跳到主要內容

臺灣博碩士論文加值系統

(44.220.251.236) 您好!臺灣時間:2024/10/04 10:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳國龍
研究生(外文):Wu, Guo-Long
論文名稱:三維積體電路中鈀鈍化層對銅接合介面人造孔洞演化的影響
論文名稱(外文):The Effect of Pd Passivation Layer on the Evolution of Artificial Voids at the 3DIC Copper Bonding Interface
指導教授:吳耀銓
指導教授(外文):Wu, Yew-Chung
口試委員:陳智林昆霖
口試委員(外文):Chen, ChihLin, Kun-Lin
口試日期:2019-10-07
學位類別:碩士
校院名稱:國立交通大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:108
語文別:中文
論文頁數:70
中文關鍵詞:銅金屬接合孔洞癒合
外文關鍵詞:copperbonding3dicvoid
相關次數:
  • 被引用被引用:1
  • 點閱點閱:232
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
隨著科技發展,晶圓接合的技術日新月異,過去之2DIC之IC設計漸漸被3DIC科技所取代,其中金屬接合蓬勃發展,常見其用於3DIC製作元件。然而,在3DIC晶圓或是金屬堆疊技術之中,仍存在著許多問題需要改進及加強,而其中特別是元件或是晶圓在堆疊時彼此產生了孔洞及氧化物。這些孔洞及氧化物大大的影響了元件的電性、壽命、與可靠度等等…。因此本實驗主要目的則為利用鈀鈍化層作為鈍化金屬的效果,使之不容易形成氧化層,再使用人造孔洞模擬其接合時的空孔,探討其圖案化金屬銅接合時產生的孔洞隨著熱處理之條件變化,觀察其對孔洞形貌的影響以及孔洞演化的現象。
本實驗分為四個步驟,分別為試片製備、晶圓接合、高溫退火、試片研磨及觀察等。在試片製備的步驟,利用人工製作的孔洞來模擬其真實孔洞在不同條件下的癒合表現,接著利用熱處理參數的不同,針對相同溫度下不同時間接合對人造空孔擴散表現的影響,實驗的最後,再利用改善薄膜好壞及品質條件,以期達到更低溫、更少時間的孔洞癒合變化,而實驗結果將以聚焦離子數以及電子束顯微系統進行分析。
With the development of technology, the technology of wafer bonding is changing rapidly.2DIC design was gradually replaced by 3DIC technology, in which metal joints technology flourished, and it is commonly used in 3DIC production components. However, there are still many problems that need to be improved and strengthened in the 3DIC wafer or metal stack technology, especially when the components or wafers are stacked, they create voids and oxides.The voids may influence the electrical measurement, and the performance, and also the reliability of device.The main purpose of this experiment is to use the palladium passivation layer as a passivation metal,preventing from forming an oxide layer, then use artificial voids to similate the real voids during the jointing. Thus we can investigate the influence of void morphology upon different conditions of the heat treatment
The experiment will be divided into four issues to be discuss, sample preparation, wafer bonding, wafer annealing, and wafer milling/observation results. During the preparation of the test pieces, the artificial voids are used to simulate the healing behavior of the real void under different heat conditions. Then, using the different heat treatment parameters to discuss the effect of joints on the diffusion performance of artificial at different temperatures.
In the end of the experiment, we improved the quality of film to achieve a lower temperature, less time voids healing changing.
