跳到主要內容

臺灣博碩士論文加值系統

(44.211.239.1) 您好!臺灣時間:2023/01/31 05:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝和諶
研究生(外文):Hsieh, Ho-Chen
論文名稱:金屬及金屬氧化物觸媒在氧化乙醇蒸氣重組產氫的研究
論文名稱(外文):Oxidative Steam Reforming of Ethanol on Metal and Metal Oxide Catalysts for Hydrogen Production
指導教授:李積琛許火順
指導教授(外文):Lee, Chi-ShenSheu, Hwo-Shuenn
口試委員:李積琛許火順陳登銘王禎翰鍾博文許益瑞
口試委員(外文):Lee, Chi-ShenSheu, Hwo-ShuennChen, Teng-MingWang, Jeng-HanChung, Po-WenHsu, I-Jui
口試日期:2020-07-22
學位類別:博士
校院名稱:國立交通大學
系所名稱:工學院加速器光源科技與應用學位學程
學門:自然科學學門
學類:其他自然科學學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:217
中文關鍵詞:金屬及金屬氧化物觸媒氧化乙醇蒸氣重組產氫燒綠石結構層狀鈣鈦礦結構X光吸收光譜X光粉末繞射
外文關鍵詞:Metal and metal oxide catalystsOxidative steam reforming of ethanolHydrogen productionPyrochlore structureLayer-perovskite structureX-ray absorption spectraX-ray diffraction
相關次數:
  • 被引用被引用:0
  • 點閱點閱:57
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
乙醇可以用作生產清潔能源的載體,在產生氫氣具有巨大的潛力,減少使用化石燃料產生的二氧化碳排放。乙醇氧化蒸汽重組氣(OSRE)是產生氫氣方法之一,主要是將乙醇的蒸汽重組反應(SRE)和乙醇的部分氧化(POE)整合在一起。我們的研究中,主要以乙醇氧化蒸汽重組氣(OSRE)產生氫氣為主。首先,研究觸媒材料金屬Ni和NiO對載體材料及對產生氫氣效能的影響。我們使用了Al2O3、ZrO2不同載體材料及實驗室製造載體材料La2Zr2O7(LZO),且將金屬Ni和NiO含浸在載體上作為活性觸媒使用。我們藉由國家同步輻射研究中心的X光射線:粉末X光繞射實驗(PXRD)和X光吸收光譜(XAS)進行研究、鑑定製備的觸媒材料。在Ni/LZO和NiO/LZO的還原和氧化環境下進行XAS-XRD實驗,發現Ni的氧化價態是影響反應催化活性的重要因素之一。在NiO/LZO觸媒在乙醇自熱重整反應(ATRE)反應,在長時間110個小時的反應催化活性,其平均乙醇轉化率和氫氣產率分別為99(1)%和56(1)%。在NiO和LZO之間的觸媒-載體相互作用力抑制了金屬Ni的聚集和碳沉積生成,相較於Ni/LZO催化劑相比,NiO/LZO表現出更好的長時間的穩定性。其次,使用同步加速器XRD和XAS研究固溶體材料,La2Ce2-xNixO7-δ(x = 0-0.45)和AxLa2-xCe1.8Ru0.2O7-δ(A = Li+,Mg2+和Ca2+)燒綠石結構材料。經由Rietveld refinement和臨場XANES對材料La2Ce2-xNixO7-δ(x = 0-0.45)進行原子及電子結構鑑定。發現純燒綠石結構的觸媒材料具有均勻分散的Ni2+活性金屬,相較在結構外含有少量NiO的觸媒具有更佳的穩定性。本研究發現主要結構分解和少量NiO團聚,是造成OSRE反應中的焦炭生成,而失去反應活性的原因。在對於Ru取代的燒綠石結構研究,AxLa2-xCe1.8Ru0.2O7-δ(A = Li+,Mg2+和Ca2+)的結構鑑定指出Ru離子具有高氧化價態存在,可以歸因於Ce4+和Ce3+之間的電荷重新分佈而且Ru離子可藉由摻入的Li+,Mg2+和Ca2+離子電荷補償,達到結構中的電荷平衡。在燒綠石結構中Mg2+和Ca2+的取代,主要藉由氧空缺生成達成電荷價態平衡。實驗結果發現,高價態的活性金屬Ru離子和本實驗室製造的LZO載體材料,促進了乙醇的OSR和ATR的催化反應活性和穩定性。最後,在研究層狀鈣鈦礦氧化物La2Ti2-xRuxO7±δ(LTRO)中金屬Ru取代的影響。在釕和氧的吸收光譜發現釕與氧之間的作用力隨著摻雜而增加。經由粉末繞射和Rietveld refinement實驗,發現在還原過程中Ru離子的還原,主要釋放位於平板中心和邊緣位置的Ru離子的氧原子1、6、12位置。在還原過程中,第一步還原指出,平板中心高氧化態的Ru離子可以有效的吸附乙醇,以進行初始脫氫反應,生成乙醛和氫氣。然後,通過第二步還原過程,平板中心和邊緣位置的Ru離子則以進行碳鍵裂解和氫氣的產生為主。
Hydrogen production from ethanol has a great potential to be utilized as a clean energy carrier for reducing CO2 emission from fossil fuel consumption. Oxidative steam reforming of ethanol (OSRE) is one of hydrogen production processes that integrates steam reforming reaction of ethanol (SRE) and partial oxidation of ethanol (POE) to minimize the energy input. In this study, we studied catalytic ethanol of conversion on OSRE with varies catalysts and supporting materials. The first part contains the investigations on the Ni and NiO catalysts. The activity of metallic Ni and NiO supported on Al2O3, ZrO2 and