|
[1] C. J. E. T. Maxfield, http://www. eetimes. com/design/programmable-logic/4370596/2D-vs–2-5D-vs–3D-ICs-101, "2D vs. 2.5 D vs. 3D ICs 101," 2012. [2] 國立交通大學材料所 吳耀銓教授 材料接合技術導論 "上課講義" [3] C. Wang and T. Suga, "A novel room-temperature wafer direct bonding method by fluorine containing plasma activation," in 2010 Proceedings 60th Electronic Components and Technology Conference (ECTC), 2010, pp. 303-308: IEEE. [4] H. Takagi, K. Kikuchi, R. Maeda, T. Chung, and T. J. A. p. l. Suga, "Surface activated bonding of silicon wafers at room temperature," vol. 68, no. 16, pp. 2222-2224, 1996. [5] L. Peng, H. Li, D. F. Lim, S. Gao, and C. S. J. I. T. o. E. D. Tan, "High-density 3-D interconnect of Cu–Cu contacts with enhanced contact resistance by self-assembled monolayer (SAM) passivation," vol. 58, no. 8, pp. 2500-2506, 2011. [6] Y.-P. Huang et al., "Novel Cu-to-Cu Bonding With Ti Passivation at 180$^{\circ}{\rm C} $ in 3-D Integration," vol. 34, no. 12, pp. 1551-1553, 2013. [7] A. K. Panigrahi, S. Bonam, T. Ghosh, S. G. Singh, and S. R. K. J. M. L. Vanjari, "Ultra-thin Ti passivation mediated breakthrough in high quality Cu-Cu bonding at low temperature and pressure," vol. 169, pp. 269-272, 2016. [8] Y.-P. Huang, Y.-S. Chien, R.-N. Tzeng, and K.-N. J. I. T. o. E. D. Chen, "Demonstration and electrical performance of Cu–Cu bonding at 150 C with Pd passivation," vol. 62, no. 8, pp. 2587-2592, 2015. [9] A. K. Panigrahi, T. Ghosh, S. R. K. Vanjari, and S. G. Singh, "Dual Damascene Compatible, Copper Rich Alloy Based Surface Passivation Mechanism for Achieving Cu-Cu Bonding at 150 Degree C for 3D IC Integration," in 2017 IEEE 67th Electronic Components and Technology Conference (ECTC), 2017, pp. 982-988: IEEE. [10] C.-M. Liu et al., "Low-temperature direct copper-to-copper bonding enabled by creep on (111) surfaces of nanotwinned Cu," vol. 5, p. 9734, 2015. [11] C. Tan, R. Reif, N. Theodore, and S. J. A. P. L. Pozder, "Observation of interfacial void formation in bonded copper layers," vol. 87, no. 20, p. 201909, 2005. [12] Q.-Y. Tong and U. Goesele, Semiconductor wafer bonding: science and technology. John Wiley, 1999. [13] 張勝傑 and 吳耀銓, "砷化鎵/砷化鎵以及砷化鎵/鍺晶圓接合介面形態與電性研究," 2009. P 16 [14] W. D. Kingery, "Introduction to ceramics," 1976. [15] J. Haisma, G. J. M. S. Spierings, and E. R. Reports, "Contact bonding, including direct-bonding in a historical and recent context of materials science and technology, physics and chemistry: historical review in a broader scope and comparative outlook," vol. 37, no. 1-2, pp. 1-60, 2002. [16] R. J. J. P. o. t. R. S. o. L. S. A.-M. Strutt and P. Sciences, "A study of glass surfaces in optical contact," vol. 156, no. 888, pp. 326-349, 1936. [17] G. Wailis and D. J. J. A. P. Pomerantz, "Field assisted giass-metal bonding," vol. 40, pp. 3946-3949, 1969. [18] J. J. A. P. L. Lasky, "Wafer bonding for silicon‐on‐insulator technologies," vol. 48, no. 1, pp. 78-80, 1986. [19] M. Shimbo, K. Furukawa, K. Fukuda, and K. J. J. o. A. P. Tanzawa, "Silicon‐to‐silicon direct bonding method," vol. 60, no. 8, pp. 2987-2989, 1986. [20] Q.-Y. Tong, X.-L. Xu, and H. J. E. L. Shen, "Diffusion and oxide viscous flow mechanism in SDB process and silicon wafer rapid thermal bonding," vol. 26, no. 11, pp. 697-699, 1990. [21] H. Takagi, R. Maeda, T. R. Chung, T. J. S. Suga, and A. A. Physical, "Low-temperature direct bonding of silicon and silicon dioxide by the surface activation method," vol. 70, no. 1-2, pp. 164-170, 1998. [22] M. J. J. A. P. Shimbo, "K, Furukawa, K, Fukuda and K. Tanzawa," vol. 60, no. 8, p. 2987, 1986. [23] Q. Y. Tong, W. Kim, T. H. Lee, U. J. E. Gösele, and s.-s. letters, "Low vacuum wafer bonding," vol. 1, no. 1, pp. 52-53, 1998. [24] 彭顯智 and 吳耀銓, "不同旋轉角度之砷化鎵晶圓接合," 2003. P 9 [25] 陳一凡 and 吳耀銓, "P 型砷化鎵晶圓接合電性與界面形態之研究," 2004. P 17 [26] 張峻瑋, "三維積體電路中銅銅接合的孔洞變化," 2019. P 42 [27] M. J. A. M. Ashby, "A first report on sintering diagrams," vol. 22, no. 3, pp. 275-289, 1974. [28] Q. Y. Tong, E. Schmidt, U. Gösele, and M. J. A. p. l. Reiche, "Hydrophobic silicon wafer bonding," vol. 64, no. 5, pp. 625-627, 1994. [29] P. M. Agrawal, B. M. Rice, and D. L. J. S. S. Thompson, "Predicting trends in rate parameters for self-diffusion on FCC metal surfaces," vol. 515, no. 1, pp. 21-35, 2002. [30] 賴亮宇, "三維積體電路中銅銅接合介面人造孔洞的演化," 2019. P 42 [31] B. Derby and E. J. M. S. Wallach, "Theoretical model for diffusion bonding," vol. 16, no. 1, pp. 49-56, 1982. [32] P. Gondcharton, F. Baudin, L. Benaissa, and B. J. M. O. P. L. A. Imbert, "Mechanisms overview of thermocompression process for copper metal bonding," vol. 1559, 2013. [33] B. Derby and E. J. J. o. m. s. Wallach, "Diffusion bonds in copper," vol. 19, no. 10, pp. 3140-3148, 1984. [34] P. Gondcharton, B. Imbert, L. Benaissa, M. J. E. J. o. S. S. S. Verdier, and Technology, "Voiding phenomena in copper-copper bonded structures: role of creep," vol. 4, no. 3, pp. P77-P82, 2015. [35] K. Kumar, S. Suresh, M. Chisholm, J. Horton, and P. J. A. M. Wang, "Deformation of electrodeposited nanocrystalline nickel," vol. 51, no. 2, pp. 387-405, 2003.
|