chiang
論文名稱:三五族化合物半導體雷射之數值分析及特性優化
論文名稱(外文):Design and characteristic optimization of III-V Compound Semiconductor LASER
指導教授:郭浩中郭浩中引用關係李柏璁李柏璁引用關係
指導教授(外文):Kuo, Hao-ChungLee, Po-Tseng
口試委員:林仲相邱顯欽林建中孫家偉陳俐吟
口試委員(外文):Lin, Chung-HsiangChiu, Hsien-ChinLin, Chien-chungSun, Chia-WeiChen, Li-Yin
口試日期:2020-5-22
學位類別:博士
校院名稱:國立交通大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:76
中文關鍵詞:三五族化合物半導體雷射面射型雷射邊射型雷射氮化鎵砷化鎵
外文關鍵詞:Semiconductor LASERVCSELDFB LaserGaNGaAs
相關次數:
  • 被引用被引用:0
  • 點閱點閱:262
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近20年來由於光纖通訊的普及化到近期的3D感測的應用全面展開尤其是在IOT、Automobile、AR/VR/MR以及AI等等的應用上,三五族化合物半導體雷射引起廣泛的討論及研究。垂直腔體雷射(VCSEL)不僅廣泛應用於數據通信更是3D視覺成像的重要元器件,為3D視覺提供成像光源。VCSEL以砷化鎵半導體材料為基礎研製,具有體積小、圓形輸出光斑、單縱模輸出、閾值電流小、價格低廉、易集成為大面積陣列等優點,現已廣泛應用於消費電子、自動駕駛、光通信、物聯網等諸多領域,是3D傳感和資料通信的關鍵元器件。隨著數據通信日新月異的發展,對頻寬的要求增加,本論文針對主動區中材料選擇,改善微分增益與增益抑制分子的大小,再加上多重量子井(MQW)與分開侷限異質結構(SCH)的設計,能增加主動層光學與電的侷限能力,同時設計短共振腔與提高鏡面反射率來增加VCSEL的操作頻寬。在本質區中多重量子井的材料中提高主動區中Indium的含量,在磊晶過程中會有應力生成,亦使微分增益大小發生變化。針對3D感測所需的陣列VCSEL在雷射輸出光功率以及遠場場型分佈的影響,我們探討感測器光源940 VCSEL的結構設計,如:量子井對數、p-DBR對數與氧化層厚度,對於雷射輸出光功率以及遠場場型分佈的影響,並優化出最佳條件。磷化銦材料由於其材料能階適用於1.3unm/1.5um波長的雷射設計,因此在光纖通訊的應用領域尤其重要,本論文在此材料的DFB雷射設計中,應用GRINSCH及Stained AlInAs設計優化斜率效率及響應頻寬。氮化鎵材料系VCSEL於2007年在交通大學研究團隊首次完成常溫電流操作後,許多研究團隊陸續投入氮化鎵系VCSEL研究,本論文設計復合式DBR的結構,下DBR為25對n摻雜的AlN/GaN材料,上DBR為7對無摻雜的SiO2/TiO2材料,並且採用tunnel junction來取代ITO layer,解決電流擁擠問題並且避免使用ITO的吸收問題。為提高光學增益,我們設計7λ的共振腔長度,並在主動區中置入10對的量子井結構,最後討論不同上DBR對數對輸出光功率大小的影響。本論文也針對VCSEL最重要的可靠性問題進行研究,並採用原子層沉積法(atomic layer deposition, ALD)進行三氧化二鋁薄膜沉積,進而大幅度改善元件可靠性。
In recent 20 years, from the popularization of optical fiber communication to the recent application of 3D sensing, especially in the applications of IOT, automobile, AR / VR / MR, AI and so on, the semiconductor lasers of III-V compound semiconductors have aroused extensive discussion and research. Vertical Cavity Surface-Emitting Laser (VCSEL) is not only widely used in data communication, but also an important component of 3D vision, providing imaging light source for 3D vision. VCSEL is developed on the basis of GaAs material. It has the advantages of small size, circular beam shape, single mode output, small threshold current, low price, easy to be integrated into large area array and so on. It has been widely used in many fields such as consumer electronics, automatic driving, optical communication, Internet of things and so on. It is the key component of 3D sensor and data communication. With the rapid development of data communication, the requirement of bandwidth is increasing. In this thesis, aiming at the material selection in the active region, the differential gain and gain suppression are improved. In addition, the design of MQW and SCH can increase the confinement of photo and electron of the active layer. At the same time, the design of short cavity and high reflectivity can increase the VCSEL's frequency