跳到主要內容

臺灣博碩士論文加值系統

(44.222.64.76) 您好!臺灣時間:2024/06/14 07:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:呂天麟
研究生(外文):Lu, Tien-Lin
論文名稱:電鍍(111)奈米雙晶銅膜的非等向性晶粒成長及電遷移之研究
論文名稱(外文):Study on Anisotropic Grain Growth and Electromigration of Electroplated (111)-oriented Nanotwinned Cu Films
指導教授:陳智陳智引用關係
指導教授(外文):Chen, Chih
口試委員:杜經寧廖建能歐陽汎怡周苡嘉陳智
口試委員(外文):Tu, King-NingLiao, Chien-NengOuyang, Fan-YiChou, Yi-ChiaChen, Chih
口試日期:2020-07-01
學位類別:博士
校院名稱:國立交通大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:92
中文關鍵詞:奈米雙晶銅晶粒成長優選方向熱退火電鍍
外文關鍵詞:nanotwinned Cugrain growthpreferred orientationthermal annealingelectrodeposition
相關次數:
  • 被引用被引用:0
  • 點閱點閱:539
  • 評分評分:
  • 下載下載:87
  • 收藏至我的研究室書目清單書目收藏:0
銅製程為目前半導體製造業最成功的開發技術之一,在積體電路中以銅來取代鋁作為導線連接每個電晶體,然而沉積銅膜的方法必須符合工業界時間和成本的考量,因此電鍍銅的技術儼然已經成為半導體封裝中形成重分佈層(RDLs)的主流解決方案。本論文研究以不同的電鍍方式製備出高密度<111>優選方向之奈米雙晶銅薄膜,研究其晶粒成長行為及電遷移壽命。第一部分以兩階段直流電鍍的方法製備奈米雙晶銅膜,進行不同溫度的熱處理觀察其微結構的變化。利用EBSD (Electron backscattered diffraction)觀察奈米雙晶銅晶粒成長的情形;證明能夠有效降低異常晶粒生成長所需的溫度至250 °C。
第二個部分以脈衝電鍍的方式製備更緻密且具有高度<111>優選方向的奈米雙晶銅薄膜,透過黃光微影製程技術將其定義出相同長度與寬度線的形狀,觀察奈米雙晶銅膜在450 °C - 500 °C一小時退火後微結構的變化,了解晶粒成長的模式以及觀察成長的極限。研究結果發現,大量的銅線有異常晶粒成長行為,成功的大量製備出<100>優選方向之類單晶銅,這些大晶粒的類單晶銅可應用於三維積體電路封裝技術中,對於元件的相互連接可能具有潛在的應用。
最後一部分將奈米雙晶銅膜製成導線進行電遷移測試。實驗發現,相較於一般的銅導線具有更長的電遷移壽命,奈米雙晶銅可以有效提高抗電遷移的能力,將其運用在3D IC的製程中,可使電子產品的電遷移壽命增加數倍。
The Cu process is one of the most important development technologies in the semiconductor manufacturing industry. Cu is used in integrated circuits to replace aluminum as a wire to connect transistors. However, the method of depositing the Cu film must meet the time and cost considerations of the industry. Cu electroplating technology has become the mainstream solution for the formation of redistribution layers in semiconductor packages. In this thesis, high-density <111> nanotwinned Cu (nt-Cu) thin films were prepared by different electroplating methods, and their grain growth behavior and electromigration resistance were studied.
In the first part, the nt-Cu film was prepared by two-stage direct current electroplating, and the microstructure was observed by heat treatment at different temperatures. We adopted EBSD (Electron backscattered diffraction) to observe the grain growth behavior of nt-Cu grains. It is proved by experiments that it can effectively reduce the temperature required for abnormal grain growth to 250 °C.
The second part uses pulse plating to prepare densely-pack nt-Cu thin film with highly <111> preferred orientation. The lithography process is used to define the pattern of the Cu lines with various length and width. Observation of the changes in the microstructure of the nt-Cu film after annealing at 450 ° C-500 ° C for one hour helped us understand the grain growth mechanism and the growth limit. The results of the study found that a large number of Cu wires have abnormal grain growth behavior, and a large amount of quasi-single crystalline Cu with a preferred orientation of <100> was successfully prepared in large quantities. These large grain quasi-single crystalline Cu can be used in three-dimensional integrated circuit packaging technology.
