跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/07 19:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張詠善
研究生(外文):Chang, Yung-Shan
論文名稱:提升半導體奈米結構應用於太陽光催化產氫效率的有效策略
論文名稱(外文):Effective strategies for enhancing performance of semiconductor nanostructures toward solar hydrogen evolution
指導教授:徐雍鎣
指導教授(外文):Hsu, Yung-Jung
口試委員:黃暄益鄭紹良薛承輝張淑閔林彥谷
口試委員(外文):Huang, Hsuan-YiCheng, Shao-LiangHsueh, Chun-HwayChang, Sue-MinLin, Yan-Gu
學位類別:博士
校院名稱:國立交通大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:77
中文關鍵詞:半導體光催化光電產氫二氧化鈦
外文關鍵詞:semiconductorphotocatalystphotoelectrochemical hydrogen evolutiontitanium dioxide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:164
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
TiO2奈米線陣列在許多年以前已被廣泛應用在光電化學電解水中的光電極,但由於諸多的問題,如:載子利用效率差,表面反應動力學慢和太陽光利用效率差,始終無法應用在現實生活中。因此,尋找合適的改質材料來解決這些問題是TiO2光電極廣泛應用的關鍵。
在第一個工作中,我們開發了一種簡單且具有成本效益的方法來沉積NiO在TiO2的表面上,該方法結合了單步驟陽極電沉積和低溫退火處理。在沉積完氧化鎳之後,TiO2的光電流密度從0.15 mA/cm2增加到0.5 mA/cm2,比原始TiO2提高了三倍以上。另外,對於其性能增強的基本機制,我們也通過用時間分辨螢光光譜和電化學阻抗圖譜來闡明。
在第二項工作中,TiO2奈米線陣列先通過巰基丙酸改質後,再依序沉積CdSe量子點與石墨烯量子點在TiO2奈米線陣列的表面上,進而形成TiO2奈米線/CdSe/石墨烯量子點的複合結構。對於TiO2/CdSe複合材料,由於相對能帶結構的關係,光激發電子將從CdSe轉移到TiO2,而光激發電洞則在相反方向上傳輸。該特徵改善了電荷分離,但因為電洞的累積,CdSe會有嚴重的光腐蝕現象。石墨烯量子點具有明確的HOMO-LUMO的能帶結構,當與半導體奈米結構結合時可以幫助電荷載流子轉移。隨著在CdSe上沉積石墨烯量子點,光激發電子從石墨烯量子點轉移到CdSe然後轉移到TiO2,而電洞則從TiO2轉移到CdSe,最後轉移到石墨烯。這種電荷轉移不僅提高了載流子利用效率,而且提高了光催化應用的長期穩定性。
在第三項工作中,我們在氫摻雜的板鈦礦TiO2奈米子彈表面沉積了CdS與CdSe並研究了它們的光電化學電解水性能。與未摻雜的板鈦礦TiO2相比,氫摻雜TiO2/CdS/CdSe複合材料表現出大大增強的光電流,此大大增強的光電流導因於表面的硫化鎘與硒化鎘提高了電荷轉移的效率。此外,氫原子摻雜到TiO2中會產生氧空缺,提供額外的電荷轉移途徑並阻止電荷複合,也有利於提高光電化學電解水的性能。基於載子動力學數據,我們進一步開發了TiO2/CdS/CdSe和氫摻雜TiO2/CdS/CdSe的載子轉移模型。這項工作的結果有助於理解板鈦礦TiO2複合材料系統中的載子轉移動力學以及改善太陽能光電化學轉換的效率。
另外,時間分辨螢光光譜和電化學阻抗圖譜是兩個討論載子傳輸動力學非常強大的技術,這篇論文中也非常大量地使用這兩個技術,透過這兩個技術,我們可以更進一步了解載子傳輸動力學,也為突破目前光電化學電解水的瓶頸貢獻了一分小小的心力。
TiO2 nanowires arrays have been widely used as a photoelectrode in photoelectrochemical (PEC) water splitting, but the performance remains mediocre due to the poor carrier utilization efficiency, slow reaction kinetics at surface and poor sun light utilization. Finding a suitable modifier material to address the issues is the key to the widespread utilization of TiO2 photoelectrodes.
In the first work, a simple and cost-effective approach which combines one-step anodic electrodeposition with a low-temperature post-annealing treatment is developed for depositing NiO on the surface of TiO2. Upon NiO decoration, the photocurrent density of TiO2 was increased from 0.15 mA/cm2 to 0.5 mA/cm2, more than three times enhancement over pristine TiO2. The underlying mechanism for the performance enhancement is elucidated by inspecting the charge transfer dynamics of the samples with time-resolved photoluminescence (TRPL) and electrochemical impedance spectroscopy (EIS).