response. To increase the indium content in the quantum well, there will be stress generation in the epitaxial process, and also the differential gain will change. In view of the influence of the array VCSEL needed for 3D sensing on the laser output power and far-field pattern distribution, we discuss the structural design of 940 VCSEL, such as: the number of quantum wells, p-DBR pairs and oxide layer thickness, on the laser output power and far-field pattern distribution, and optimize the best conditions. InP material is especially important in the field of optical fiber communication because its energy level is suitable for laser design of 1.3um/1.5um wavelength. In this thesis, GRINSCH and stained AlInAs are used to optimize the slope efficiency and bandwidth in DFB laser design. In 2007, GaN VCSEL was achieved current the operation of room temperature for the first time in the research team of NCTU. In this thesis, the structure of composite DBR is designed. The lower DBR is 25 pairs of N-doped AlN / GaN, the upper DBR is 7 pairs of undoped SiO2 / TiO2, and tunnel junction is used to replace ITO Layer to solve the problem of current crowded and avoid the absorption with ITO. In order to improve the optical gain, we design a 7 λ cavity length and place 10 pairs of quantum wells in the active region. Finally, we discuss the influence of DBR on the output optical power. In this thesis, the most important reliability problem of VCSEL is also studied, and Al2O3 thin film is deposited by atomic layer deposition (ALD), which can greatly improve the reliability of devices.
摘要......................... i
Abstract................... iii
誌謝......................... v
Context......................vi
List of Figures..............ix
List of Tables .............xiii

第1章 VCSEL雷射歷史 1
1-1、三五族材料應用於發光元件 2
1-2、VCSEL光與電的侷限 3
1-3、光纖通訊 6
1-4、3D感測 8
1-5、可見光通訊 10
Reference: 11
第2章 雷射理論 13
2-1、光與載子的交互作用 13
2-2、光與載子的侷限 13
2-3、雷射振盪條件 14
2-4、布拉格反射鏡結構設計 16
2-5、模型與材料參數 17
Reference : 18
第3章 VCSEL製程技術 19
3.1、Mesa Etching 19
3.2、Wet Oxidation 19
3.3、ALD Passivation 22
Reference : 24
第4章 高速850 nm VCSEL設計 28
4.1、動態分析 28
4.2、雷射高速調製的設計 30
4.3、高應變量子井設計 31
4.4、元件內部的寄生效應 33
4.5、量子井厚度與共振腔的長度的設計 40
Reference : 42
第5章 高功率940 nm VCSEL設計 43
5.1、靜態分析 43
5.2、主動區的光、電侷限能力 43
5.3、出光側DBR的設計 45
5.4、氧化層厚度對橫向輸出模態的影響 47
5.5、氧化孔徑大小對VCSEL輸出光功率的影響 49
Reference : 50
第6章 DFB雷射工作原理 51
6.1、耦合係數(κ)與邊模抑制比(SMSR) 51
6.2、傳遞矩陣法 (TMM) 52
第7章 DFB雷射材料選擇與結構設計 53
7.1、多重量子井對數對DFB雷射調變頻寬的影響 53
7.2、Graded-index Separate Confinement Heterostructure對DFB雷射光性與電性的影響 54
7.3、Strained Inner InAlAs Cladding對DFB雷射光性與電性的影響55
第8章 GaN-based VCSEL 59
8.1、GaN VCSEL發展歷史 59
8.2、GaN DBR的設計 64
8.3、p-GaN 電性優化 65
8.4、高功率的GaN VCSEL 69
Reference : 71
第9章 未来工作 74
Reference : 76
[1] J. Dudley et al., "Low threshold, wafer fused long wavelength vertical cavity lasers," Applied physics letters, vol. 64, no. 12, pp. 1463-1465, 1994.