In the last part, the nt-Cu lines were subjected to electromigration tests. It was found that compared with general Cu wire, nt-Cu can effectively improve the ability of resist electromigration and has a longer electromigration lifetime. The nt-Cu lines can increase the electromigration lifetime of electronic products by several times.
摘要 I
Abstract III
誌謝 VI
目錄 IX
圖目錄 XII
表目錄 XIX
第一章 文獻回顧與簡介 1
1-1 三維積體電路封裝簡介 1
1-2 奈米雙晶銅簡介 4
1-3 奈米雙晶銅晶粒成長 11
1-4 電鍍技術簡介 17
1-5 電遷移效應原理 19
1-6 研究動機 23
第二章 以直流電鍍製備具有(111)優選方向之奈米雙晶銅膜的非等向性異常晶粒成長研究 25
2-1 簡介 25
2-2 實驗步驟 28
2-3 結果與討論 30
2-4 結論 36
第三章 製備具有<100>方向之類單晶銅線的特性研究 47
3-1 簡介 47
3-2 實驗步驟 49
3-3 結果與討論 52
3-4 結論 57
第四章 電鍍<111>優選方向之奈米雙晶銅導線其抗電遷移之研究 66
4-1 簡介 66
4-2 實驗步驟 68
4-3 結果與討論 69
4-4 結論 73
第五章 結論 82
參考文獻 84
[1] R. R. Schaller, “Moore's law: past, present and future,” IEEE spectrum, vol. 34, no. 6, pp. 52-59, 1997.
[2] J. Q. Lu, T.S. Cale, R.J. Gutmann, “Wafer-level three-dimensional hyper-integration technology using dielectric adhesive wafer bonding”, In Materials for Information Technology. 386, pp. 405-417, 2005.
[3] A.W. Topol, D. La Tulipe, L. Shi, D.J. Frank, K. Bernstein, S.E. Steen, A. Kumar, G.U. Singco, A.M. Young, K.W. Guarini, “Three-dimensional integrated circuits,” IBM Journal of Research Development, vol. 50, no. 4.5, pp. 491-506, 2006.
[4] B. Swinnen, "Introduction to IMEC's Research Program on 3D-Technology." EMC-3D 2007, 1-109, 2007.
[5] M. Koyanagi, T. Nakamura, Y. Yamada, H. Kikuchi, T. Fukushima, T. Tanaka, H. Kurino, "Three-dimensional integration technology and integrated systems." 2009 Asia and South Pacific Design Automation Conference. IEEE, p. 409-415, 2009.
[6] C. Ryu, A. Loke, T. Nogami, S.S. Wong, "Effect of texture on electromigration of CVD copper." IEEE INTERNATIONAL RELIABILITY PHYSICS PROCEEDINGS pp. 201-205, 1997.
[7] L. Lu, Y. Shen, X. Chen, L. Qian, K.J.S. Lu., “Ultrahigh strength and high electrical conductivity in copper,” Science, vol. 304, no. 5669, pp. 422-426, 2004.
[8] K.-C. Chen, W.-W. Wu, C.-N. Liao, L.-J. Chen, K.-N. Tu., “Observation of atomic diffusion at twin-modified grain boundaries in copper,” Science, vol. 321, no. 5892, pp. 1066-1069, 2008.
[9] H.-Y. Hsiao, C.-M. Liu, H.-w. Lin, T.-C. Liu, C.-L. Lu, Y.-S. Huang, C. Chen, K.-N. Tu., “Unidirectional growth of microbumps on (111)-oriented and nanotwinned copper,” Science, vol. 336, no. 6084, pp. 1007-1010, 2012.
[10] A. Gangulee, F. d'Heurle., "Anomalous large grains in alloyed aluminum thin films I. Secondary grain growth in aluminum-copper films." Thin Solid Films. 12, 399-402, 1972.
[11] A. Gangulee, F. d'Heurle., "Anomalous large grains in alloyed aluminum thin films II. electromigration and diffusion in thin films with very large grains." Thin Solid Films. 16, 227-236, 1973.
