Reference
1. Bose, B. K., Global Energy Scenario and Impact of Power Electronics in 21st Century. IEEE Trans. Ind. Electron. 2013, 60 (7), 2638-2651.
2. Alkama, R.; Cescatti, A., Biophysical climate impacts of recent changes in global forest cover. Science 2016, 351 (6273), 600-604.
3. Wei, N.; Quarterman, J.; Kim, S. R.; Cate, J. H. D.; Jin, Y.-S., Enhanced biofuel production through coupled acetic acid and xylose consumption by engineered yeast. Nat. Commun. 2013, 4 (1), 2580.
4. Sharma, S.; Ghoshal, S. K., Hydrogen the future transportation fuel: From production to applications. RENEW SUST ENERG REV 2015, 43, 1151-1158.
5. Silva, J. M.; Soria, M. A.; Madeira, L. M., Challenges and strategies for optimization of glycerol steam reforming process. RENEW SUST ENERG REV 2015, 42, 1187-1213.
6. Singh, S.; Jain, S.; Ps, V.; Tiwari, A. K.; Nouni, M. R.; Pandey, J. K.; Goel, S., Hydrogen: A sustainable fuel for future of the transport sector. RENEW SUST ENERG REV 2015, 51, 623-633.
7. Gandía, L. M.; Arzamendi, G.; Diéguez, P. M., Chapter 1 - Renewable Hydrogen Energy: An Overview. In Renewable Hydrogen Technologies, Gandía, L. M.; Arzamendi, G.; Diéguez, P. M., Eds. Elsevier: Amsterdam, 2013; pp 1-17.
8. Haryanto, A.; Fernando, S.; Murali, N.; Adhikari, S., Current Status of Hydrogen Production Techniques by Steam Reforming of Ethanol: A Review. Energy Fuels 2005, 19 (5), 2098-2106.
9. LeValley, T. L.; Richard, A. R.; Fan, M., The progress in water gas shift and steam reforming hydrogen production technologies – A review. Int. J. Hydrogen Energy 2014, 39 (30), 16983-17000.
10. Shah, K.; Besser, R. S., Key issues in the microchemical systems-based methanol fuel processor: Energy density, thermal integration, and heat loss mechanisms. J. Power Sources 2007, 166 (1), 177-193.
11. Baruah, R.; Dixit, M.; Basarkar, P.; Parikh, D.; Bhargav, A., Advances in ethanol autothermal reforming. RENEW SUST ENERG REV 2015, 51, 1345-1353.
12. Davidson, S. D.; Zhang, H.; Sun, J.; Wang, Y., Supported metal catalysts for alcohol/sugar alcohol steam reforming. Dalton Trans. 2014, 43 (31), 11782-11802.
13. Llorca, J.; Corberán, V. C.; Divins, N. J.; Fraile, Raquel O.; Taboada, E., Chapter 7 - Hydrogen from Bioethanol. In Renewable Hydrogen Technologies, Gandía, L. M.; Arzamendi, G.; Diéguez, P. M., Eds. Elsevier: Amsterdam, 2013; pp 135-169.
14. Pirez, C.; Capron, M.; Jobic, H.; Dumeignil, F.; Jalowiecki-Duhamel, L., Highly Efficient and Stable CeNiHZOY Nano-Oxyhydride Catalyst for H2 Production from Ethanol at Room Temperature. Angew. Chem. Int. Ed. 2011, 50 (43), 10193-10197.
15. Wang, T.; Ma, H.; Zeng, L.; Li, D.; Tian, H.; Xiao, S.; Gong, J., Highly loaded Ni-based catalysts for low temperature ethanol steam reforming. Nanoscale 2016, 8 (19), 10177-10187.
16. Sato, K.; Kawano, K.; Ito, A.; Takita, Y.; Nagaoka, K., Hydrogen Production from Bioethanol: Oxidative Steam Reforming of Aqueous Ethanol Triggered by Oxidation of Ni/Ce0.5Zr0.5O2−x at Low Temperature. ChemSusChem 2010, 3 (12), 1364-1366.