摘要 i
ABSTRACT ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 viii
第一章 序論 1
1.1 前言 1
1.2 二維晶片(2DIC)到三維晶片(3DIC)的進程 2
1.3 三維矽穿孔技術 (3DTSV) 6
1.4 銅接合簡介 9
1.5 研究動機 13
第二章 文獻回顧 14
2.1 初步接合(Wafer Bonding, WB)之簡介 14
2.2 晶圓接合(Wafer Bonding, WB)之驅動力 17
2.3 晶圓接合(Wafer Bonding, WB)之歷史進程 20
2.4 晶圓接合(Wafer Bonding, WB)之技術種類 21
2.5 晶圓接合(Wafer Bonding, WB)之接合變數 22
2.6 晶圓接合(Wafer Bonding, WB)之優點 26
第三章 實驗方法 28
3.1 實驗架構 28
3.2 工作試片製備 28
3.3 黃光微影步驟 29
3.4 切割試片 29
3.5 清洗試片 30
3.6 金屬濺鍍 31
3.7 室溫接合 32
3.8 高溫退火流程 33
3.9 微結構分析 34
第四章 結果與討論 36
4.1具空孔之圖案化試片接合分析 36
4.1.1 試片製備樣貌 36
4.1.2 初步接合條件 37
4.1.3 高溫退火條件 37
4.1.4 孔洞擴散分析 40
4.2 無空孔圖案化試片接合 51
4.2.1 試片製備樣貌 51
4.2.2 接合退火條件 51
4.2.3 孔洞擴散分析 52
4.3 低高度無空孔之圖案化試片接合 59
4.4 孔洞形貌分析 61
第五章 結論與未來工作 67
5.1 結論 67
5.2 未來工作 67
參考資料 68
[1] C. J. E. T. Maxfield, http://www. eetimes. com/design/programmable-logic/4370596/2D-vs–2-5D-vs–3D-ICs-101, "2D vs. 2.5 D vs. 3D ICs 101," 2012.
[2] 國立交通大學材料所 吳耀銓教授 材料接合技術導論 "上課講義"
[3] C. Wang and T. Suga, "A novel room-temperature wafer direct bonding method by fluorine containing plasma activation," in 2010 Proceedings 60th Electronic Components and Technology Conference (ECTC), 2010, pp. 303-308: IEEE.
[4] H. Takagi, K. Kikuchi, R. Maeda, T. Chung, and T. J. A. p. l. Suga, "Surface activated bonding of silicon wafers at room temperature," vol. 68, no. 16, pp. 2222-2224, 1996.
[5] L. Peng, H. Li, D. F. Lim, S. Gao, and C. S. J. I. T. o. E. D. Tan, "High-density 3-D interconnect of Cu–Cu contacts with enhanced contact resistance by self-assembled monolayer (SAM) passivation," vol. 58, no. 8, pp. 2500-2506, 2011.
[6] Y.-P. Huang et al., "Novel Cu-to-Cu Bonding With Ti Passivation at 180$^{\circ}{\rm C} $ in 3-D Integration," vol. 34, no. 12, pp. 1551-1553, 2013.
[7] A. K. Panigrahi, S. Bonam, T. Ghosh, S. G. Singh, and S. R. K. J. M. L. Vanjari, "Ultra-thin Ti passivation mediated breakthrough in high quality Cu-Cu bonding at low temperature and pressure," vol. 169, pp. 269-272, 2016.
[8] Y.-P. Huang, Y.-S. Chien, R.-N. Tzeng, and K.-N. J. I. T. o. E. D. Chen, "Demonstration and electrical performance of Cu–Cu bonding at 150 C with Pd passivation," vol. 62, no. 8, pp. 2587-2592, 2015.
[9] A. K. Panigrahi, T. Ghosh, S. R. K. Vanjari, and S. G. Singh, "Dual Damascene Compatible, Copper Rich Alloy Based Surface Passivation Mechanism for Achieving Cu-Cu Bonding at 150 Degree C for 3D IC Integration," in 2017 IEEE 67th Electronic Components and Technology Conference (ECTC), 2017, pp. 982-988: IEEE.
[10] C.-M. Liu et al., "Low-temperature direct copper-to-copper bonding enabled by creep on (111) surfaces of nanotwinned Cu," vol. 5, p. 9734, 2015.
[11] C. Tan, R. Reif, N. Theodore, and S. J. A. P. L. Pozder, "Observation of interfacial void formation in bonded copper layers," vol. 87, no. 20, p. 201909, 2005.
[12] Q.-Y. Tong and U. Goesele, Semiconductor wafer bonding: science and technology. John Wiley, 1999.
[13] 張勝傑 and 吳耀銓, "砷化鎵/砷化鎵以及砷化鎵/鍺晶圓接合介面形態與電性研究," 2009. P 16
[14] W. D. Kingery, "Introduction to ceramics," 1976.