[12] J. Greiser, P. Müllner, E. Arzt, E. "Abnormal growth of “giant” grains in silver thin films." Acta materialia, 49, 1041-1050, 2001.
[13] J. Greiser, D. Müller, P. Müllner, C. Thompson, E. Arzt, "Growth of giant grains in silver thin films." Acta materialia, 41, 709-714, 1999.
[14] C.V. Thompson, "Grain growth in thin films." Annual Review of Materials Science, 20, 245-268, 1990.
[15] C.V. Thompson, R. Carel, "Stress and grain growth in thin films." Journal of the Mechanics and Physics of Solids, 44, 657-673, 1996.
[16] J. Nucci, R. Keller, D. Field, Y. Shacham-Diamand, "Grain boundary misorientation angles and stress-induced voiding in oxide passivated copper interconnects." Applied physics letters, 70, 1242-1244, 1997.
[17] C.V. Thompson, "Structure evolution during processing of polycrystalline films." Annual review of materials science, 30, 159-190, 2000.
[18] J. Koike, M. Wada, M. Sanada, K. Maruyama, "Effects of crystallographic texture on stress-migration resistance in copper thin films." Applied physics letters, 81, 1017-1019, 2002.
[19] C.-L. Lu, H.-W. Lin, C.-M. Liu, Y.-S. Huang, T.-L. Lu, T.-C. Liu, H.-Y. Hsiao, C. Chen, J.-C. Kuo, K.-N. Tu, "Extremely anisotropic single-crystal growth in nanotwinned copper." NPG Asia Materials, 6, e135, 2014.
[20] C.V. Thompson, R. Carel, “Stress and grain growth in thin films,” Journal of the Mechanics Physics of Solids, vol. 44, no. 5, pp. 657-674, 1996.
[21] Y.-S. Huang, C.-M. Liu, W.-L. Chiu, C. Chen, “Grain growth in electroplated (111)-oriented nanotwinned Cu,” Scripta Materialia, vol. 89, pp. 5-8, 2014.
[22] C.-L. Lu, H.-W. Lin, C.-M. Liu, Y.-S. Huang, T.-L. Lu, T.-C. Liu, H.-Y. Hsiao, C. Chen, J.-C. Kuo, K.-N. Tu, “Extremely anisotropic single-crystal growth in nanotwinned copper,” NPG Asia Materials, vol. 6, no. 10, pp. e135, 2014.
[23] K.-N. Tu, J.W. Mayer, L. Feldman, “Electronic thin film science: for electrical engineers and materials scientists,” Prentice Hall, 1992.
[24] H. Huntington, A. Grone, "Current-induced marker motion in gold wires." Journal of Physics and Chemistry of Solids 20.1-2: 76-87, 1961.
[25] Z. Cao, H. Lu, X. Meng, "Barrier layer and annealing temperature dependent microstructure evolution of nanocrystalline Cu films." Materials Chemistry and Physics, 117, 321-325, 2009.
[26] S. Du, Y. Li, "Effect of annealing on microstructure and mechanical properties of magnetron sputtered Cu thin films." Advances in Materials science and Engineering, 2015.
[27] L. Lu, X. Chen, X. Huang, K. Lu, "Revealing the maximum strength in nanotwinned copper." Science, 323, 607-610, 2009.
[28] F.J. Humphreys, M. Hatherly, "Recrystallization and related annealing phenomena." Elsevier: 2012.
[29] C.V. Thompson, "Grain growth in thin films." Annual review of materials science, 20, 245-268, 1990.
[30] C.V. Thompson, R. Carel, "Stress and grain growth in thin films." Journal of the Mechanics Physics of Solids, 44, 657-673, 1996.
[31] C.V. Thompson, "Grain growth and evolution of other cellular structures." In Solid state physics, Vol. 55, pp 269-314, Elsevier: 2001.
[32] S.P. Hau-Riege, C.V. Thompson, "In situ transmission electron microscope studies of the kinetics of abnormal grain growth in electroplated copper films." Applied Physics Letters 76, 309-311, 2000.
[33] Z.Y. Hang, C.V. Thompson, "Grain growth and complex stress evolution during Volmer–Weber growth of polycrystalline thin films." Acta Materialia, 67, 189-198, 2014.