In the second work, the samples were prepared by modifying TiO2 nanowires with mercaptopropionic acid before CdSe nanoparticles were deposited. Subsequently, graphene quantum dots (GQDs) were attached to the surface of CdSe, resulting in the formation of TiO2/CdSe/GQDs composite structures. For TiO2/CdSe composites, due to the relative band alignment, the photoexcited electrons will transfer from CdSe to TiO2 and the photogenerated holes are transported in the opposite direction. This feature improved charge separation but caused severe photocorrosion at CdSe. GQDs possess well-defined HOMO-LUMO band structure and can mediate charge carrier transfer when combined with semiconductor nanostructures. With the introduction of GQDs on CdSe, the photoexcited electrons transferred from graphene quantum dots to CdSe and then to TiO2, while the photogenerated holes were transported from TiO2 to CdSe and finally to graphene. This vectorial charge transfer not only enhanced the carrier utilization efficiency but also improved the long-term stability for photocatalytic applications.
In the third work, we have synthesized CdS/CdSe co-sensitized brookite TiO2 nanostructures with hydrogen doping (H:TiO2/CdS/CdSe) in a facile solution reaction and studied their PEC performances. Compared to undoped brookite TiO2, the H:TiO2/CdS/CdSe composites exhibit much enhanced photocurrent generation, which originates from the improved charge transfer kinetics endowed by hydrogen doping and sensitization. Besides, the hydrogen doping into TiO2 generates oxygen vacancy states, providing additional charge transfer pathway and prohibiting charge recombination, beneficial for enhancing the PEC performances as well. Based on the charge dynamics data, we further develop charge transfer models for TiO2/CdS/CdSe and H:TiO2/CdS/CdSe. The findings from this work can help understanding the charge transfer dynamics in brookite TiO2-based composite systems as well as designing versatile photoelectrodes for solar energy conversion.
Additionally, TRPL and EIS were measured to quantitatively analyze the charge transfer events across the interface. The samples were further employed as the photoanode for PEC water splitting. Through systematic understanding of charge dynamics and their correlation with photocatalytic properties, insights into the mechanism behind the enhanced performance in water splitting of TiO2 was unveiled.
中文摘要 I
Abstract IV
Chapter 1. Background and Introduction 1
1.1 Background 1
1.2 Introduction 2
1.3 Time-resolved photoluminescence 7
1.4. Electrochemical impedance spectroscopy 9
Chapter 2. Motivation 11
Chapter 3. NiO-decorated TiO2 Photoelectrodes for Enhanced PEC Hydrogen Evolution 13
3.1. Introduction 13
3.2. Experimental section 14
3.3. Results and Discussion 16
3.4. Conclusions 22
3.5. Acknowledgement 22
Chapter 4. Interfacial Charge Dynamics of TiO2/CdSe/Graphene Quantum Dots Composite Photocatalysts 23
4.1. Introduction 23
4.2. Experimental section 24
4.3. Results and Discussion 27
4.2.4. Conclusion 41
Chapter 5. CdS/CdSe co-sensitized brookite H:TiO2 nanostructures: charge carrier dynamics and PEC hydrogen generation 42
5.1. Introduction 42
5.2. Experimental Section 43
5.3. Results and Discussion 47
5.4. Conclusion 59
5.5. Acknowledgements 60
Chapter 6. Summary and Outlook 61
References 64
[1] https://e-info.org.tw/node/217125.
[2] https://www.freeimages.com/photo/summer-leaves-1-1370632.
[3] https://pttnews.cc/061a53b5c1.
[4] https://en.wikipedia.org/wiki/Photosynthesis.
[5] X. An, H. Lan, R. Liu, H. Liu, J. Qu, New J. Chem. 2017, 41, 7966-7971.
[6] M. Dokic´a, H. S. Soo, Chem. Commun. 2018, 54, 6554-6572.
[7] K. Maeda, M. Higashi, B. Siritanaratkul, R. Abe, K. Domen, J. Am. Chem. Soc. 2011, 133, 12334-12337.
[8] Y. J. Kim, G. J. Lee, S. Kim, J.-W. Min, S. Y. Jeong, Y. J. Yoo, S. Lee, Y. M. Song, ACS Appl. Mater. Interfaces 2018, 10, 28672-28678.
[9] G. Peng, J. Albero, H. Garcia, M. Shalom, Angew. Chem. Int. Ed. 2018, 57, 15807-15811.
[10] K. M. Alam, P. Kumar, P. Kar, U. K. Thakur, S. Zeng, K. Cuib, K. Shankar, Nanoscale Adv. 2019, 1, 1460-1471.
[11] F. F. Abdi, L. Han, A. H. M. Smets, M. Zeman, B. Dam, R. Krol, Nat. Commun. 2013, 4, 2195-2202.