lab-made supporting materials La2Zr2O7 (LZO) were studied. The as-prepared catalyst was characterized by powder X-ray diffraction (PXRD) and X-ray absorption spectroscopy (XAS) using X-ray source in National Synchrotron Radiation Research Center (Taiwan). The combined XAS-XRD experiments under reductive and oxidative conditions of Ni/LZO and NiO/LZO indicated that the oxidation states of nickel was an important factor to affect catalytic reactivity. The time on stream test of autothermal reforming of ethanol reaction (ATRE) on NiO/LZO catalyst exhibited stable catalytic performance for 110 hours with average ethanol conversion rate and hydrogen yield of 99(1)% and 56(1)%, respectively. The strong catalyst-support interaction between NiO and LZO suppressed the aggregation of metallic Ni and carbon deposition. The metal oxide catalyst NiO/LZO exhibited better long-term stability compared to Ni/LZO catalyst reduced particle aggregation and carbon deposition. Secondly, pyrochlore structures of La2Ce2-xNixO7-δ (x = 0-0.45) and AxLa2-xCe1.8Ru0.2O7-δ (A = Li+, Mg2+, and Ca2+) were studied by using synchrotron XRD and XAS. The materials La2Ce2-xNixO7-δ (x = 0-0.45) were characterized by Rietveld Refinement and in-situ XANES to realize the electronic structure. A catalyst with a pure pyrochlore phase contained evenly distributed nickel atoms, and was more stable than a catalyst containing a small amount of NiO. For the Ru-substituted pyrochlore structure, the series of AxLa2-xCe1.8Ru0.2O7-δ (A = Li+, Mg2+, and Ca2+) catalysts contain high oxidation states of Ru ions and the charge redistribution between Ce and Ru ions to compensate the incorporated Li+, Mg2+ and Ca2+ ions. The substituted of Mg2+ and Ca2+ in the pyrochlore structure created oxygen vacancies and high oxidation states of Ru ions, and the catalysts supported on LZO show high performance and stability in OSR and ATR of ethanol. Finally, the effect of the metal substitution in the layered perovskite oxides La2Ti2-xRuxO7±δ (LTRO) were investigated to realize the effect of site preference on active metal Ru ions to OSRE activity. The relationship between structure and activity were revealed by using synchrotron XRD and XAS and the oxidation-reduction procedure. With the in-situ diffraction experiment and Rietveld refinements, the distribution of Ru ions located in center and edge positions of slab, and oxygen atoms in the O1, O6, and O12 sites were released because of the reduction from Run+ ions during the reduction process. The high oxidation state Run+ ions could effectively adsorb ethanol to initialize dehydrogenation reaction to form acetaldehyde and subsequent hydrogen production. Then, the second reduction step was active for decomposition of carbon species and hydrogen production.