[34] S. Yang, J. Zhang, M. Chi, Y. Wen, X. Chen, C. Wang, X. Liu, "Low-cost Cu-based shape memory single crystals obtained by abnormal grain growth showing excellent superelasticity." Materialia, 5, 100200, 2019.
[35] T. Kusama, T. Omori, T. Saito, S. Kise, T. Tanaka, Y. Araki, R. Kainuma, "Ultra-large single crystals by abnormal grain growth." Nature communications, 8, 354, 2017.
[36] B. B. Zhao, "Abnormal grain growth with {1 0 0} planar interface in the electrodeposited nickel." Materials Research Innovations, 19, S251-S254, 2015.
[37] P. Kerger, D. Rathmann, M. Marx, C. Motz, "How to produce a desired bimodal microstructure for optimized mechanical properties: Investigation of the mechanisms of abnormal grain growth in pulsed electro-deposited nickel." International Journal of Materials Research, 106, 1131-1143, 2015.
[38] X.-M. Chen, Y. Lin, F. Wu, "EBSD study of grain growth behavior and annealing twin evolution after full recrystallization in a nickel-based superalloy." Journal of Alloys and Compounds, 724, 198-207, 2017.
[39] H. Asgharzadeh, H. McQueen, "Grain growth and stabilisation of nanostructured aluminium at high temperatures." Materials Science and Technology, 31, 1016-1034, 2015.
[40] H.-K. Park, H.-G. Kang, C.-S. Park, M.-Y. Huh, N.-M. Hwang, "Ex situ observation of microstructure evolution during abnormal grain growth in aluminum alloy." Metallurgical Materials Transactions A, 43, 5218-5223, 2012.
[41] C.-S. Park, T.-W. Na, H.-K. Park, D.-K. Kim, C.-H. Han, N.-M. Hwang, "Misorientation characteristics of penetrating morphologies at the growth front of abnormally growing grains in aluminum alloy." Philosophical Magazine Letters, 92, 344-351, 2012.
[42] C. Oh, S. Nagao, T. Kunimune, K. Suganuma, "Pressureless wafer bonding by turning hillocks into abnormal grain growths in Ag films." Applied Physics Letters, 104, 161603, 2014.
[43] T. Kusama, T. Omori, T. Saito, S. Kise, T. Tanaka, Y. Araki, R. Kainuma, "Ultra-large single crystals by abnormal grain growth." Nature communications, 8, 354, 2017.
[44] P. Sonnweber-Ribic, P.A. Gruber, G. Dehm, H.P. Strunk, E. Arzt, "Kinetics and driving forces of abnormal grain growth in thin Cu films." Acta Materialia, 60, 2397-2406, 2012.
[45] B.A. Williams, M.A. Smeaton, N.D. Trejo, L.F. Francis, E.S. Aydil, "Effect of nanocrystal size and carbon on grain growth during annealing of copper zinc tin sulfide nanocrystal coatings." Chemistry of Materials, 29, 1676-1683, 2017.
[46] S. Xu, T. Kusama, X. Xu, H. Huang, T. Omori, J. Xie, R. Kainuma, "Large [001] single crystals via abnormal grain growth from columnar polycrystal." Materialia, 6, 100336, 2019.
[47] F. Fang, Y. Zhang, X. Lu, Y. Wang, M. Lan, G. Yuan, R. Misra, G. Wang, "Abnormal growth of {100} grains and strong Cube texture in strip cast Fe-Si electrical steel." Scripta Materialia, 147, 33-36, 2018.
[48] O. Underwood, J. Madison, G. Thompson, "Emergence and Progression of Abnormal Grain Growth in Minimally Strained Nickel-200." Metals, 7, 334, 2017.
[49] J. Rudnizki, B. Zeislmair, U. Prahl, W. Bleck, "Prediction of abnormal grain growth during high temperature treatment." Computational Materials Science, 49, 209-216, 2010.
[50] M. Elsey, S. Esedog, P. Smereka, "Simulations of anisotropic grain growth: Efficient algorithms and misorientation distributions." Acta materialia, 61, 2033-2043, 2013.
[51] Q.D. Van, K. Kondo, "Low thermal expansion coefficient electrodeposited copper and its contraction mechanism by annealing." ECS Journal of Solid State Science Technology, 6, P566-P569, 2017.