[12] X. Zhou, H. Dong, Chem. Cat. Chem. 2019, 11, 3688-3715.
[13] Z. Kang, H. Si, S. Zhang, J. Wu, Y. Sun, Q. Liao, Z. Zhang, Y. Zhang, Adv. Funct. Mater. 2019, 29, 1808032, 1-19.
[14] C. Jiang, S. J. A. Moniz, A. Wang, T. Zhang, J. Tang, Chem. Soc. Rev. 2017, 46, 445-460.
[15] T. Yao, X. An, H. Han, J. Q. Chen, C. Li, Adv. Energy Mater. 2018, 1800210, 1-36.
[16] A. Hellman, B. Wang, Inorganics 2017, 5, 37, 1-27.
[17] H. Yang, J. Miao, S. Hung, F. Huo, H. Chen, B. Liu, ACS Nano 2014, 8, 10, 10403-10413.
[18] T. W. Kim, K.-S. Choi, Science 2014, 343, 990-994.
[19] J. Tang, J. R. Durrant, D. R. Klug, J. Am. Chem. Soc. 2008, 130, 13885-13891.
[20] C. M. Wolff, P. D. Frischmann, M. Schulze, B. J. Bohn, R. Wein, P. Livadas, M. T. Carlson, F. Jäckel, J. Feldmann, F. Würthner, J. K. Stolarczyk, Nat. Energy 2018, 3, 862-869.
[21] A. Tanaka, K. Teramura, S. Hosokawa, H. Kominamic, T. Tanaka, Chem. Sci. 2017, 8, 2574-2580.
[22] Z. Zheng, W. Xie, B. Huang, Y. Dai, Chem. Eur. J. 2018, 24, 18322 -18333.
[23] F.-X. Xiao, B. Liu, Adv. Mater. Interfaces 2018, 5, 1701098, 1-21.
[24] Q. Zhang, D. T. Gangadharan, Y. Liu, Z. Xu, M. Chaker, D. Ma, J. Materiomics 2017, 3, 33-50.
[25] H. Li, Z. Li, Y. Yu, Y. Ma, W. Yang, F. Wang, X. Yin, X. Wang, J. Phys. Chem. C 2017, 121, 12071-12079.
[26] A. Naldoni, F. Riboni, U. Guler, A. Boltasseva, V. M. Shalaev, A. V. Kildishev, Nanophotonics 2016, 5, 112-133.
[27] Y. Pu, G. Wang, K. Chang, Y. Ling, Y. Lin, B. C. Fitzmorris, C. Liu, X. Lu, Y. Tong, J. Z. Zhang, Y. Hsu, Y. Li, Nano Lett. 2013, 13, 3817-3823.
[28] A. G. Tamirat, W.-N. Su, A. A. Dubale, H.-M. Chena, B.-J. Hwang, J. Mater. Chem. A 2015, 3, 5949-5961.
[29] S. I. Mogal, M. Mishra, V. G. Gandhi, R. J. Tayade, Materials Science Forum 2013, 734, 364-378.
[30] K. Palanivelu, J. S. Im, Y.-S. Lee, Carbon Science 2007, 8, 214-224.
[31] G. Wu, T. Nishikawa, B. Ohtani, A. Chen, Chem. Mater. 2007, 19, 4530-4537.
[32] N. S. Leyland, J. Podporska-Carroll, J. Browne, S. J. Hinder, B. Quilty, S. C. Pillai, Sci. Rep. 2016, 6, 24770, 1-10.
[33] Z. Kang, X. Yan, Y. Wang, Z. Bai, Y. Liu, Z. Zhang, P. Lin, X. Zhang, H. Yuan, X. Zhang, Y. Zhang, Sci. Rep. 2015, 5, 7882, 1-7.
[34] F.-X. Xiao, J. Miao, H.-Y. Wang, H. Yang, J. Chen, B. Liu, Nanoscale 2014, 6, 6727-6737.
[35] M. G. Lee, K. Jin, K. C. Kwon, W. Sohn, H. Park, K. S. Choi, Y. K. Go, H. Seo, J. S. Hong, K. T. Nam, H. W. Jang, Adv. Sci. 2018, 5, 1800727, 1-13.
[36] S. Y. Chae, S. J. Park, B. Min, Y. J. Hwang, O.-S. Joo, Electrochimica Acta 2019, 297, 633-640.
[37] Z. Kang, X. Yan, Y. Wang, Z. Bai, Y. Liu, Z. Zhang, P. Lin, X. Zhang, H. Yuan, X. Zhang, Y. Zhang, Sci. Rep. 2014, 5, 7882-7889.
[38] H. Tada, T. Mitsui, T. Kiyonaga, T. Akita, K. Tanaka, Nat. Materials 2006, 5, 782-786.