摘 要....................................i
Abstract.......................................iii
Acknowledgements...............................v
Contents.......................................vi
List of Tables.................................vii
List of Figures................................viii
Chapter 1 Introduction.........................1
1.1. Ethanol conversion process................1
1.2. Mechanism of the oxidative steam reforming of ethanol........................................5
1.3. Literature review.........................8
1.4. Challenges and strategies for oxidative steam reforming of ethanol...........................20
1.5. Motivation................................28
Chapter 2 Experimental.........................33
2.1 Materials..................................33
2.2 Apparatus..................................34
2.3 Synthesis..................................35
2.4. Catalytic activity........................36
2.5. Characterization..........................38
2.6. Calculation of selectivity in the OSRE reaction ...............................................46
Chapter 3 Results and Discussion...............49
3.1 Nickel and nickel oxide based catalyst.....49
3.2 Pyrochlore metal oxide catalysts...........107
3.3 Layer-perovskite structure La2Ti2-xRuxO7±δ (x = 0.0-0.4)...........................................173
Chapter 4 Conclusion and perspectives..........197
4.1 Conclusion.................................197
4.2 Perspectives...............................199
Reference......................................211
Reference
1. Bose, B. K., Global Energy Scenario and Impact of Power Electronics in 21st Century. IEEE Trans. Ind. Electron. 2013, 60 (7), 2638-2651.
2. Alkama, R.; Cescatti, A., Biophysical climate impacts of recent changes in global forest cover. Science 2016, 351 (6273), 600-604.
3. Wei, N.; Quarterman, J.; Kim, S. R.; Cate, J. H. D.; Jin, Y.-S., Enhanced biofuel production through coupled acetic acid and xylose consumption by engineered yeast. Nat. Commun. 2013, 4 (1), 2580.
4. Sharma, S.; Ghoshal, S. K., Hydrogen the future transportation fuel: From production to applications. RENEW SUST ENERG REV 2015, 43, 1151-1158.
5. Silva, J. M.; Soria, M. A.; Madeira, L. M., Challenges and strategies for optimization of glycerol steam reforming process. RENEW SUST ENERG REV 2015, 42, 1187-1213.
6. Singh, S.; Jain, S.; Ps, V.; Tiwari, A. K.; Nouni, M. R.; Pandey, J. K.; Goel, S., Hydrogen: A sustainable fuel for future of the transport sector. RENEW SUST ENERG REV 2015, 51, 623-633.
7. Gandía, L. M.; Arzamendi, G.; Diéguez, P. M., Chapter 1 - Renewable Hydrogen Energy: An Overview. In Renewable Hydrogen Technologies, Gandía, L. M.; Arzamendi, G.; Diéguez, P. M., Eds. Elsevier: Amsterdam, 2013; pp 1-17.
8. Haryanto, A.; Fernando, S.; Murali, N.; Adhikari, S., Current Status of Hydrogen Production Techniques by Steam Reforming of Ethanol:  A Review. Energy Fuels 2005, 19 (5), 2098-2106.
9. LeValley, T. L.; Richard, A. R.; Fan, M., The progress in water gas shift and steam reforming hydrogen production technologies – A review. Int. J. Hydrogen Energy 2014, 39 (30), 16983-17000.
10. Shah, K.; Besser, R. S., Key issues in the microchemical systems-based methanol fuel processor: Energy density, thermal integration, and heat loss mechanisms. J. Power Sources 2007, 166 (1), 177-193.
11. Baruah, R.; Dixit, M.; Basarkar, P.; Parikh, D.; Bhargav, A., Advances in ethanol autothermal reforming. RENEW SUST ENERG REV 2015, 51, 1345-1353.
12. Davidson, S. D.; Zhang, H.; Sun, J.; Wang, Y., Supported metal catalysts for alcohol/sugar alcohol steam reforming. Dalton Trans. 2014, 43 (31), 11782-11802.
13. Llorca, J.; Corberán, V. C.; Divins, N. J.; Fraile, Raquel O.; Taboada, E., Chapter 7 - Hydrogen from Bioethanol. In Renewable Hydrogen Technologies, Gandía, L. M.; Arzamendi, G.; Diéguez, P. M., Eds. Elsevier: Amsterdam, 2013; pp 135-169.
14. Pirez, C.; Capron, M.; Jobic, H.; Dumeignil, F.; Jalowiecki-Duhamel, L., Highly Efficient and Stable CeNiHZOY Nano-Oxyhydride Catalyst for H2 Production from Ethanol at Room Temperature. Angew. Chem. Int. Ed. 2011, 50 (43), 10193-10197.
15. Wang, T.; Ma, H.; Zeng, L.; Li, D.; Tian, H.; Xiao, S.; Gong, J., Highly loaded Ni-based catalysts for low temperature ethanol steam reforming. Nanoscale 2016, 8 (19), 10177-10187.
16. Sato, K.; Kawano, K.; Ito, A.; Takita, Y.; Nagaoka, K., Hydrogen Production from Bioethanol: Oxidative Steam Reforming of Aqueous Ethanol Triggered by Oxidation of Ni/Ce0.5Zr0.5O2−x at Low Temperature. ChemSusChem 2010, 3 (12), 1364-1366.
