跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/02 22:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝秉諺
研究生(外文):Hsieh, Ping-Yen
論文名稱:金屬硫族半導體應用於太陽光催化產氫
論文名稱(外文):Metal Chalcogenide Semiconductors for Solar Hydrogen Production
指導教授:徐雍鎣
指導教授(外文):Hsu, Yung-Jung
口試委員:徐雍鎣韋光華張淑閔黃暄益黃國柱林彥谷
口試委員(外文):Hsu, Yung-JungWei, Kung-HwaChang, Sue-MinHuang, Hsuan-YiHuang, Kuo-ChuLin, Yan-Gu
口試日期:2020-07-13
學位類別:博士
校院名稱:國立交通大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:94
中文關鍵詞:光催化產氫金屬硫族半導體
外文關鍵詞:PhotocatalyticHydrogen ProductionMetal Chalcogenide Semiconductors
相關次數:
  • 被引用被引用:0
  • 點閱點閱:167
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
氫氣能源被視為未來重要的綠色能源之一,在許多的方法中,藉由光催化分解水產生氫氣更成為近年來熱門的研究議題。二氧化鈦等金屬氧化物更被廣泛地應用為光催化劑,然而較寬的能帶結構限制氧化物半導體的發展;相較於氧化物半導體,硫族金屬半導體有更合適的能帶結構以及優異的光學性質,被認為是有發展性的光催化材料。此篇論文提出如何增進光活性以及延長穩定性策略,並藉由時間解析螢光光譜分析載子動力學,進一步了解其效果提升背後的原因。而本論文分成三部分:
在第一部分當中,我們試著藉由更換硫族金屬半導體中的硫元素以及各成分元素的比例調整,進而控制半導體之能帶結構,將半導體的吸光範圍從可見光區域擴大至近紅外光區域,能有效地吸收入射光,並藉由材料表面的改質以及共催化劑的輔助之下,在所有的可見光波段中展現光活性,達到優秀的光催化產氫效率。在第二部分,則是藉由硫化物-二氧化鈦複合物異質半導體結構的設計,除了改善二氧化鈦對於可見光的吸收,並藉由異質結構的能隙平衡,增進光激發載子分離的效率,進而提升光催化反應,更最重要的是,在奈米柱狀二氧化鈦結構的幫助下,大大提升硫化物的光催化穩定性,提供一個全新的策略改善硫化物光腐蝕性的問題。
在最後的第三部分,則是整理並提出對於電化學水分解的未來趨勢,也列舉出具有潛力的材料,藉由能夠有效利用太陽光中紅外光區域之能量,期望未來能夠成為實際應用於綠色能源之方法。
Hydrogen energy is regarded as one of the important green energy. Among various methods, photocatalytic water splitting for hydrogen production becomes hot research project in recent years. Metal oxides such as titanium dioxide were widely utilized as photocatalysts, however, the wide band structures limit the progress of the metal oxides. Compared to metal oxide semiconductors, metal chalcogenide semiconductors which have proper band structures and excellent optical properties are considered as promising photocatalytic materials. In this thesis, the strategis for increasing photoactivities and prolonging stability were proposed. The reasons for improvement of photoactivities were further analyzed by time-resolved photoluminescence spectroscope. The thesis is classified into three parts:
In the first part, we tried control the band structure of semiconductor by replacing the sulfur element and adjusting the ratio of each elements in metal chalcogenide, so as to expand the absorption range from vibile region to infrared region. By surface modification and support of cocatalyst, it shows photoactivity in whole visible light region and exceptional hydrogen production efficiency. In the second part, by the design of sulfide-titanium dioxide heterostructure semiconductor, not only the absorption of titanium dioxide in visible light region is ameliorated but also the charge separation efficiency enhances through band alignment, and the performance of photocatalytic reaction therefore improves. Most importantly, with the support of nanorod-structure titanium dioxides, the photocatalytic stability of sulfide material shows superb improvement. It provides a noval strategy to modify the problem of photocorrosion for sulfide materials.