[52] P.M. Agrawal, B.M. Rice, D.L. Thompson, "Predicting trends in rate parameters for self-diffusion on FCC metal surfaces." Surface Science, 515, 21-35, 2002.
[53] J. Li, X. Yu, T. Shi, C. Cheng, J. Fan, S. Cheng, G. Liao, Z. Tang, "Low-temperature and low-pressure cu–cu bonding by highly sinterable cu nanoparticle paste." Nanoscale research letters, 12, 255, 2017.
[54] B. Warcholinski, T. Kuznetsova, A. Gilewicz, T. Zubar, V. Lapitskaya, S. Chizhik, A. Komarov, V. Komarova, A. Kuprin, V. Ovcharenko, "Structural and mechanical properties of Zr-Si-N coatings deposited by arc evaporation at different substrate bias voltages." Journal of Materials Engineering and Performance, 27, 3940-3950, 2018.
[55] T.I. Zubar, V.M. Fedosyuk, A.V. Trukhanov, N.N. Kovaleva, K.A. Astapovich, D.A. Vinnik, E.L. Trukhanova, A.L. Kozlovskiy, M.V. Zdorovets, A.A. Solobai, "Control of growth mechanism of electrodeposited nanocrystalline NiFe films." Journal of the Electrochemical Society, 166, D173-D180, 2019.
[56] T. Zubar, A. Trukhanov, D. Vinnik, "Influence of surface energy on ni-fe thin films formation process." In Materials Science Forum, Trans Tech Publ: pp 228-234, 2019.
[57] D. Xu, W.L. Kwan, K. Chen, X. Zhang, V. Ozoliņš, K.-N. Tu, "Nanotwin formation in copper thin films by stress/strain relaxation in pulse electrodeposition." Applied Physics Letters, 91, 254105, 2007.
[58] D. Xu, V. Sriram, V. Ozolins, J.-M. Yang, K.-N. Tu, G.R. Stafford, C. Beauchamp, "In situ measurements of stress evolution for nanotwin formation during pulse electrodeposition of copper." Journal of Applied Physics, 105, 023521, 2009.
[59] F.J. Humphreys, M. Hatherly, "Recrystallization and related annealing phenomena." Elsevier, 2012.
[60] C.V. Thompson, "Grain growth and evolution of other cellular structures." In: Solid State Physics. Vol. 55, Academic Press, pp 269-314, 2001.
[61] S.P. Hau-Riege, C.V. Thompson, "In situ transmission electron microscope studies of the kinetics of abnormal grain growth in electroplated copper films." Applied Physics Letters, 76, 309-311, 2000.
[62] Z.Y. Hang, C.V. Thompson, "Grain growth and complex stress evolution during Volmer–Weber growth of polycrystalline thin films." Acta materialia, 67, 189-198, 2014.
[63] A. Gusak, K.-N. Tu, "Theory of normal grain growth in normalized size space." Acta materialia, 51, 3895-3904, 2003.
[64] S. Offerman, N. Van Dijk, J. Sietsma, S. Grigull, E. Lauridsen, L. Margulies, H. Poulsen, M.T. Rekveldt, S. Van der Zwaag, "Grain nucleation and growth during phase transformations." Science, 298, 1003-1005, 2002.
[65] D. Field, L. Bradford, M. Nowell, T.J. Lillo, "The role of annealing twins during recrystallization of Cu." Acta materialia, 55, 4233-4241, 2007.
[66] E.A. Holm, S.M. Foiles, "How grain growth stops: A mechanism for grain-growth stagnation in pure materials." Science, 328, 1138-1141, 2010.
[67] M. Bernacki, R.E. Logé, T. Coupez, "Level set framework for the finite-element modelling of recrystallization and grain growth in polycrystalline materials." Scripta Materialia, 64, 525-528, 2011.
[68] M. Hasegawa, M. Mieszala, Y. Zhang, R. Erni, J. Michler, L. Philippe, "Orientation-controlled nanotwinned copper prepared by electrodeposition." Electrochimica Acta, 178, 458-467, 2015.
[69] K. N. Tu, “Recent advances on electromigration in very-large-scale-integration of interconnects,” Journal of applied physics, 94, 5451, 2003.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