17. Hsieh, H.-C.; Chen, Y.-S.; Weng, S.-F.; Hsieh, Y.-P.; Lee, C.-S., Ruthenium substituted pyrochlore metal oxide catalysts Y2Ce2-xRuxO7-δ (x = 0–0.4) for oxidative steam reforming of ethanol. Int. J. Hydrogen Energy 2020.
18. Mondal, T.; Pant, K. K.; Dalai, A. K., Catalytic oxidative steam reforming of bio-ethanol for hydrogen production over Rh promoted Ni/CeO2–ZrO2 catalyst. Int. J. Hydrogen Energy 2015, 40 (6), 2529-2544.
19. Vargas, J. C.; Ivanova, S.; Thomas, S.; Roger, A.-C.; Pitchon, V., Influence of Gold on Ce-Zr-Co Fluorite-Type Mixed Oxide Catalysts for Ethanol Steam Reforming. 2012, 2 (1), 121-138.
20. de Lima, S. M.; da Silva, A. M.; da Costa, L. O. O.; Assaf, J. M.; Jacobs, G.; Davis, B. H.; Mattos, L. V.; Noronha, F. B., Evaluation of the performance of Ni/La2O3 catalyst prepared from LaNiO3 perovskite-type oxides for the production of hydrogen through steam reforming and oxidative steam reforming of ethanol. Appl. Catal., A 2010, 377 (1–2), 181-190.
21. Mattos, L. V.; Jacobs, G.; Davis, B. H.; Noronha, F. B., Production of Hydrogen from Ethanol: Review of Reaction Mechanism and Catalyst Deactivation. Chem. Rev. 2012, 112 (7), 4094-4123.
22. Moulijn, J. A.; van Diepen, A. E.; Kapteijn, F., Catalyst deactivation: is it predictable?: What to do? Appl. Catal., A 2001, 212 (1–2), 3-16.
23. Deluga, G. A.; Salge, J. R.; Schmidt, L. D.; Verykios, X. E., Renewable Hydrogen from Ethanol by Autothermal Reforming. Science 2004, 303 (5660), 993-997.
24. Ni, M.; Leung, D. Y. C.; Leung, M. K. H., A review on reforming bio-ethanol for hydrogen production. Int. J. Hydrogen Energy 2007, 32 (15), 3238-3247.
25. Fang, W.; Pirez, C.; Paul, S.; Jiménez-Ruiz, M.; Jobic, H.; Dumeignil, F.; Jalowiecki-Duhamel, L., Advanced functionalized Mg2AlNiXHZOY nano-oxyhydrides ex-hydrotalcites for hydrogen production from oxidative steam reforming of ethanol. Int. J. Hydrogen Energy 2016, 41 (34), 15443-15452.
26. Pirez, C.; Fang, W.; Capron, M.; Paul, S.; Jobic, H.; Dumeignil, F.; Jalowiecki-Duhamel, L., Steam reforming, partial oxidation and oxidative steam reforming for hydrogen production from ethanol over cerium nickel based oxyhydride catalyst. Appl. Catal., A 2016, 518, 78-86.
27. Tada, M.; Zhang, S.; Malwadkar, S.; Ishiguro, N.; Soga, J.-i.; Nagai, Y.; Tezuka, K.; Imoto, H.; Otsuka-Yao-Matsuo, S.; Ohkoshi, S.-i.; Iwasawa, Y., The Active Phase of Nickel/Ordered Ce2Zr2Ox Catalysts with a Discontinuity (x=7–8) in Methane Steam Reforming. 2012, 51 (37), 9361-9365.
28. Xu, W.; Liu, Z.; Johnston-Peck, A. C.; Senanayake, S. D.; Zhou, G.; Stacchiola, D.; Stach, E. A.; Rodriguez, J. A., Steam Reforming of Ethanol on Ni/CeO2: Reaction Pathway and Interaction between Ni and the CeO2 Support. ACS Catal. 2013, 3 (5), 975-984.
29. Jiang, B.-S.; Chang, R.; Lin, Y.-C., Partial Oxidation of Ethanol to Acetaldehyde over LaMnO3-Based Perovskites: A Kinetic Study. Ind. Eng. Chem. Res. 2013, 52 (1), 37-42.