[2] T. Someya, K. Tachibana, J. Lee, T. Kamiya, and Y. Arakawa, "Lasing emission from an In0. 1Ga0. 9N vertical cavity surface emitting laser," Japanese journal of applied physics, vol. 37, no. 12A, p. L1424, 1998.
[3] I.-C. Lu et al., "Very high bit-rate distance product using high-power single-mode 850-nm VCSEL with discrete multitone modulation formats through OM4 multimode fiber," IEEE Journal of Selected Topics in Quantum Electronics, vol. 21, no. 6, pp. 444-452, 2015.
[4] H.-Y. Kao et al., "Comparison of single-/few-/multi-mode 850 nm VCSELs for optical OFDM transmission," Optics express, vol. 25, no. 14, pp. 16347-16363, 2017.
[5] H. C. Kuo et al., "Highly uniform and highly reliable 850-nm VCSEL platform for high-speed optical communications," in Materials and Devices for Optical and Wireless Communications, 2002, vol. 4905: International Society for Optics and Photonics, pp. 304-309.
[6] H.-C. Kuo et al., "Fabrication of high-speed and reliable 850nm oxide-confined VCSELs for 10Gb/s data communication," in Semiconductor and Organic Optoelectronic Materials and Devices, 2005, vol. 5624: International Society for Optics and Photonics, pp. 50-57.
[7] C.-T. Tsai et al., "RIN suppressed multimode 850-nm VCSEL for 56-Gbps 16-QAM OFDM and 22-Gbps PAM-4 transmission," in 2016 Optical Fiber Communications Conference and Exhibition (OFC), 2016: IEEE, pp. 1-3.
[8] H.-Y. Kao et al., "Modal linewidth dependent transmission performance of 850-nm VCSELs with encoding PAM-4 over 100-m MMF," IEEE Journal of Quantum Electronics, vol. 53, no. 5, pp. 1-8, 2017.
[9] T.-Y. Huang et al., "A NRZ-OOK Modulated 850-nm VCSEL with 54 Gb/s Error-Free Data Transmission," in 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), 2019: IEEE, pp. 1-1.
[10] C.-H. Cheng et al., "[Opto-Electron Adv, 2018, 1 (3)] 850/940-nm VCSEL for optical communication and 3D sensing," Opto-Electronic Reports, vol. 2, no. 03, p. a201903002, 2018.
[11] Y.-A. Chang et al., "High temperature stability 850-nm In0. 15Al0. 08Ga0. 77As/Al0. 3Ga0. 7as vertical-cavity surface-emitting laser with single Al0. 75Ga0. 25As current blocking layer," Japanese journal of applied physics, vol. 44, no. 7L, p. L901, 2005.
[12] Y.-A. Chang et al., "The carrier blocking effect on 850 nm InAlGaAs/AlGaAs vertical-cavity surface-emitting lasers," Semiconductor science and technology, vol. 21, no. 10, p. 1488, 2006.
[13] K.-L. Chi et al., "850-nm VCSELs With p-Typeδ-Doping in the Active Layers for Improved High-Speed and High-Temperature Performance," IEEE Journal of Quantum Electronics, vol. 52, no. 11, pp. 1-7, 2016.
[14] S. L. Chuang and S. L. Chuang, "Physics of optoelectronic devices," 1995.
[15] D. I. Babic and S. W. Corzine, "Analytic expressions for the reflection delay, penetration depth, and absorptance of quarter-wave dielectric mirrors," IEEE Journal of Quantum Electronics, vol. 28, no. 2, pp. 514-524, 1992.
[16] F. Y. Fu, G. Xiao, M. Lestrade, and S. Li, "Crosslight Software, Inc., Burnaby, Canada."
[17] K. D. Choquette et al., "GaAs vertical-cavity surface emitting lasers fabricated by reactive ion etching," IEEE photonics technology letters, vol. 3, no. 10, pp. 859-862, 1991.
[18] D. Huffaker, D. Deppe, K. Kumar, and T. Rogers, "Native‐oxide defined ring contact for low threshold vertical‐cavity lasers," Applied Physics Letters, vol. 65, no. 1, pp. 97-99, 1994.