[39] H. Zhu, B. Yang, J. Xu, Z. Fu, M. Wena, T. Guo, S. Fu, J. Zuo, S. Zhang, Appl. Catal. B 2009, 90, 463-469.
[40] J. Fu, S. Cao, J. Yu, J. Materiomics 2015, 1, 124-133.
[41] L. J. Zhang, S. Li, B. K. Liu, D. J. Wang, T. F. Xie, ACS Catal. 2014, 4, 3724-3729.
[42] R. E. Rex, Y. Yang, F. J. Knorr, J. Z. Zhang, Y. Li, J. L. McHale, J. Phys. Chem. C 2016, 120, 3530-3541.
[43] D. A. Wheeler, Y. Ling, R. J. Dillon, R. C. Fitzmorris, C. G. Dudzik, L. Zavodivker, T. Rajh, N. M. Dimitrijevic, G. Millhauser, C. Bardeen, Y. Li, J. Z. Zhang, J. Phys. Chem. C 2013, 117, 26821-26830.
[44] G. Wang, H. Wang, Y. Ling, Y. Tang, X. Yang, R. C. Fitzmorris, C. Wang, J. Z. Zhang, Y. Li, Nano Lett. 2011, 11, 3026-3033.
[45] H. Yoshida, R. Yamada, T. Yoshida, Chem. Sus. Chem. 2018, 10, 1002-1010.
[46] C. J. Shearer, J. F. Alvino, M. Batmunkh, G. F. Metha, C 2018, 4, 64-76.
[47] K. Teramura, K. Maeda, T. Saito, T. Takata, N. Saito, Y. Inoue, K. Domen, J. Phys. Chem. B 2005, 109, 21915-21921.
[48] M. Respinis, K. S. Joya, H. J. M. D. Groot, F. D’Souza, W. A. Smith, R. Krol, B. Dam, J. Phys. Chem. C 2015, 119, 7275-7281.
[49] D. Kong, Y. Zheng, M. Kobielusz, Y. Wang, Z. Bai, W. Macyk, X. Wang, J. Tang, Mater. Today 2018, 21, 897-924.
[50] M. Respinis, K. S. Joya, H. J. M. D. Groot, F. D’Souza, W. A. Smith, R. Krol, B. Dam, J. Phys. Chem. C 2015, 119, 7275-7281.
[51] K. Tennakone, W. C. B. Kiridena, S. Punchihewa, J. Photochem. Photobiol A: Chem. 1992, 68, 389-393.
[52] R. F. P. Nogueira, W. F. Jardim, J. Chem. Educ. 1993, 70, 10, 861-862.
[53] G. Gao, Y. Deng, L. D. Kispert, J. Phys. Chem. B 1998, 102, 3897-3901.
[54] M. S. Mozumdera, A.-H. I. Mouradb, H. Perveza, R. Surkatti, Sol. Energy Mater. Sol. Cells 2019, 189, 75-102.
[55] H. Fu, Sol. Energy Mater. Sol. Cells 2019, 193, 107-132.
[56] X. Qiu, B. Cao, S. Yuan, X. f. Chen, Z. Qiu, Y. Jiang, Q. Ye, H. Wang, H. Zeng, J. Liu, M. G. Kanatzidis, Sol. Energy Mater. Sol. Cells 2017, 159, 227-234.
[57] S. S. K. Ma, T. Hisatomi, K. Domen, J. Jpn. Petrol. 2013, 56, 5, 280-287.
[58] S. Fang, Y. H. Hu, Int J Energy Res. 2019, 43, 1082-1098.
[59] M. Yu, W. D. McCulloch, Z. Huang, B. B. Trang, J. Lu, K. Amine, Y. Wu, J. Mater. Chem. A 2016, 4, 2766-2782.
[60] M. V. Dozzi, A. Candeo, G. Marra, C. Andrea, G. Valentini, E. Selli, J. Phys. Chem. C 2018, 122, 14326-14335.
[61] (2015). Introduction to time-resolved spectroscopy with applications in biophysics and physical chemistry.
[62] T.-T. Yang, W.-T. Chen, Y.-J. Hsu, K.-H. Wei, T.-Y. Lin, T.-W. Lin, J. Phys. Chem. C 2010, 114, 11414-11420.
[63] T. Lopes, L. Andrade, H. A. Ribeiro, A. Mendes, Int. J. Hydrog. Energy 2010, 35, 11601-11608.
[64] T. Moehl, W. Cui, R. Wick-Joliat, S. D. Tilley, Sustainable Energy Fuels 2019, 3, 2067-2075.
[65] G. Ai, R. Mo, Q. Chen, H. Xu, S. Yang, H. Li, J. Zhong, RSC Adv. 2015, 5, 13544-13549.
[66] A. Fujishima, K. Honda, Nature 1972, 238, 37-38.