30. Hou, Y.-C.; Ding, M.-W.; Liu, S.-K.; Wu, S.-K.; Lin, Y.-C., Ni-substituted LaMnO3 perovskites for ethanol oxidation. RSC Adv. 2014, 4 (11), 5329-5338.
31. Roy, B.; Leclerc, C. A., Study of preparation method and oxidization/reduction effect on the performance of nickel-cerium oxide catalysts for aqueous-phase reforming of ethanol. J. Power Sources 2015, 299, 114-124.
32. Liu, H.; Iglesia, E., Selective Oxidation of Methanol and Ethanol on Supported Ruthenium Oxide Clusters at Low Temperatures. J. Phys. Chem. B 2005, 109 (6), 2155-2163.
33. Idriss, H.; Scott, M.; Llorca, J.; Chan, S. C.; Chiu, W.; Sheng, P.-Y.; Yee, A.; Blackford, M. A.; Pas, S. J.; Hill, A. J.; Alamgir, F. M.; Rettew, R.; Petersburg, C.; Senanayake, S. D.; Barteau, M. A., A Phenomenological Study of the Metal–Oxide Interface: The Role of Catalysis in Hydrogen Production from Renewable Resources. ChemSusChem 2008, 1 (11), 905-910.
34. Hsia, Y.-Y.; Huang, Y.-C.; Zheng, H.-S.; Lai, Y.-L.; Hsu, Y.-J.; Luo, M.-F.; Wang, J.-H., Effects of O2 and H2O in the Oxidative Steam-Reforming Reaction of Ethanol on Rh Catalysts. J. Phys. Chem. C 2019, 123 (18), 11649-11661.
35. de Lima, S. M.; da Silva, A. M.; da Costa, L. O. O.; Graham, U. M.; Jacobs, G.; Davis, B. H.; Mattos, L. V.; Noronha, F. B., Study of catalyst deactivation and reaction mechanism of steam reforming, partial oxidation, and oxidative steam reforming of ethanol over Co/CeO2 catalyst. J. Catal. 2009, 268 (2), 268-281.
36. Wang, Z.; Wang, H.; Liu, Y., La1−xCaxFe1−xCoxO3—a stable catalyst for oxidative steam reforming of ethanol to produce hydrogen. RSC Adv. 2013, 3 (25), 10027-10036.
37. Huang, L.; Xie, J.; Chu, W.; Chen, R.; Chu, D.; Hsu, A. T., Iron-promoted nickel-based catalysts for hydrogen generation via auto-thermal reforming of ethanol. Catal. Commun. 2009, 10 (5), 502-508.
38. Bespalko, N.; Roger, A.-C.; Bussi, J., Comparative study of NiLaZr and CoLaZr catalysts for hydrogen production by ethanol steam reforming: Effect of CO2 injection to the gas reactants. Evidence of Rh role as a promoter. Appl. Catal., A 2011, 407 (1), 204-210.
39. Gaur, S.; Pakhare, D.; Wu, H.; Haynes, D. J.; Spivey, J. J., CO2 Reforming of CH4 over Ru-Substituted Pyrochlore Catalysts: Effects of Temperature and Reactant Feed Ratio. Energy Fuels 2012, 26 (4), 1989-1998.
40. Haynes, D. J.; Campos, A.; Berry, D. A.; Shekhawat, D.; Roy, A.; Spivey, J. J., Catalytic partial oxidation of a diesel surrogate fuel using an Ru-substituted pyrochlore. Catal. Today 2010, 155 (1–2), 84-91.
41. Ma, Y.; Wang, X.; You, X.; Liu, J.; Tian, J.; Xu, X.; Peng, H.; Liu, W.; Li, C.; Zhou, W.; Yuan, P.; Chen, X., Nickel-Supported on La2Sn2O7 and La2Zr2O7 Pyrochlores for Methane Steam Reforming: Insight into the Difference between Tin and Zirconium in the B Site of the Compound. 2014, 6 (12), 3366-3376.
42. Weng, S.-F.; Wang, Y.-H.; Lee, C.-S., Autothermal steam reforming of ethanol over La2Ce2−xRuxO7 (x=0–0.35) catalyst for hydrogen production. Appl. Catal., B 2013, 134-135, 359-366.
43. Ishizawa, N.; Ninomiya, K.; Wang, J., Structural evolution of La2Ti2O7 at elevated temperatures. Acta Crystallographica Section B 2019, 75 (2), 257-272.
44. Zhang, F. X.; Lian, J.; Becker, U.; Ewing, R. C.; Wang, L. M.; Hu, J.; Saxena, S. K., Structural change of layered perovskite La2Ti2O7 at high pressures. J. Solid State Chem. 2007, 180 (2), 571-576.