In the last third part, we organize and propose the future trend for the photoelectrochemical water splitting. We also list the potential materials for effectively utilizing the infrared light energy in sunlight, and expect that they have practical application to green energy.
摘要 I
Abstract II
誌謝 IV
Table of Content V
Figure Caption VII
Table Caption XII
Chapter 1. Background and Motivation 1
Chapter 2. Controlling Visible-Light Driven Photocatalytic Activity of Alloyed ZnSe-AgInSe2 Quantum Dots for Hydrogen Production 5
2.1 Introduction 5
2.2 Experimental Section 8
2.2.1 Chemicals 8
2.2.2 Preparation for ZAISe QDs 8
2.2.3 Surface modification with MPA 9
2.2.4 Photocatalytic H2 production 9
2.2.5 Characterizations 10
2.3 Results and Discussion 11
2.4 Conclusions 25
2.5 Acknowledgements 25
Chapter 3. TiO2 Nanowires-Supported Sulfides Hybrid Photocatalysts for Durable Solar Hydrogen Production 26
3.1 Introduction 26
3.2 Experimental Section 30
3.2.1 Chemicals 30
3.2.2 Preparation of TiO2 nanowires arrays 30
3.2.3 Chemical bath deposition of In2S3 and CdS 30
3.2.4 Characterizations 31
3.3 Results and Discussion 33
3.4 Conclusion 48
3.5 Acknowledgements 49
Chapter 4. Near Infrared-Driven Photoelectrochemical Water Splitting: Review and Future Prospects 50
4.1 Introduction 50
4.2 NIR-driven photoelectrodes 53
4.2.1 Chalcogenides 53
4.2.2 Chalcopyrites 58
4.2.3. Plasmonic metals 61
4.2.4. Plasmonic semiconductors 66
4.3 Outlook and perspectives 70
4.4 Acknowledgements 74
Chapter 5. Summary and Outlook 75
Reference 76
[1] A. L. Linsebigler, G. Q. Lu, J. T. Yates, "Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results" Chem. Rev. 1995, 95, 735-758.
[2] A. Mills, S. L. Hunte, "An Overview of Semiconductor Photocatalysis" J. Photochem. Photobiol. A 1997, 108, 1-35.
[3] T. Hisatomi, J. Kubota, K. Domen, "Recent Advances in Semiconductors for Photocatalytic and Photoelectrochemical Water Splitting" Chem. Soc. Rev. 2014, 43, 7520-7535.
[4] A. Fujishima, K. Honda, "Electrochemical Photolysis of Water at a Semiconductor Electrode" Nature 1972, 238, 37-38.
[5] J. Li, N. Wu, "Semiconductor-Based Photocatalysts and Photoelectrochemical Cells for Solar Fuel Generation: A Review" Catal. Sci. Techno. 2015, 5, 1360-1384.
[6] S. Chandrasekaran, L. Yao, L, Deng, C. Bowen, Y. Zhang, S. Chen, Z. Lin, F. Peng, P. Zhang, "Recent Advances in Metal Sulfides: from Controlled Fabrication to Electrocatalytic, Photocatalytic and Photoelectrochemical Water Splitting and Beyond" Chem. Soc. Rev. 2019, 48, 4718-4280.
[7] K. Zhang, L, Guo, "Metal Sulphide Semiconductors for Photocatalytic Hydrogen Production" Catal. Sci. Technol. 2013, 3, 1672-1690.
[8] J. H. Kim, D. Hansora, P. Sharma, J.-W. Jang, J. S. Lee, "Toward Practical Solar Hydrogen Production – an Artifical Photosynthetic Leaf-to-Farm Challenge" Chem. Soc. Rev. 2019, 48, 1908-1971.