[67] R. Reichert, Z. Jusys, R. J. Behm, J. Phys. Chem. C 2015, 119, 44, 24750-24759.
[68] G. Dong, H. Hu, X. Huang, Y. Zhang, Y. Bi, J. Mater. Chem. A 2018, 6, 21003-21009.
[69] X.-J. Lv, S.-X. Zhou, C. Zhang, H.-X. Chang, Y. Chena, W.-F. Fu, J. Mater. Chem. 2012, 22, 18542-18549.
[70] Y.-C. Pu, G. Wang, K.-D. Chang, Y. Ling, Y.-K. Lin, B. C. Fitzmorris, C.-M. Liu, X. Lu, Y. Tong, J. Z. Zhang, Y.-J. Hsu, Y. Li, Nano Lett. 2013, 13, 3817-3823.
[71] M. Wang, Y.-S. Chang, C.-W. Tsao, M.-J. Fang, Y.-J. Hsu, K.-L. Choy, Chem. Commun. 2019, 55, 2465-2468.
[72] P.-Y. Hsieh, Y.-H. Chiu, T.-H. Lai, M.-J. Fang, Y.-T. Wang, Y.-J. Hsu, ACS Appl. Mater. Interfaces 2019, 11, 3006-3015.
[73] A. Li, Z. Wang, H. Yin, S. Wang, P. Yan, B. Huang, X. Wang, R. Li, X. Zong, H. Han, C. Li, Chem. Sci. 2016, 7, 6076-6082.
[74] P. Luan, M. Xie, D. Liu, X. Fu, L. Jing, Sci. Rep. 2014, 4, 6180, 1-7.
[75] Y.-S. Chang, M. Choi, M. Baek, P.-Y. Hsieh, K. Yong, Y.-J. Hsu, Appl. Catal. B 2018, 225, 379-385.
[76] G. Wang, H. Wang, Y. Ling, Y. Tang, X. Yang, R. C. Fitzmorris, C. Wang, J. Z. Zhang, Y. Li, Nano Lett. 2011, 11, 3026-3033.
[77] J. Buha, Thin Solid Films 2013, 545, 234-240.
[78] C. W. Dunnill, I. P. Parkin, Dalton Trans. 2011, 40, 1635-1640.
[79] J. Shulga, V. Kisand, I. Kink, V. Reedo, L. Matisen, A. Saar, J. Phys. Conf. Ser. 2007, 93, 012006, 1-6.
[80] M. Wang, J. Han, Y. Hu, R. Guo, Y. Yin, ACS Appl. Mater. Interfaces 2016, 8, 29511-29521.
[81] W.-C. Yeh, M. Matsumura, Jpn. J. Appl. Phys. 1997, 36, 6884.
[82] Y.-H. Chang, N. Y. Hau, C. Liu, Y.-T. Huang, C.-C. Li, K. Shih, S.-P. Feng, Nanoscale 2014, 6, 15309-15315.
[83] Y.-C. Pu, Y. Ling, K.-D. Chang, C.-M. Liu, J. Z. Zhang, Y.-J. Hsu, Y. Li, J. Phys. Chem. C 2014, 118, 15086-15094.
[84] H. Li, J. Zhou, X. Zhang, K. Zhou, S. Qu, J. Wang, X. Lu, J. Weng, B. Feng, J Mater Sci: Mater Electron 2015, 26, 2571-2578.
[85] K.-A. Tsai, Y.-J. Hsu, Appl. Catal. B 2015, 164, 271-278.
[86] M.-Yu. Kuo, C.-F. Hsiao, Y.-H. Chiu, T.-H. Lai, M.-J. Fang, J.-Y. Wu, J.-W. Chen, C.-L. Wu, K.-H. Wei, H.-C. Lin, Y.-J. Hsu, Appl. Catal. B 2019, 242, 499-506.
[87] Y.-C. Pu, W.-T. Chen, M.-J. Fang, Y.-L. Chen, K.-A. Tsai, W.-H. Lin, Y.-J. Hsu, J. Mater. Chem. A 2018, 6, 17503-17513.
[88] Y.-C. Pu, H.-Y. Chou, W.-S. Kuo, K.-H. Wei, Y.-J. Hsu, Appl. Catal. B 2017, 204, 21-32.
[89] W.-H. Lin, Y.-H. Chiu, P.-W. Shao, Y.-J. Hsu, ACS Appl. Mater. Interfaces 2016, 8, 32754-32763.
[90] Y.-C. Chen, K. Katsumata, Y.-H. Chiu, K. Okada, N. Matsushita, Y.-J. Hsu, Appl. Catal. A 2015, 490, 1-9.
[91] Y.-C. Pu, W.-H. Lin, Y.-J. Hsu, Appl. Catal. B 2015, 163, 343-351.