17. Hsieh, H.-C.; Chen, Y.-S.; Weng, S.-F.; Hsieh, Y.-P.; Lee, C.-S., Ruthenium substituted pyrochlore metal oxide catalysts Y2Ce2-xRuxO7-δ (x = 0–0.4) for oxidative steam reforming of ethanol. Int. J. Hydrogen Energy 2020.
18. Mondal, T.; Pant, K. K.; Dalai, A. K., Catalytic oxidative steam reforming of bio-ethanol for hydrogen production over Rh promoted Ni/CeO2–ZrO2 catalyst. Int. J. Hydrogen Energy 2015, 40 (6), 2529-2544.
19. Vargas, J. C.; Ivanova, S.; Thomas, S.; Roger, A.-C.; Pitchon, V., Influence of Gold on Ce-Zr-Co Fluorite-Type Mixed Oxide Catalysts for Ethanol Steam Reforming. 2012, 2 (1), 121-138.
20. de Lima, S. M.; da Silva, A. M.; da Costa, L. O. O.; Assaf, J. M.; Jacobs, G.; Davis, B. H.; Mattos, L. V.; Noronha, F. B., Evaluation of the performance of Ni/La2O3 catalyst prepared from LaNiO3 perovskite-type oxides for the production of hydrogen through steam reforming and oxidative steam reforming of ethanol. Appl. Catal., A 2010, 377 (1–2), 181-190.
21. Mattos, L. V.; Jacobs, G.; Davis, B. H.; Noronha, F. B., Production of Hydrogen from Ethanol: Review of Reaction Mechanism and Catalyst Deactivation. Chem. Rev. 2012, 112 (7), 4094-4123.
22. Moulijn, J. A.; van Diepen, A. E.; Kapteijn, F., Catalyst deactivation: is it predictable?: What to do? Appl. Catal., A 2001, 212 (1–2), 3-16.
23. Deluga, G. A.; Salge, J. R.; Schmidt, L. D.; Verykios, X. E., Renewable Hydrogen from Ethanol by Autothermal Reforming. Science 2004, 303 (5660), 993-997.
24. Ni, M.; Leung, D. Y. C.; Leung, M. K. H., A review on reforming bio-ethanol for hydrogen production. Int. J. Hydrogen Energy 2007, 32 (15), 3238-3247.
25. Fang, W.; Pirez, C.; Paul, S.; Jiménez-Ruiz, M.; Jobic, H.; Dumeignil, F.; Jalowiecki-Duhamel, L., Advanced functionalized Mg2AlNiXHZOY nano-oxyhydrides ex-hydrotalcites for hydrogen production from oxidative steam reforming of ethanol. Int. J. Hydrogen Energy 2016, 41 (34), 15443-15452.
26. Pirez, C.; Fang, W.; Capron, M.; Paul, S.; Jobic, H.; Dumeignil, F.; Jalowiecki-Duhamel, L., Steam reforming, partial oxidation and oxidative steam reforming for hydrogen production from ethanol over cerium nickel based oxyhydride catalyst. Appl. Catal., A 2016, 518, 78-86.
27. Tada, M.; Zhang, S.; Malwadkar, S.; Ishiguro, N.; Soga, J.-i.; Nagai, Y.; Tezuka, K.; Imoto, H.; Otsuka-Yao-Matsuo, S.; Ohkoshi, S.-i.; Iwasawa, Y., The Active Phase of Nickel/Ordered Ce2Zr2Ox Catalysts with a Discontinuity (x=7–8) in Methane Steam Reforming. 2012, 51 (37), 9361-9365.
28. Xu, W.; Liu, Z.; Johnston-Peck, A. C.; Senanayake, S. D.; Zhou, G.; Stacchiola, D.; Stach, E. A.; Rodriguez, J. A., Steam Reforming of Ethanol on Ni/CeO2: Reaction Pathway and Interaction between Ni and the CeO2 Support. ACS Catal. 2013, 3 (5), 975-984.