[9] Y. Tachibana, L. Vayssieres, J. R. Durrent, "Artificial Photosynthesis for Solar Water-Splitting" Nat. Photonics 2012, 6, 511-518.
[10] H. B. Yang, J. Miao, S.-F. Hung, F. Huo, H. M. Chen, B. Liu, "Stable Quantum Dot Photoelectrolysis Cell for Unassisted Visible Light Solar Water Splitting" ACS Nano 2014, 8, 10403-10413.
[11] M. T. Trinh, L. Polak, J. M. Schins, A. J. Houtepen, R. Vaxenburg, G. I. Maikov, G. Grinbom, A. G. Midgett, J. M. Luther, M. C. Beard, A. J. Nozik, M. Bonn, E. Lifshitz, L. D. Siebbeles, "Anomalous Independence of Multiple Exciton Generation on Different Group IV−VI Quantum Dot Architectures" Nano Lett. 2011, 11, 1623-1629.
[12] H. Goodwin, T. C. Jellicoe, N. J. L. K. Davis, M. L. Böhm, "Multiple Exciton Generation in Quantum Dot-Based Solar Cells" Nanophotonics 2018, 7, 111-126.
[13] D. Aldakov, A. Lefrançois, P. J. Reiss, "Ternary and Quaternary Metal Chalcogenide Nanocrystals: Synthesis, Properties and Applications" Mater. Chem. C 2013, 1, 3756-3776.
[14] F.-J. Fan, L. Wu, S.-H. Yu, "Energetic I–III–VI2 and I2–II–IV–VI4 Nanocrystals: Synthesis, Photovoltaic and Thermoelectric Applications" Energy Environ. Sci. 2014, 7, 190-208.
[15] M. Sandroni, K. D. Wegner, D. Aldakov, P. Reiss, " Prospects of Chalcopyrite-Type Nanocrystals for Energy Applications" ACS Energy Lett. 2017, 2, 1076-1088.
[16] T. Torimoto, T. Adachi, K. Okazaki, M. Sakuraoka, T. Shibayama, B. Ohtani, A. Kudo, S. Kuwabata, "Facile Synthesis of ZnS-AgInS2 Solid Solution Nanoparticles for a Color-Adjustable Luminophore" J. Am. Chem. Soc. 2007, 129, 12388-12389.
[17] T. Kameyama, K. Sugiura, Y. Ishigami, T. Yamamoto, S. Kuwabata, T. Okuhata, N. Tamai, T. Torimoto, "Rod-Shaped Zn–Ag–In–Te Nanocrystals with Wavelength-Tunable Band-Edge Photoluminescence in the Near-IR Region" J. Mater. Chem. C 2018, 3, 2034-2042.
[18] T. Kameyama, H. Yamauchi, T. Yamamoto, T. Mizumaki, H. Yukawa, M. Yamamoto, S. Ikeda, T. Uematsu, Y. Baba, S. Kuwabata, T. Torimoto, "Wavelength-Tunable Band-Edge Photoluminescence of Nonstoichiometric Ag–In–S Nanoparticles via Ga3+ Doping" ACS Appl. Nano Mater. 2020, 3, 3275-3287.
[19] B. Chen, H. Zhong, W. Zhang, Z. Tan, Y. Li, C. Yu, T. Zhai, Y. Bando, S. Yang, B. Zou, " Highly Emissive and Color-Tunable CuInS2-Based Colloidal Semiconductor Nanocrystals: Off-Stoichiometry Effects and Improved Electroluminescence Performance" Adv. Funct. Mater. 2012, 22, 2081-2088.
[20] H. Zhong, Z. Bai, B. Zou, "Tuning the Luminescence Properties of Colloidal I–III–VI Semiconductor Nanocrystals for Optoelectronics and Biotechnology Applications" J. Phys. Chem. Lett. 2012, 3, 3167-3175.