[92] M. T. Uddin, Y. Nicolas, C. Olivier, W. Jaegermann, N. Rockstroh, H. Junge, T. Toupance, Phys. Chem. Chem. Phys. 2017, 19, 19279-19288.
[93] T. Lopes, L. Andrade, H. A. Ribeiro, A. Mendes, Int. J. Hydrog. Energy 2010, 35, 11601-11608.
[94] A. Fujishima, K. Honda, Nature 1972, 7, 238, 37-38.
[95] A. Wolcott, W. A. Smith, T. R. Kuykendall, Y. Zhao, J. Z. Zhang, Small 2009, 5, 104-111.
[96] J. Gan, X. Lu, Y. Tong, Nanoscale 2014, 6, 7142-7164.
[97] G. He, Y. Zhang, Q. He, Catalysts 2019, 9, 379-391.
[98] X. Zheng, B. Sciacca, E. C. Garnett, L. Zhang, ChemPlusChem 2016, 81, 1075-1082.
[99] C. Mahala, M. D. Sharma, M. Basu, New J. Chem. 2019, 43, 7001-7010.
[100] C. Liu, Y. Qiu, J. Zhang, Q. Liang, N. Mitsuzaki, Z. Chen, J. Photochem. Photobiol. A 2019, 371, 109-117.
[101] R. Yin, M. Liu, R. Tang, L. Yin, Nanoscale Res. Lett. 2017, 12, 520-528.
[102] Y. Liu, L. Zhao, M. Li, L. Guo, Nanoscale 2014, 6, 7397-7404.
[103] N. Srinivasana, Y. Shigaa, D. Atarashi, E. Sakai, M. Miyauchi, Appl. Catal. B 2015, 179, 113-121.
[104] K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H. L. Stormer, Solid State Commun. 2008, 146, 351-355.
[105] X. Yan, X. Cui, B. Li, L. Li, Nano Lett. 2010, 10, 1869-1873.
[106] S. Thongrattanasiri, A. Manjavacas, F. J. Abajo, ACS nano 2012, 6, 2, 1766-1775.
[107] P. Sudhagara, I. Herraiz-Cardonab, H. Parkc, T. Songd, S. H. Nohc, S. Gimenezb, I. M. Serob, F. Fabregat-Santiagob, J. Bisquertb, C. Terashimae, U. Paikd, Y. S. Kangd, A. Fujishimae, T. H. Hanc, Electrochim. Acta 2016, 187, 249-255
[108] G. Wang, H. Wang, Y. Ling, Y. Tang, X. Yang, R. C. Fitzmorris, C. Wang, J. Z. Zhang, Y. Li, Nano Lett. 2011, 11, 7, 3026-3033.
[109] Y. C. Pu, G. Wang, K. D. Chang, Y. Ling, Y. K. Lin, B. C. Fitzmorris, C. M. Liu, X. Lu, Y. Tong, J. Z. Zhang, Y. J. Hsu, Y. Li, Nano Lett. 2013, 13, 3817-3823.
[110] H. B. Yang, J. Miao, S. F. Hung, F. Huo, H. M. Chen, Bin Liu, ACS nano 2014, 8, 10, 10403-10413.
[111] X. Zhou, X. Huang, X. Qi, S. Wu, C. Xue, F. Y. C. Boey, Q, Yan, P. Chen, H. Zhang, J. Phys. Chem. C 2009, 113, 10842-10846.
[112] K. A. Tsai, Y. J. Hsu, Appl. Catal. B 2015, 164, 271-278.
[113] D. Pan, J. Zhang, Z. Li, M. Wu, Adv. Mater. 2010, 22, 734-738.
[114] Y. Nosaka, A. Y. Nosaka. J. Phys. Chem. Lett.2016, 734, 31-434.
[115] Y. Zhang, N. Zhang, Z. R. Tang, Y.-J. Xu, Phys. Chem. Chem. Phys 2012, 14, 9167-9175.
[116] H. Wang, G. Wang, Y. Ling, M. Lepert, C. Wang, J. Z. Zhang, Y. Li, Nanoscale 2012, 4, 1463-1466.
[117] A. Zaban, M. Greenshtein, J. Bisquert, ChemPhysChem 2003, 4, 859-864.
[118] Y.-C. Chen, Y.-C. Pu, Y.-J. Hsu, J. Phys. Chem. C 2012, 116, 2967-2975.
[119] M.-Y. Chen, Y.-J. Hsu, Nanoscale 2013, 5, 363-368.
[120] K.-A. Tsai, Y.-J. Hsu, Appl. Catal. B 2015, 164, 271-278.
[121] Y.-H. Chiu, Y.-J. Hsu, Nano Energy 2017, 31, 286-295.
[122] J. S. Yang, W. P. Liao, J. J. Wu, ACS Appl. Mater. Interfaces 2013, 5, 7425-7431.