45. Hwang, D. W.; Kim, H. G.; Lee, J. S.; Kim, J.; Li, W.; Oh, S. H., Photocatalytic Hydrogen Production from Water over M-Doped La2Ti2O7 (M = Cr, Fe) under Visible Light Irradiation (λ > 420 nm). J. Phys. Chem. B 2005, 109 (6), 2093-2102.
46. Davis, R., Turnover rates on complex heterogeneous catalysts. 2018, 64 (11), 3778-3785.
47. Wang, Z.; Wang, C.; Chen, S.; Liu, Y., Co–Ni bimetal catalyst supported on perovskite-type oxide for steam reforming of ethanol to produce hydrogen. Int. J. Hydrogen Energy 2014, 39 (11), 5644-5652.
48. Hsieh, H.-C.; Chang, Y.-C.; Tsai, P.-W.; Lin, Y.-Y.; Chuang, Y.-C.; Sheu, H.-S.; Lee, C.-S., Metal substituted pyrochlore phase LixLa2−xCe1.8Ru0.2O7−δ (x = 0.0–0.6) as an effective catalyst for oxidative and auto-thermal steam reforming of ethanol. Catal. Sci. Technol. 2019, 9 (6), 1406-1419.
49. Hsieh, H.-C.; Tsai, P.-W.; Chang, Y.-C.; Weng, S.-F.; Sheu, H.-S.; Chuang, Y.-C.; Lee, C.-S., Oxidative steam reforming of ethanol over MxLa2−xCe1.8Ru0.2O7−δ (M = Mg, Ca) catalysts: effect of alkaline earth metal substitution and support on stability and activity. RSC Adv. 2019, 9 (68), 39932-39944.
50. Wang, F.; Cai, W.; Provendier, H.; Schuurman, Y.; Descorme, C.; Mirodatos, C.; Shen, W., Hydrogen production from ethanol steam reforming over Ir/CeO2 catalysts: Enhanced stability by PrOx promotion. Int. J. Hydrogen Energy 2011, 36 (21), 13566-13574.
51. Cai, W.; Wang, F.; Zhan, E.; Van Veen, A. C.; Mirodatos, C.; Shen, W., Hydrogen production from ethanol over Ir/CeO2 catalysts: A comparative study of steam reforming, partial oxidation and oxidative steam reforming. J. Catal. 2008, 257 (1), 96-107.
52. Chen, W.-T.; Chen, K.-B.; Wang, M.-F.; Weng, S.-F.; Lee, C.-S.; Lin, M. C., Enhanced catalytic activity of Ce1−xMxO2 (M = Ti, Zr, and Hf) solid solution with controlled morphologies. Chem. Commun. 2010, 46 (19), 3286-3288.
53. Hsiao, W.-I.; Lin, Y.-S.; Chen, Y.-C.; Lee, C.-S., The effect of the morphology of nanocrystalline CeO2 on ethanol reforming. Chem. Phys. Lett. 2007, 441 (4), 294-299.
54. de Lima, S. M.; da Cruz, I. O.; Jacobs, G.; Davis, B. H.; Mattos, L. V.; Noronha, F. B., Steam reforming, partial oxidation, and oxidative steam reforming of ethanol over Pt/CeZrO2 catalyst. J. Catal. 2008, 257 (2), 356-368.
55. Frusteri, F.; Freni, S.; Chiodo, V.; Donato, S.; Bonura, G.; Cavallaro, S., Steam and auto-thermal reforming of bio-ethanol over MgO and CeO2 Ni supported catalysts. Int. J. Hydrogen Energy 2006, 31 (15), 2193-2199.
56. de Lima, S. M.; da Silva, A. M.; da Costa, L. O. O.; Assaf, J. M.; Mattos, L. V.; Sarkari, R.; Venugopal, A.; Noronha, F. B., Hydrogen production through oxidative steam reforming of ethanol over Ni-based catalysts derived from La1−xCexNiO3 perovskite-type oxides. Appl. Catal., B 2012, 121-122, 1-9.
57. Morales, M.; Segarra, M., Steam reforming and oxidative steam reforming of ethanol over La0.6Sr0.4CoO3−δ perovskite as catalyst precursor for hydrogen production. Appl. Catal., A 2015, 502, 305-311.
58. Weng, S.-F.; Hsieh, H.-C.; Lee, C.-S., Hydrogen production from oxidative steam reforming of ethanol on nickel-substituted pyrochlore phase catalysts. Int. J. Hydrogen Energy 2017, 42 (5), 2849-2860.