29. Jiang, B.-S.; Chang, R.; Lin, Y.-C., Partial Oxidation of Ethanol to Acetaldehyde over LaMnO3-Based Perovskites: A Kinetic Study. Ind. Eng. Chem. Res. 2013, 52 (1), 37-42.
30. Hou, Y.-C.; Ding, M.-W.; Liu, S.-K.; Wu, S.-K.; Lin, Y.-C., Ni-substituted LaMnO3 perovskites for ethanol oxidation. RSC Adv. 2014, 4 (11), 5329-5338.
31. Roy, B.; Leclerc, C. A., Study of preparation method and oxidization/reduction effect on the performance of nickel-cerium oxide catalysts for aqueous-phase reforming of ethanol. J. Power Sources 2015, 299, 114-124.
32. Liu, H.; Iglesia, E., Selective Oxidation of Methanol and Ethanol on Supported Ruthenium Oxide Clusters at Low Temperatures. J. Phys. Chem. B 2005, 109 (6), 2155-2163.
33. Idriss, H.; Scott, M.; Llorca, J.; Chan, S. C.; Chiu, W.; Sheng, P.-Y.; Yee, A.; Blackford, M. A.; Pas, S. J.; Hill, A. J.; Alamgir, F. M.; Rettew, R.; Petersburg, C.; Senanayake, S. D.; Barteau, M. A., A Phenomenological Study of the Metal–Oxide Interface: The Role of Catalysis in Hydrogen Production from Renewable Resources. ChemSusChem 2008, 1 (11), 905-910.
34. Hsia, Y.-Y.; Huang, Y.-C.; Zheng, H.-S.; Lai, Y.-L.; Hsu, Y.-J.; Luo, M.-F.; Wang, J.-H., Effects of O2 and H2O in the Oxidative Steam-Reforming Reaction of Ethanol on Rh Catalysts. J. Phys. Chem. C 2019, 123 (18), 11649-11661.
35. de Lima, S. M.; da Silva, A. M.; da Costa, L. O. O.; Graham, U. M.; Jacobs, G.; Davis, B. H.; Mattos, L. V.; Noronha, F. B., Study of catalyst deactivation and reaction mechanism of steam reforming, partial oxidation, and oxidative steam reforming of ethanol over Co/CeO2 catalyst. J. Catal. 2009, 268 (2), 268-281.
36. Wang, Z.; Wang, H.; Liu, Y., La1−xCaxFe1−xCoxO3—a stable catalyst for oxidative steam reforming of ethanol to produce hydrogen. RSC Adv. 2013, 3 (25), 10027-10036.
37. Huang, L.; Xie, J.; Chu, W.; Chen, R.; Chu, D.; Hsu, A. T., Iron-promoted nickel-based catalysts for hydrogen generation via auto-thermal reforming of ethanol. Catal. Commun. 2009, 10 (5), 502-508.
38. Bespalko, N.; Roger, A.-C.; Bussi, J., Comparative study of NiLaZr and CoLaZr catalysts for hydrogen production by ethanol steam reforming: Effect of CO2 injection to the gas reactants. Evidence of Rh role as a promoter. Appl. Catal., A 2011, 407 (1), 204-210.
39. Gaur, S.; Pakhare, D.; Wu, H.; Haynes, D. J.; Spivey, J. J., CO2 Reforming of CH4 over Ru-Substituted Pyrochlore Catalysts: Effects of Temperature and Reactant Feed Ratio. Energy Fuels 2012, 26 (4), 1989-1998.
40. Haynes, D. J.; Campos, A.; Berry, D. A.; Shekhawat, D.; Roy, A.; Spivey, J. J., Catalytic partial oxidation of a diesel surrogate fuel using an Ru-substituted pyrochlore. Catal. Today 2010, 155 (1–2), 84-91.
41. Ma, Y.; Wang, X.; You, X.; Liu, J.; Tian, J.; Xu, X.; Peng, H.; Liu, W.; Li, C.; Zhou, W.; Yuan, P.; Chen, X., Nickel-Supported on La2Sn2O7 and La2Zr2O7 Pyrochlores for Methane Steam Reforming: Insight into the Difference between Tin and Zirconium in the B Site of the Compound. 2014, 6 (12), 3366-3376.