[123] A. Fujishima, K. Honda, Nature 1972, 238, 37-38.
[124] M. Choi, K. Yong, Nanoscale 2014, 6, 13900-13909.
[125] W.-T. Chen, Y.-J. Hsu, K.-H. Wei, T.-Y. Lin, T.-W. Lin, J. Phys. Chem. C 2010, 114, 11414-11420.
[126] Y.-F. Lin, Y.-J. Hsu, Appl. Catal. B 2013, 130, 93-98.
[127] W.-H. Lin, T.-F. M. Chang, Y.-H. Lu, T. Sato, M. Sone, K.-H. Wei, Y.-J. Hsu, J. Phys. Chem. C 2013, 117, 25596-25603.
[128] Y.-H. Lu, W.-H. Lin, C.-Y. Yang, Y.-H. Chiu, Y.-C. Pu, M.-H. Lee, Y.-C. Tseng, Y.-J. Hsu, Nanoscale 2014, 6, 8796-8803.
[129] Y.-C. Chen, K.-I. Katsumata, Y.-H. Chiu, K. Okada, N. Matsushita, Y.-J. Hsu, Appl. Catal. A 2015, 490, 1-9.
[130] Y.-C. Pu, W.-H. Lin, Y.-J. Hsu, Appl. Catal. B 2015, 163, 343-351.
[131] Y.-C. Chen, T.-C. Liu, Y.-J. Hsu, ACS Appl. Mater. Interfaces 2015, 7, 1616-1623.
[132] J.-M. Li, H.-Y. Cheng, Y.-H. Chiu, Y.-J. Hsu, Nanoscale 2016, 8, 15720-15729.
[133] W.-H. Lin, Y.-H. Chiu, P.-W. Shao, Y.-J. Hsu, ACS Appl. Mater. Interfaces 2016, 8, 32754-32763.
[134] Y.-C. Pu, H.-Y. Chou, W.-S. Kuo, K.-H. Wei, Y.-J. Hsu, Appl. Catal. B 2017, 204, 21-32.
[135] G. Wang, H. Wang, Y. Ling, Y. Tang, X. Yang, R. C. Fitzmorris, C. Wang, J. Z. Zhang, Y. Li, Nano Lett. 2011, 11, 3026-3033.
[136] M. C. Wu, C. H. Chen, W. K. Huang, K. C. Hsiao, T. H. Lin, S. H. Chan, P. Y. Wu, C. F. Lu, Y. H. Chang, T. F. Lin, K. H. Hsu, J. F. Hsu, K. M. Lee, J. J. Shyue, K. Kordás, W. F. Su, Sci. Rep. 2017, 7, 40896-40907.
[137] G. D. Bromiley, A. A. Shiryaev, Phys. Chem. Minerals 2006, 33, 426-434.
[138] M. Choi, J. H. Lee, Y. J. Jang, D. Kim, J. S. Lee, H. M. Jang, K. Yong, Sci. Rep. 2016, 6, 36099-36110.
[139] P. Y. Vered, K. Eugenii, W. Julian, W. J. Itamar, Am. Chem. Soc. 2003, 125, 622-623.
[140] J. Hensel, G. Wang, Y. Li, J. Z. Zhang, Nano Lett. 2010, 10, 478-483.
[141] G. Wang, X. Yang, F. Qian, J. Z. Zhang, Y. Li, Nano Lett. 2010, 10, 1088-1092.
[142] H. Kim, M. Seol, J. Lee, K. Yong, J. Phys. Chem. C 2011, 115, 25429-25436.
[143] G. Zhu, L. Pan, T. Xu, Z. Sun, ACS Appl. Mater. Interfaces 2011, 3, 3146-3151.
[144] S. A. Pawara, D. S. Patilb, H. R. Junga, J. Y. Parka, S. S. Malic, C. K. Hongc, J. C. Shinc, P. S. Patild, J. H. Kima, Electrochim. Acta 2016, 203, 74-83.
[145] J. S. Yang, W. P. Liao, J. J. Wu, ACS Appl. Mater. Interfaces 2013, 5, 7425-7431
[146] M. Basu, Z. W. Zhang, C. J. Chen, P. T. Chen, K. C. Yang, C. G. Ma, C. C. Lin, S. F. Hu, R. S. Liu, Angew. Chem. Int. Ed. 2015, 54, 6211-6216.
[147] J. Chen, P. T. Chen, M. Basu, K. C. Yang, Y. R. Lu, C. L. Dong, C. G. Ma, C. C. Shen, S. F. Hu, R. S. Liu, J. Mater. Chem. A 2015, 3, 23466-23476.
[148] X. Wang, Z. Feng, J. Shi, G. Jia, S. Shen, J. Zhouab, C. Li, Phys. Chem. Chem. Phys. 2010, 12, 7083-7090.