59. 陳柔蒨。「以釕摻雜層狀鈣鈦礦氧化物作為乙醇氧化蒸氣重組產氫反應的觸媒」。碩士論文,國立交通大學應用化學系碩博士班,2016。.
60. 黃聿愷。「鹼土金屬摻雜鑭系層狀鈣鈦礦氧化物觸媒 La2-xMxTi1.7Ru0.3O7 (M = Mg, Ca, Sr) 對乙醇氧化蒸氣重組產氫反應的影響」。碩士論文,國立交通大學應用化學系碩博士班,2019。.
61. 張采楓。「金屬以及金屬氧化物觸媒在乙醇氧化蒸氣重組反應的研究」。碩士論文,國立交通大學應用化學系碩博士班,2016。.
62. Wang, F.; Büchel, R.; Savitsky, A.; Zalibera, M.; Widmann, D.; Pratsinis, S. E.; Lubitz, W.; Schüth, F., In Situ EPR Study of the Redox Properties of CuO–CeO2 Catalysts for Preferential CO Oxidation (PROX). ACS Catal. 2016, 6 (6), 3520-3530.
63. Talik, E.; Novosselov, A.; Kulpa, M.; Pajaczkowska, A., Electronic structure of La 3d in gallate and aluminate single crystals. J. Alloys Compd. 2001, 321 (1), 24-26.
64. Zabinsky, S. I.; Rehr, J. J.; Ankudinov, A.; Albers, R. C.; Eller, M. J., Multiple-scattering calculations of x-ray-absorption spectra. Phys. Rev. B 1995, 52 (4), 2995-3009.
65. Ankudinov, A. L.; Rehr, J. J., Relativistic calculations of spin-dependent x-ray-absorption spectra. Phys. Rev. B 1997, 56 (4), R1712-R1716.
66. Newville, M.; Līviņš, P.; Yacoby, Y.; Rehr, J. J.; Stern, E. A., Near-edge x-ray-absorption fine structure of Pb: A comparison of theory and experiment. Phys. Rev. B 1993, 47 (21), 14126-14131.
67. Origin(Pro), Version Number (e.g. "Version 8.1"). OriginLab Corporation, Northampton, MA, USA.
68. Toby, B. H.; Von Dreele, R. B., GSAS-II: the genesis of a modern open-source all purpose crystallography software package. J. Appl. Crystallogr. 2013, 46 (2), 544-549.
69. Toby, B., EXPGUI, a graphical user interface for GSAS. J. Appl. Crystallogr. 2001, 34 (2), 210-213.
70. Coelho, A., TOPAS and TOPAS-Academic: an optimization program integrating computer algebra and crystallographic objects written in C++. J. Appl. Crystallogr. 2018, 51 (1), 210-218.
71. Paufler, P., R. A. Young (ed.). The Rietveld Method. International Union of Crystallography. Oxford University Press 1993. 298 p. Price £ 45.00. ISBN 0–19–855577–6. 1995, 30 (4), 494-494.
72. 翁聖豐。「利用具有燒綠石結構的觸媒經乙醇氧化蒸氣重組反應產氫」。博士論文,國立交通大學應用化學系碩博士班,2013。.
73. 張原嘉。「鋰取代燒綠石觸媒和載體對乙醇氧化蒸氣重組反應的影響」。碩士論文,國立交通大學應用化學系碩博士班,2015。.
74. 蔡品雯。「利用在燒綠石結構中摻雜鎂和鈣的觸媒經乙醇氧化蒸氣重組反應產氫」。碩士論文,國立交通大學應用化學系碩博士班,2014。.
75. Preux, N.; Rolle, A.; Merlin, C.; Benamira, M.; Malys, M.; Estournes, C.; Rubbens, A.; Vannier, R.-N., La3TaO7 derivatives with Weberite structure type: Possible electrolytes for solid oxide fuel cells and high temperature electrolysers. C R Chim 2010, 13 (11), 1351-1358.
76. Hwang, J.; Rao, R. R.; Giordano, L.; Katayama, Y.; Yu, Y.; Shao-Horn, Y., Perovskites in catalysis and electrocatalysis. 2017, 358 (6364), 751-756.
77. Grimaud, A.; Diaz-Morales, O.; Han, B.; Hong, W. T.; Lee, Y.-L.; Giordano, L.; Stoerzinger, K. A.; Koper, M. T. M.; Shao-Horn, Y., Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution. Nat. Chem. 2017, 9 (5), 457-465.