42. Weng, S.-F.; Wang, Y.-H.; Lee, C.-S., Autothermal steam reforming of ethanol over La2Ce2−xRuxO7 (x=0–0.35) catalyst for hydrogen production. Appl. Catal., B 2013, 134-135, 359-366.
43. Ishizawa, N.; Ninomiya, K.; Wang, J., Structural evolution of La2Ti2O7 at elevated temperatures. Acta Crystallographica Section B 2019, 75 (2), 257-272.
44. Zhang, F. X.; Lian, J.; Becker, U.; Ewing, R. C.; Wang, L. M.; Hu, J.; Saxena, S. K., Structural change of layered perovskite La2Ti2O7 at high pressures. J. Solid State Chem. 2007, 180 (2), 571-576.
45. Hwang, D. W.; Kim, H. G.; Lee, J. S.; Kim, J.; Li, W.; Oh, S. H., Photocatalytic Hydrogen Production from Water over M-Doped La2Ti2O7 (M = Cr, Fe) under Visible Light Irradiation (λ > 420 nm). J. Phys. Chem. B 2005, 109 (6), 2093-2102.
46. Davis, R., Turnover rates on complex heterogeneous catalysts. 2018, 64 (11), 3778-3785.
47. Wang, Z.; Wang, C.; Chen, S.; Liu, Y., Co–Ni bimetal catalyst supported on perovskite-type oxide for steam reforming of ethanol to produce hydrogen. Int. J. Hydrogen Energy 2014, 39 (11), 5644-5652.
48. Hsieh, H.-C.; Chang, Y.-C.; Tsai, P.-W.; Lin, Y.-Y.; Chuang, Y.-C.; Sheu, H.-S.; Lee, C.-S., Metal substituted pyrochlore phase LixLa2−xCe1.8Ru0.2O7−δ (x = 0.0–0.6) as an effective catalyst for oxidative and auto-thermal steam reforming of ethanol. Catal. Sci. Technol. 2019, 9 (6), 1406-1419.
49. Hsieh, H.-C.; Tsai, P.-W.; Chang, Y.-C.; Weng, S.-F.; Sheu, H.-S.; Chuang, Y.-C.; Lee, C.-S., Oxidative steam reforming of ethanol over MxLa2−xCe1.8Ru0.2O7−δ (M = Mg, Ca) catalysts: effect of alkaline earth metal substitution and support on stability and activity. RSC Adv. 2019, 9 (68), 39932-39944.
50. Wang, F.; Cai, W.; Provendier, H.; Schuurman, Y.; Descorme, C.; Mirodatos, C.; Shen, W., Hydrogen production from ethanol steam reforming over Ir/CeO2 catalysts: Enhanced stability by PrOx promotion. Int. J. Hydrogen Energy 2011, 36 (21), 13566-13574.
51. Cai, W.; Wang, F.; Zhan, E.; Van Veen, A. C.; Mirodatos, C.; Shen, W., Hydrogen production from ethanol over Ir/CeO2 catalysts: A comparative study of steam reforming, partial oxidation and oxidative steam reforming. J. Catal. 2008, 257 (1), 96-107.
52. Chen, W.-T.; Chen, K.-B.; Wang, M.-F.; Weng, S.-F.; Lee, C.-S.; Lin, M. C., Enhanced catalytic activity of Ce1−xMxO2 (M = Ti, Zr, and Hf) solid solution with controlled morphologies. Chem. Commun. 2010, 46 (19), 3286-3288.
53. Hsiao, W.-I.; Lin, Y.-S.; Chen, Y.-C.; Lee, C.-S., The effect of the morphology of nanocrystalline CeO2 on ethanol reforming. Chem. Phys. Lett. 2007, 441 (4), 294-299.
54. de Lima, S. M.; da Cruz, I. O.; Jacobs, G.; Davis, B. H.; Mattos, L. V.; Noronha, F. B., Steam reforming, partial oxidation, and oxidative steam reforming of ethanol over Pt/CeZrO2 catalyst. J. Catal. 2008, 257 (2), 356-368.