[149] W. Kim, M. Baek, K. Yong, Sens Actuators B Chem. 2016, 223, 599-605.
[150] Z. Zhang, M. Choi, M. Baek, K. Yong, Adv. Mater. Interfaces 2016, 3, 1500737-1500746.
[151] J. Luo, L. Ma, T. He, C. F. Ng, S. Wang, H. Sun, H. Fan, J. Phys. Chem. C 2012, 116, 11956-11963.
[152] Y.-C. Chen, Y.-C. Pu, Y.-J. Hsu, J. Phys. Chem. C 2012, 116, 2967-2975.
[153] M.-Y. Chen, Y.-J. Hsu, Nanoscale 2013, 5, 363-368.
[154] K.-A. Tsai, Y.-J. Hsu, Appl. Catal. B 2015, 164, 271-278.
[155] Y.-H. Chiu, Y.-J. Hsu, Nano Energy 2017, 31, 286-295.
[156] H. Giles, A. J. Groszek, Proc. Soc. Anal. Chem. 1969, 6, 83-85.
[157] L. Postai, C. A. Demarchi, F. Zanatta, D. C. C. Melo, C. A. Rodrigues, Alexandria Eng. J. 2016, 55, 1713-1723.
[158] A. Wheeler, Y. Ling, R. J. Dillon, R. C. Fitzmorris, C. G. Dudzik, L. Zavodivker, T. Rajh, N. M. Dimitrijevic, G. Millhauser, C. Bardeen, Y. Li, J. Z. Zhang, J. Phys. Chem. C 2013, 117, 26821-26830.
[159] T. H. Thanh, D. H. Thanh, V. Q. Lam, Adv. Optoelectron. 2014, 2014, 397681.
[160] J. Yan, Q. Ye, F. Zhou, RSC Adv. 2012, 2, 3978-3985.
[161] J. Yan, S. Yang, Z. Xie, X. Li, W. Zhou, X. Zhang, Y. Fang, S. Zhang, F. Peng, J Solid State Electrochem 2017, 21, 455-461.
[162] H. Dong, Q. Liu, H. Yuehui, R. Soc. open sci. 2018, 5, 1-10.
[163] L. Pan, L. Zhao, Z. Liu, Mater. Technol. 2017, 32, 13, 823-828.
[164] J. Tao, H. Ma, K. Yuan, Y. Gu, J. Lian, X. Li, W. Huang, M. Nolan, H. Lu, D. Zhang, ChemRxiv. 2019, 10, 1-42.
[165] C. Hao, W. Wang, R. Zhang, B. Zou, H. Shi, Sol. Energy Mater. Sol. Cells 2018, 174, 132-139.
[166] J. Resasco, H. Zhang, N. Kornienko, N. Becknell, H. Lee, J. Guo, A. L. Briseno, P. Yang, ACS Cent. Sci. 2016, 2, 80-88.
[167] D. E. Schipper, Z. Zhao, A. P. Leitner, L. Xie, F. Qin, M. K. Alam, S. Chen, D. Wang, Z. Ren, Z. Wang, J. Bao, K. H. Whitmire, ACS Nano 2017, 11, 4051-4059.
[168] M. Zeng, X. Peng, J. Liao, G. Wang, Y. Li, J. Li, Y. Qin, J. Wilson, A. Song, S. Lin, Phys. Chem. Chem. Phys. 2016, 18, 17404-17413.
[169] H. Yang, J. Bright, S. Kasani, P. Zheng, T. Musho, B. Chen, L. Huang, N. Wu, Nano Res. 2019, 12, 3, 643-650.
[170] Z. Cao, Y. Yin, P. Fu, D. Li, Y. Zhou, Y. Deng, Y. Peng, W. Wang, W. Zhou, D. Tang, Nanoscale Res. Lett. 2019, 14, 342-351.
[171] W. Chen, T. Wang, J. Xue, S. Li, Z. Wang, S. Sun, Small 2017, 13, 1602420-1602428.
[172] Z. Liang, H. Hou, Z. Fang, F. Gao, L. Wang, D. Chen, W. Yang, ACS Appl. Mater. Interfaces 2019, 11, 19167-19175.
[173] J. Hu, S. Zhang, Y. Cao, H. Wang, H. Yu, F. Peng, ACS Sustainable Chem. Eng. 2018, 6, 10823-10832.
[174] Y. Zhong, S. Yang, S. Zhang, X. Cai, Q. Gao, X. Yu, Y. Xu, X. Zhou, F. Peng, Y. Fang, J. Power Sources 2019, 430, 32-42.
[175] R. Tang, S. Zhou, Z. Yuan, L. Yin, Adv. Funct. Mater. 2017, 1701102, 1-12.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