[15] J. Haisma, G. J. M. S. Spierings, and E. R. Reports, "Contact bonding, including direct-bonding in a historical and recent context of materials science and technology, physics and chemistry: historical review in a broader scope and comparative outlook," vol. 37, no. 1-2, pp. 1-60, 2002.
[16] R. J. J. P. o. t. R. S. o. L. S. A.-M. Strutt and P. Sciences, "A study of glass surfaces in optical contact," vol. 156, no. 888, pp. 326-349, 1936.
[17] G. Wailis and D. J. J. A. P. Pomerantz, "Field assisted giass-metal bonding," vol. 40, pp. 3946-3949, 1969.
[18] J. J. A. P. L. Lasky, "Wafer bonding for silicon‐on‐insulator technologies," vol. 48, no. 1, pp. 78-80, 1986.
[19] M. Shimbo, K. Furukawa, K. Fukuda, and K. J. J. o. A. P. Tanzawa, "Silicon‐to‐silicon direct bonding method," vol. 60, no. 8, pp. 2987-2989, 1986.
[20] Q.-Y. Tong, X.-L. Xu, and H. J. E. L. Shen, "Diffusion and oxide viscous flow mechanism in SDB process and silicon wafer rapid thermal bonding," vol. 26, no. 11, pp. 697-699, 1990.
[21] H. Takagi, R. Maeda, T. R. Chung, T. J. S. Suga, and A. A. Physical, "Low-temperature direct bonding of silicon and silicon dioxide by the surface activation method," vol. 70, no. 1-2, pp. 164-170, 1998.
[22] M. J. J. A. P. Shimbo, "K, Furukawa, K, Fukuda and K. Tanzawa," vol. 60, no. 8, p. 2987, 1986.
[23] Q. Y. Tong, W. Kim, T. H. Lee, U. J. E. Gösele, and s.-s. letters, "Low vacuum wafer bonding," vol. 1, no. 1, pp. 52-53, 1998.
[24] 彭顯智 and 吳耀銓, "不同旋轉角度之砷化鎵晶圓接合," 2003. P 9
[25] 陳一凡 and 吳耀銓, "P 型砷化鎵晶圓接合電性與界面形態之研究," 2004. P 17
[26] 張峻瑋, "三維積體電路中銅銅接合的孔洞變化," 2019. P 42
[27] M. J. A. M. Ashby, "A first report on sintering diagrams," vol. 22, no. 3, pp. 275-289, 1974.
[28] Q. Y. Tong, E. Schmidt, U. Gösele, and M. J. A. p. l. Reiche, "Hydrophobic silicon wafer bonding," vol. 64, no. 5, pp. 625-627, 1994.
[29] P. M. Agrawal, B. M. Rice, and D. L. J. S. S. Thompson, "Predicting trends in rate parameters for self-diffusion on FCC metal surfaces," vol. 515, no. 1, pp. 21-35, 2002.
[30] 賴亮宇, "三維積體電路中銅銅接合介面人造孔洞的演化," 2019. P 42
[31] B. Derby and E. J. M. S. Wallach, "Theoretical model for diffusion bonding," vol. 16, no. 1, pp. 49-56, 1982.
[32] P. Gondcharton, F. Baudin, L. Benaissa, and B. J. M. O. P. L. A. Imbert, "Mechanisms overview of thermocompression process for copper metal bonding," vol. 1559, 2013.
[33] B. Derby and E. J. J. o. m. s. Wallach, "Diffusion bonds in copper," vol. 19, no. 10, pp. 3140-3148, 1984.
[34] P. Gondcharton, B. Imbert, L. Benaissa, M. J. E. J. o. S. S. S. Verdier, and Technology, "Voiding phenomena in copper-copper bonded structures: role of creep," vol. 4, no. 3, pp. P77-P82, 2015.
[35] K. Kumar, S. Suresh, M. Chisholm, J. Horton, and P. J. A. M. Wang, "Deformation of electrodeposited nanocrystalline nickel," vol. 51, no. 2, pp. 387-405, 2003.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top