[21] A. P. Lityin, I. V. Martynenko, F. Purcell-Milton, A. V. Baranov, A. V. Fedorov, Y. K. Gun’ko, "Colloidal Quantum Dots for Optoelectronics" J. Mater. Chem. A 2017, 5, 13252-13275.
[22] L. Li, T. J. Daou, I. Texier, T. T. K. Chi, N. Q. Liem, P. Reiss, "Highly Luminescent CuInS2/ZnS Core/Shell Nanocrystals: Cadmium-Free Quantum Dots for In Vivo Imaging" Chem. Mater. 2009, 21, 2422-2429.
[23] M. G. Panthani, T. A. Khan, D. K. Reid, D. J. Hellebusch, M. R. Rasch, J. A. Maynard, B. A. Korgel, "In Vivo Whole Animal Fluorescence Imaging of a Microparticle-Based Oral Vaccine Containing (CuInSexS2–x)/ZnS Core/Shell Quantum Dots" Nano Lett. 2013, 13, 4294-4298.
[24] T. Kameyama, Y. Ishigami, H. Yukawa, T. Shimada, Y. Baba, T. Ishikawa, S. Kuwabata, T. Torimoto, "Crystal Phase-Controlled Synthesis of Rod-Shaped AgInTe2 Nanocrystals for In Vivo Imaging in the Near-Infrared Wavelength Region" Nanoscale 2016, 8, 5435-5440.
[25] M. G. Panthani, V. Akhavan, B. Goodfellow, J. P. Schmidtke, L. Kunn, A. Dodabalapur, P. F. Barbara, B. A. Korgel, "Synthesis of CuInS2, CuInSe2, and Cu(InxGa1-x)Se2 (CIGS) Nanocrystal “Inks” for Printable Photovoltaics" J. Am. Chem. Soc. 2008, 130, 16770-16777.
[26] B. Chen, S. Chang, D. Li, L. Chen, Y. Wang, T. Chen, B. Zou, H. Zhong, A. L. Rogach, " Template Synthesis of CuInS2 Nanocrystals from In2S3 Nanoplates and Their Application as Counter Electrodes in Dye-Sensitized Solar Cells" Chem. Mater. 2015, 27, 5949-5956.
[27] A. I. Channa, X. Tong, J.-Y. Xu, Y. Liu, C. Wang, M. N. Sial, P. Yu, H. Ji, X. Niu, Z. M. Wang, "Tailored Near-Infrared-Emitting Colloidal Heterostructured Quantum Dots with Enhanced Visible Light Absorption for High Performance Photoelectrochemical cells" J. Mater. Chem. A 2019, 7, 10225-10230.
[28] I. Tsuji, H. Kato, H. Kobayashi, A. Kudo, "Photocatalytic H2 Evolution Reaction from Aqueous Solutions over Band Structure-Controlled (AgIn)xZn2(1-x)S2 Solid Solution Photocatalysts with Visible-Light Response and Their Surface Nanostructures" J. Am. Chem. Soc. 2004, 126, 13406-13413.
[29] I. Tsuji, H. Dato, A. Kudo, "Visible‐Light‐Induced H2 Evolution from an Aqueous Solution Containing Sulfide and Sulfite over a ZnS–CuInS2–AgInS2 Solid‐Solution Photocatalyst" Angew. Chem. Int. Ed. 2005, 44, 3565-3568.
[30] I. Tsuji, H. Kato, A. Kudo, "Photocatalytic Hydrogen Evolution on ZnS−CuInS2−AgInS2 Solid Solution Photocatalysts with Wide Visible Light Absorption Bands" Chem. Mater. 2006, 18, 1969-1975.
[31] R. Xie, M. Rutherford, X. Peng, "Formation of High-Quality I−III−VI Semiconductor Nanocrystals by Tuning Relative Reactivity of Cationic Precursors" J. Am. Chem. Soc. 2009, 131, 5691-5697.