78. Risch, M.; Grimaud, A.; May, K. J.; Stoerzinger, K. A.; Chen, T. J.; Mansour, A. N.; Shao-Horn, Y., Structural Changes of Cobalt-Based Perovskites upon Water Oxidation Investigated by EXAFS. J. Phys. Chem. C 2013, 117 (17), 8628-8635.
79. Khalifah, P.; Huang, Q.; Ho, D. M.; Zandbergen, H. W.; Cava, R. J., La7Ru3O18 and La4.87Ru2O12: Geometric Frustration in Two Closely Related Structures with Isolated RuO6 Octahedra. J. Solid State Chem. 2000, 155 (1), 189-197.
80. Hiley, C. I.; Lees, M. R.; Fisher, J. M.; Thompsett, D.; Agrestini, S.; Smith, R. I.; Walton, R. I., Ruthenium(V) Oxides from Low-Temperature Hydrothermal Synthesis. 2014, 53 (17), 4423-4427.
81. Sardar, K.; Petrucco, E.; Hiley, C. I.; Sharman, J. D. B.; Wells, P. P.; Russell, A. E.; Kashtiban, R. J.; Sloan, J.; Walton, R. I., Water-Splitting Electrocatalysis in Acid Conditions Using Ruthenate-Iridate Pyrochlores. 2014, 53 (41), 10960-10964.
82. Ozawa, M.; Inaguma, M.; Takahashi, M.; Kataoka, F.; Krüger, A.; Ōsawa, E., Preparation and Behavior of Brownish, Clear Nanodiamond Colloids. 2007, 19 (9), 1201-1206.
83. Krueger, A.; Ozawa, M.; Jarre, G.; Liang, Y.; Stegk, J.; Lu, L., Deagglomeration and functionalisation of detonation diamond. 2007, 204 (9), 2881-2887.
84. Pentecost, A.; Gour, S.; Mochalin, V.; Knoke, I.; Gogotsi, Y., Deaggregation of Nanodiamond Powders Using Salt- and Sugar-Assisted Milling. ACS Applied Materials & Interfaces 2010, 2 (11), 3289-3294.
85. Zeng, M.; Xiao, Y.; Liu, J.; Yang, K.; Fu, L., Exploring Two-Dimensional Materials toward the Next-Generation Circuits: From Monomer Design to Assembly Control. Chem. Rev. 2018, 118 (13), 6236-6296.
電子全文 電子全文(網際網路公開日期:20250817)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. Ru取代偏好對層狀鈣鈦礦A2La2Ti3-xRuxO10 (A = K, Na, Li) 在乙醇氧化蒸氣重組產氫催化反應活性的影響
2. 氧化鎳負載於鋯酸稀土金屬氧化物Ln2Zr2O7(Ln= La,Nd,Gd,Ho)對於乙醇氧化蒸氣重組反應之影響
3. 以頂空注射器結合氣相層析質譜儀進行食品中二氧化硫殘留檢測及方法確效評估
4. 鋯酸鑭製程與顆粒大小對以鋯酸鑭為載體的氧化鎳乙醇轉氫觸媒活性的影響
5. 前驅物導向新穎四元硒化物Ge7Sb18In6Se41與Ge6Sb8Bi4Se23的合成、晶體結構與熱電性質分析
6. 長照機構側壁型細水霧滅火試驗效能 評估分析
7. 利用聲波制動線上液滴進行微量分析與開發分段液體微接點表面探針與質譜分析之聯用
8. 超導電流輸入激子約瑟夫森結的週期性孤子解
9. 合成含唾液酸多醣的方法學研究: 1.快速合成2,7-脫水唾液酸衍生物及其開環反應開法; 2. 藉由反應性控制的可編程唾液酸醣鏈結反應
10. 釔、釕摻雜螢石結構氧化物觸媒 YxZr1-x-yRuyO2-δ (x=0.33-0.57, y=0.01-0.13)及超音波輔助球磨對乙醇氧化蒸氣重組產氫反應的影響
11. 全新鐵-鍺-銻-硒四元相塊硫鉍銀礦之合成、結構鑑定及熱電性質分析
12. 青年創業與鄰里公共: 以苗栗市的青創商家討論地方公共空間的生成
13. 我國貨櫃危險品運輸法規與修訂建議之研究
14. 科技廠基礎設施複合式人為恐攻應變之研究
15. 高深寬比矽蝕刻均勻度之改善研究