55. Frusteri, F.; Freni, S.; Chiodo, V.; Donato, S.; Bonura, G.; Cavallaro, S., Steam and auto-thermal reforming of bio-ethanol over MgO and CeO2 Ni supported catalysts. Int. J. Hydrogen Energy 2006, 31 (15), 2193-2199.
56. de Lima, S. M.; da Silva, A. M.; da Costa, L. O. O.; Assaf, J. M.; Mattos, L. V.; Sarkari, R.; Venugopal, A.; Noronha, F. B., Hydrogen production through oxidative steam reforming of ethanol over Ni-based catalysts derived from La1−xCexNiO3 perovskite-type oxides. Appl. Catal., B 2012, 121-122, 1-9.
57. Morales, M.; Segarra, M., Steam reforming and oxidative steam reforming of ethanol over La0.6Sr0.4CoO3−δ perovskite as catalyst precursor for hydrogen production. Appl. Catal., A 2015, 502, 305-311.
58. Weng, S.-F.; Hsieh, H.-C.; Lee, C.-S., Hydrogen production from oxidative steam reforming of ethanol on nickel-substituted pyrochlore phase catalysts. Int. J. Hydrogen Energy 2017, 42 (5), 2849-2860.
59. 陳柔蒨。「以釕摻雜層狀鈣鈦礦氧化物作為乙醇氧化蒸氣重組產氫反應的觸媒」。碩士論文,國立交通大學應用化學系碩博士班,2016。.60. 黃聿愷。「鹼土金屬摻雜鑭系層狀鈣鈦礦氧化物觸媒 La2-xMxTi1.7Ru0.3O7 (M = Mg, Ca, Sr) 對乙醇氧化蒸氣重組產氫反應的影響」。碩士論文,國立交通大學應用化學系碩博士班,2019。.61. 張采楓。「金屬以及金屬氧化物觸媒在乙醇氧化蒸氣重組反應的研究」。碩士論文,國立交通大學應用化學系碩博士班,2016。.62. Wang, F.; Büchel, R.; Savitsky, A.; Zalibera, M.; Widmann, D.; Pratsinis, S. E.; Lubitz, W.; Schüth, F., In Situ EPR Study of the Redox Properties of CuO–CeO2 Catalysts for Preferential CO Oxidation (PROX). ACS Catal. 2016, 6 (6), 3520-3530.
63. Talik, E.; Novosselov, A.; Kulpa, M.; Pajaczkowska, A., Electronic structure of La 3d in gallate and aluminate single crystals. J. Alloys Compd. 2001, 321 (1), 24-26.
64. Zabinsky, S. I.; Rehr, J. J.; Ankudinov, A.; Albers, R. C.; Eller, M. J., Multiple-scattering calculations of x-ray-absorption spectra. Phys. Rev. B 1995, 52 (4), 2995-3009.
65. Ankudinov, A. L.; Rehr, J. J., Relativistic calculations of spin-dependent x-ray-absorption spectra. Phys. Rev. B 1997, 56 (4), R1712-R1716.
66. Newville, M.; Līviņš, P.; Yacoby, Y.; Rehr, J. J.; Stern, E. A., Near-edge x-ray-absorption fine structure of Pb: A comparison of theory and experiment. Phys. Rev. B 1993, 47 (21), 14126-14131.
67. Origin(Pro), Version Number (e.g. "Version 8.1"). OriginLab Corporation, Northampton, MA, USA.
68. Toby, B. H.; Von Dreele, R. B., GSAS-II: the genesis of a modern open-source all purpose crystallography software package. J. Appl. Crystallogr. 2013, 46 (2), 544-549.
69. Toby, B., EXPGUI, a graphical user interface for GSAS. J. Appl. Crystallogr. 2001, 34 (2), 210-213.
70. Coelho, A., TOPAS and TOPAS-Academic: an optimization program integrating computer algebra and crystallographic objects written in C++. J. Appl. Crystallogr. 2018, 51 (1), 210-218.