[19] W. Tsang, "Self‐terminating thermal oxidation of AlAs epilayers grown on GaAs by molecular beam epitaxy," Applied Physics Letters, vol. 33, no. 5, pp. 426-429, 1978.
[20] J. M. Dallesasse, N. Holonyak Jr, A. Sugg, T. Richard, and N. El‐Zein, "Hydrolyzation oxidation of Al x Ga1− x As‐AlAs‐GaAs quantum well heterostructures and superlattices," Applied Physics Letters, vol. 57, no. 26, pp. 2844-2846, 1990.
[21] J. M. Dallesasse and N. Holonyak Jr, "Native‐oxide stripe‐geometry Al x Ga1− x As‐GaAs quantum well heterostructure lasers," Applied Physics Letters, vol. 58, no. 4, pp. 394-396, 1991.
[22] F. Kish, S. Caracci, N. Holonyak Jr, J. M. Dallesasse, K. Hsieh, and M. Ries, "Planar native‐oxide index‐guided Al x Ga1− x As‐GaAs quantum well heterostructure lasers," Applied physics letters, vol. 59, no. 14, pp. 1755-1757, 1991.
[23] S. Maranowski, A. Sugg, E. Chen, and N. Holonyak Jr, "Native oxide top‐and bottom‐confined narrow stripe p‐n Al y Ga1− y As‐GaAs‐In x Ga1− x As quantum well heterostructure laser," Applied physics letters, vol. 63, no. 12, pp. 1660-1662, 1993.
[24] S. Guha, F. Agahi, B. Pezeshki, J. Kash, D. Kisker, and N. Bojarczuk, "Microstructure of AlGaAs‐oxide heterolayers formed by wet oxidation," Applied physics letters, vol. 68, no. 7, pp. 906-908, 1996.
[25] J. Cheng and N. K. Dutta, Vertical-cavity surface-emitting lasers: technology and applications. CRC Press, 2000.
[26] K. D. Choquette and H. Q. Hou, "Vertical-cavity surface emitting lasers: moving from research to manufacturing," Proceedings of the IEEE, vol. 85, no. 11, pp. 1730-1739, 1997.
[27] C. I. Ashby, M. M. Bridges, A. A. Allerman, B. E. Hammons, and H. Q. Hou, "Origin of the time dependence of wet oxidation of AlGaAs," Applied physics letters, vol. 75, no. 1, pp. 73-75, 1999.
[28] S. Feld, J. Loehr, R. Sherriff, J. Wiemeri, and R. Kaspi, "In situ optical monitoring of AlAs wet oxidation using a novel low-temperature low-pressure steam furnace design," IEEE Photonics Technology Letters, vol. 10, no. 2, pp. 197-199, 1998.
[29] K. D. Choquette et al., "Selective oxidation of buried AlGaAs versus AlAs layers," Applied Physics Letters, vol. 69, no. 10, pp. 1385-1387, 1996.
[30] C. I. Ashby, J. P. Sullivan, K. D. Choquette, K. Geib, and H. Q. Hou, "Wet oxidation of AlGaAs: the role of hydrogen," Journal of applied physics, vol. 82, no. 6, pp. 3134-3136, 1997.
[31] D. Huffaker, D. Deppe, C. Lei, and L. Hodge, "Sealing AlAs against oxidative decomposition and its use in device fabrication," Applied physics letters, vol. 68, no. 14, pp. 1948-1950, 1996.
[32] D. H. Lim, G. M. Yang, J.-H. Kim, K. Y. Lim, and H. J. Lee, "Sealing of AlAs against wet oxidation and its use in the fabrication of vertical-cavity surface-emitting lasers," Applied physics letters, vol. 71, no. 14, pp. 1915-1917, 1997.
[33] K. D. Choquette, K. Lear, R. Schneider, K. Geib, J. Figiel, and R. Hull, "Fabrication and performance of selectively oxidized vertical-cavity lasers," IEEE photonics technology letters, vol. 7, no. 11, pp. 1237-1239, 1995.
[34] J. H. Kim, D. Lim, K. Kim, G. Yang, K. Lim, and H. Lee, "Lateral wet oxidation of Al x Ga1− x As‐GaAs depending on its structures," Applied physics letters, vol. 69, no. 22, pp. 3357-3359, 1996.