[32] T. Omata, K. Nose, K. Kurimoto, M. Kita, "Electronic Transition Responsible For Size-Dependent Photoluminescence of Colloidal CuInS2 Quantum Dots" J. Mater. Chem. C 2014, 2, 6867-6872.
[33] K. E. Knowles, K. H. Hartstein, T. K. Kilburn, A. Marchioro, H. D. Nelson, P. J. Whitham, K. R. Gamelin, "Luminescent Colloidal Semiconductor Nanocrystals Containing Copper: Synthesis, Photophysics, and Applications" Chem. Rev. 2016, 116, 10820-10851.
[34] S. L. Castro, S. G. Bailey, R. P. Raffaelle, K. K. Banger, A. F. Hepp, "Synthesis and Characterization of Colloidal CuInS2 Nanoparticles from a Molecular Single-Source Precursor" J. Phys. Chem. B 2004, 108, 12429-12435.
[35] H. Nakamura, W. Kao, M. Uehara, K. Nose, T. Omata, S. Otsuka-Yao-Matsuo, M. Miyazaki, H. Maeda, "Tunable Photoluminescence Wavelength of Chalcopyrite CuInS2-Based Semiconductor Nanocrystals Synthesized in a Colloidal System" Chem. Mater. 2006, 18, 3330-3335.
[36] T. Uematsu, K. Wajama, D. K. Sharma, S. Hirata, T. Yamamoto, T. Kameyama, M. Vacha, T. Torimoto, S. Kuwabata, "Narrow Band-edge Photoluminescence from AgInS2 Semiconductor Nanoparticles by the Formation of Amorphous III–VI Semiconductor Shells" NPG Asia Mater. 2018, 10, 713-726.
[37] T. Torimoto, Y. Kamiya, T. Kameyama, H. Nishi, T. Uematsu, S. Kuwabata, T. Shibayama, "Controlling Shape Anisotropy of ZnS–AgInS2 Solid Solution Nanoparticles for Improving Photocatalytic Activity" ACS Appl. Mater. Interfaces 2016, 8, 27151-27161.
[38] T. Kameyama, T. Takahashi, T. Machida, Y. Kamiya, T. Yamamoto, S. Kuwabata, T. Torimoto, "Controlling the Electronic Energy Structure of ZnS–AgInS2 Solid Solution Nanocrystals for Photoluminescence and Photocatalytic Hydrogen Evolution" J. Phys. Chem. C 2015, 119, 24740-24749.
[39] T. Kameyama, S. Koyama, T. Yamamoto, S. Kuwabata, T. Torimoto, "Enhanced Photocatalytic Activity of Zn–Ag–In–S Semiconductor Nanocrystals with a Dumbbell-Shaped Heterostructure" J. Phys. Chem. C 2018, 122, 13705-13715.
[40] T. Torimoto, T. Kameyama, S. Kuwabata, " Photofunctional Materials Fabricated with Chalcopyrite-Type Semiconductor Nanoparticles Composed of AgInS2 and Its Solid Solutions" J. Phys. Chem. Lett. 2014, 5, 336-347.
[41] T. Kameyama, M. Kishi, C. Miyamae, D. K. Sharma, S. Hirata, T. Yamamoto, T. Uematsu, M. Vacha, S. Kuwabata, T. Torimoto, "Wavelength-Tunable Band-Edge Photoluminescence of Nonstoichiometric Ag–In–S Nanoparticles via Ga3+ Doping" ACS Appl. Mater. Interfaces 2018, 10, 42844-42855.
[42] D. Deng, L. Qu, Y. Gu, "Near-Infrared Broadly Emissive AgInSe2/ZnS Quantum Dots for Biomedical Optical Imaging" J. Mater. Chem. C 2014, 2, 7077-7085.
[43] T. Kameyama, Y. Kouke, H. Shibakawa, M. Kawaraya, H. Segawa, S. Kuwabata, T. Torimoto, " Widely Controllable Electronic Energy Structure of ZnSe–AgInSe2 Solid Solution Nanocrystals for Quantum-Dot-Sensitized Solar Cells" J. Phys. Chem. C 2014, 118, 29517-29524.