71. Paufler, P., R. A. Young (ed.). The Rietveld Method. International Union of Crystallography. Oxford University Press 1993. 298 p. Price £ 45.00. ISBN 0–19–855577–6. 1995, 30 (4), 494-494.
72. 翁聖豐。「利用具有燒綠石結構的觸媒經乙醇氧化蒸氣重組反應產氫」。博士論文,國立交通大學應用化學系碩博士班,2013。.73. 張原嘉。「鋰取代燒綠石觸媒和載體對乙醇氧化蒸氣重組反應的影響」。碩士論文,國立交通大學應用化學系碩博士班,2015。.74. 蔡品雯。「利用在燒綠石結構中摻雜鎂和鈣的觸媒經乙醇氧化蒸氣重組反應產氫」。碩士論文,國立交通大學應用化學系碩博士班,2014。.75. Preux, N.; Rolle, A.; Merlin, C.; Benamira, M.; Malys, M.; Estournes, C.; Rubbens, A.; Vannier, R.-N., La3TaO7 derivatives with Weberite structure type: Possible electrolytes for solid oxide fuel cells and high temperature electrolysers. C R Chim 2010, 13 (11), 1351-1358.
76. Hwang, J.; Rao, R. R.; Giordano, L.; Katayama, Y.; Yu, Y.; Shao-Horn, Y., Perovskites in catalysis and electrocatalysis. 2017, 358 (6364), 751-756.
77. Grimaud, A.; Diaz-Morales, O.; Han, B.; Hong, W. T.; Lee, Y.-L.; Giordano, L.; Stoerzinger, K. A.; Koper, M. T. M.; Shao-Horn, Y., Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution. Nat. Chem. 2017, 9 (5), 457-465.
78. Risch, M.; Grimaud, A.; May, K. J.; Stoerzinger, K. A.; Chen, T. J.; Mansour, A. N.; Shao-Horn, Y., Structural Changes of Cobalt-Based Perovskites upon Water Oxidation Investigated by EXAFS. J. Phys. Chem. C 2013, 117 (17), 8628-8635.
79. Khalifah, P.; Huang, Q.; Ho, D. M.; Zandbergen, H. W.; Cava, R. J., La7Ru3O18 and La4.87Ru2O12: Geometric Frustration in Two Closely Related Structures with Isolated RuO6 Octahedra. J. Solid State Chem. 2000, 155 (1), 189-197.
80. Hiley, C. I.; Lees, M. R.; Fisher, J. M.; Thompsett, D.; Agrestini, S.; Smith, R. I.; Walton, R. I., Ruthenium(V) Oxides from Low-Temperature Hydrothermal Synthesis. 2014, 53 (17), 4423-4427.
81. Sardar, K.; Petrucco, E.; Hiley, C. I.; Sharman, J. D. B.; Wells, P. P.; Russell, A. E.; Kashtiban, R. J.; Sloan, J.; Walton, R. I., Water-Splitting Electrocatalysis in Acid Conditions Using Ruthenate-Iridate Pyrochlores. 2014, 53 (41), 10960-10964.
82. Ozawa, M.; Inaguma, M.; Takahashi, M.; Kataoka, F.; Krüger, A.; Ōsawa, E., Preparation and Behavior of Brownish, Clear Nanodiamond Colloids. 2007, 19 (9), 1201-1206.
83. Krueger, A.; Ozawa, M.; Jarre, G.; Liang, Y.; Stegk, J.; Lu, L., Deagglomeration and functionalisation of detonation diamond. 2007, 204 (9), 2881-2887.
84. Pentecost, A.; Gour, S.; Mochalin, V.; Knoke, I.; Gogotsi, Y., Deaggregation of Nanodiamond Powders Using Salt- and Sugar-Assisted Milling. ACS Applied Materials & Interfaces 2010, 2 (11), 3289-3294.
85. Zeng, M.; Xiao, Y.; Liu, J.; Yang, K.; Fu, L., Exploring Two-Dimensional Materials toward the Next-Generation Circuits: From Monomer Design to Assembly Control. Chem. Rev. 2018, 118 (13), 6236-6296.