[35] R. Naone and L. Coldren, "Surface energy model for the thickness dependence of the lateral oxidation of AlAs," Journal of applied physics, vol. 82, no. 5, pp. 2277-2280, 1997.
[36] S. Kim, W. H. Widjaja, and S. Xie, "Moisture passivated planar index-guided VCSEL," ed: Google Patents, 2004.
[37] G. N. DeBrabander, R. W. Herrick, S. Xie, and M. C. Slater, "Detecting pinholes in vertical cavity surface-emitting laser passivation," ed: Google Patents, 2006.
[38] J. S. Pan, C. J. Wu, I. H. Wu, and K. F. Tseng, "Method for fabricating oxide-confined vertical-cavity surface-emitting laser," ed: Google Patents, 2014.
[39] S. Xie et al., "Failure mode analysis of oxide VCSELs in high humidity and high temperature," Journal of lightwave technology, vol. 21, no. 4, p. 1013, 2003.
[40] R. W. Herrick, A. Dafinca, P. Farthouat, A. A. Grillo, S. J. McMahon, and A. R. Weidberg, "Corrosion-based failure of oxide-aperture VCSELs," IEEE Journal of Quantum Electronics, vol. 49, no. 12, pp. 1045-1052, 2013.
[41] R. W. Johnson, A. Hultqvist, and S. F. Bent, "A brief review of atomic layer deposition: from fundamentals to applications," Materials today, vol. 17, no. 5, pp. 236-246, 2014.
[42] H.-Y. Li, Y.-F. Liu, Y. Duan, Y.-Q. Yang, and Y.-N. Lu, "Method for aluminum oxide thin films prepared through low temperature atomic layer deposition for encapsulating organic electroluminescent devices," Materials, vol. 8, no. 2, pp. 600-610, 2015.
[43] E. Langereis, M. Creatore, S. Heil, M. Van de Sanden, and W. Kessels, "Plasma-assisted atomic layer deposition of Al 2 O 3 moisture permeation barriers on polymers," Applied physics letters, vol. 89, no. 8, p. 081915, 2006.
[44] K.-L. Chi et al., "Strong enhancements in static/dynamic performances of high-speed 850 nm vertical-cavity surface-emitting lasers with P-type δ-doping in highly strained active layers," in 2016 Optical Fiber Communications Conference and Exhibition (OFC), 2016: IEEE, pp. 1-3.
[45] Y. Chang, H.-c. Kuo, F.-I. Lai, Y. Chang, L.-H. Laih, and S. Wang, "Improvement of high-speed performance for 10-Gb/s 850-nm VCSELs using InGaAsP/InGaP strain-compensated MQWs," in Vertical-Cavity Surface-Emitting Lasers VIII, 2004, vol. 5364: International Society for Optics and Photonics, pp. 221-226.
[46] K. A. Winick, "Effective-index method and coupled-mode theory for almost-periodic waveguide gratings: a comparison," Applied optics, vol. 31, no. 6, pp. 757-764, 1992.
[47] W. Streifer, D. Scifres, and R. Burnham, "Coupled wave analysis of DFB and DBR lasers," IEEE Journal of Quantum Electronics, vol. 13, no. 4, pp. 134-141, 1977.
[48] T.-C. Lu, J.-T. Chu, S.-W. Chen, B.-S. Cheng, H.-C. Kuo, and S.-C. Wang, "Lasing behavior, gain property, and strong coupling effects in GaN-based vertical-cavity surface-emitting lasers," Japanese Journal of Applied Physics, vol. 47, no. 8S1, p. 6655, 2008.
[49] T.-C. Lu et al., "Development of GaN-based vertical-cavity surface-emitting lasers," IEEE Journal of selected topics in quantum electronics, vol. 15, no. 3, pp. 850-860, 2009.
[50] S.-C. Wang, T.-C. Lu, H.-C. Kuo, B.-S. Cheng, T.-T. Wu, and Y.-Y. Lai, "GaN blue VCSELs and photonic crystal lasers," in 2012 17th Opto-Electronics and Communications Conference, 2012: IEEE, pp. 837-838.
[51] S.-C. Wang, T.-C. Lu, H.-C. Kuo, and J.-R. Chen, "GaN-Based VCSELs," in VCSELs: Springer, 2013, pp. 403-427.
[52] J.-T. Chu et al., "Room-temperature operation of optically pumped blue-violet GaN-based vertical-cavity surface-emitting lasers fabricated by laser lift-off," Japanese journal of applied physics, vol. 45, no. 4R, p. 2556, 2006.
[53] S.-C. Wang et al., "Optically pumped GaN-based vertical cavity surface emitting lasers: Technology and characteristics," Japanese Journal of Applied Physics, vol. 46, no. 8S, p. 5397, 2007.
[54] T.-C. Lu, C.-C. Kao, H.-C. Kuo, G.-S. Huang, and S.-C. Wang, "CW lasing of current injection blue GaN-based vertical cavity surface emitting laser," Applied Physics Letters, vol. 92, no. 14, p. 141102, 2008.
[55] S.-C. Wang, T.-C. Lu, and H.-C. Kuo, "Recent progress in electrically pumped blue GaN-based VCSELs," in Conference on Lasers and Electro-Optics, 2009: Optical Society of America, p. CMGG1.
[56] T.-C. Lu et al., "Characteristics of current-injected GaN-based vertical-cavity surface-emitting lasers," Ieee Journal of Selected Topics in Quantum Electronics, vol. 17, no. 6, pp. 1594-1602, 2011.
[57] D.-H. Hsieh et al., "Greatly improved carrier injection in GaN-based VCSEL by multiple quantum barrier electron blocking layer," in 2015 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD), 2015: IEEE, pp. 139-140.
[58] H.-c. Yu et al., "Progress and prospects of GaN-based VCSEL from near UV to green emission," Progress in Quantum Electronics, vol. 57, pp. 1-19, 2018.
[59] J.-T. Chu, H.-H. Yao, W.-D. Liang, T.-C. Lu, H.-C. Kuo, and S. Wang, "Lasing characteristics of GaN vertical-cavity surface-emitting lasers with dielectric DBRs fabricated by laser-lift-off technique," in Conference on Lasers and Electro-Optics, 2006: Optical Society of America, p. JWB23.
[60] T.-C. Lu et al., "Characteristics of GaN-based vertical cavity surface emitting lasers with hybrid mirrors," in CLEO: Science and Innovations, 2011: Optical Society of America, p. CFL5.
[61] C.-C. Shen et al., "Design and fabrication of the reliable gan based vertical-cavity surface-emitting laser via tunnel junction," Crystals, vol. 9, no. 4, p. 187, 2019.
[62] Y. Zhou et al., “High-index-contrast grating (HCG) and Its applications in optoelectronic devices,” in IEEE Journal on Selected Topics in Quantum Electronics, 2009, vol. 15, no. 5, pp. 1485–1499.
[63] M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics, vol. 1, no. 2, pp. 119–122, Feb. 2007.
[64] T. Sun, J. Kim, J. M. Yuk, A. Zettl, F. Wang, and C. Chang-hasnain, “Surface-normal electro-optic spatial light modulator using graphene integrated on a high-contrast grating resonator,” Opt. Express, vol. 24, no. 23, p. 26035, Nov. 2016.
[65] L. Zhu, W. Yang, and C. Chang-Hasnain, “Very high efficiency optical coupler for silicon nanophotonic waveguide and single mode optical fiber,” Opt. Express, vol. 25, no. 15, p. 18462, Jul. 2017.
[66] F. Lu, F. G. Sedgwick, V. Karagodsky, C. Chase, and C. J. Chang-Hasnain, “Planar high-numerical-aperture low-loss focusing reflectors and lenses using subwavelength high contrast gratings,” Opt. Express, vol. 18, no. 12, p. 12606, Jun. 2010.
[67] C. J. Chang-Hasnain and W. Yang, “High-contrast gratings for integrated optoelectronics,” Adv. Opt. Photonics, vol. 4, no. 3, p. 379, Sep. 2012.
[68] K. Li, Y. Rao, C. Chase, W. Yang, and C. J. Chang-Hasnain, “Monolithic high-contrast metastructure for beam-shaping VCSELs” Optica, Vol. 5, No. 1, January 2018.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