[44] G. Prusty, A. K. Guria, B. K. Patra, N. Pradhan, "Diffusion-Induced Shape Evolution in Multinary Semiconductor Nanostructures" J. Phys. Chem. Lett. 2015, 6, 2421-2426.
[45] A. S. Kshirsagar, P. Khanna, "Titanium dioxide (TiO2)-Decorated Silver Indium Diselenide (AgInSe2): Novel Nano-Photocatalyst for Oxidative Dye Degradation" Inorg. Chem. Front 2018, 5, 2242-2256.
[46] J. Chang, Y. Ogomi, C. Ding, Y. H. Zhang, T. Toyoda, S. Hayase, K. Katayama and Q. Shen, "Ligand-Dependent Exciton Dynamics and Photovoltaic Properties of PbS Quantum Dot Heterojunction Solar Cells" Phys. Chem. Chem. Phys. 2017, 19, 6358-6367.
[47] J. Völker, X. Zhou, X. Ma, S. Flessau, H. Lin, M. Schmittel, A. Mews, "Semiconductor Nanocrystals with Adjustable Hole Acceptors: Tuningthe Fluorescence Intensity by Metal–Ion Binding" Angew. Chem. Int. Ed. 2010, 49, 6865-6868.
[48] P. Wang, J. Zhang, H. He, X. Xu, Y. Jin, "The Important Role of Surface Ligand on CdSe/CdS Core/Shell Nanocrystals in Affecting the Efficiency of H2 Photogeneration from Wate" Nanoscale 2015, 7, 5767-5775.
[49] L. Zhou, K. Yu, F. Yang, H. Cong, N. Wang, J. Zheng, Y. Zuo, C. Li, B. Cheng, Q. Wang, "Insight into the Effect of Ligand-Exchange on Colloidal CsPbBr3 Perovskite Quantum Dot/Mesoporous-TiO2 Composite-Based Photodetectors: Much Faster Electron Injection" J. Mater. Chem. C 2017, 5, 6224-6233.
[50] M. A. Hines, P. Guyot-Sionnest, "Bright UV-Blue Luminescent Colloidal ZnSe Nanocrystals" J. Phys. Chem. B 1998, 102, 3655-3657.
[51] M. T. Ng, C. B. Boothroyd, J. J. Vittal, "One-Pot Synthesis of New-Phase AgInSe2 Nanorods" J. Am. Chem. Soc. 2006, 128, 7118−7119.
[52] J. Yang, H. Yan, X. Wang, Y. Wen, Z. Wang, D. Fan, J. Shi, C. Li, " Roles of Cocatalysts in Pt–PdS/CdS with Exceptionally High Quantum Efficiency for Photocatalytic Hydrogen Production" J. Catal. 2012, 290, 151-157.
[53] J. Yang, H. Yan, X. Zong, F. Wen, M. Liu, C. Li, "Roles of Cocatalysts In Semiconductor-Based Photocatalytic Hydrogen Production" Phil. Trans. R. Soc. A 2013, 371, 20110430.
[54] G. Gong, Y. Liu, B. Mao, L. Tan, Y. Yang, W. Shi, "Ag Doping of Zn-In-S Quantum Dots for Photocatalytic Hydrogen Evolution: Simultaneous Bandgap Narrowing and Carrier Lifetime Elongation" Appl. Catal. B 2017, 216, 11-19.
[55] W. Cao, Y. Qin, H. Huang, B. Mao, Y. Liu, Z. Kang, "Extraction of High-Quality Quantum Dot Photocatalysts via Combination of Size Selection and Electrochemiluminescence" ACS Sustainable Chem. Eng. 2019, 7, 20043-20050.
[56] L. Tan, Y. Liu, B. Mao, B. Luo, G. Gong, Y. Hong, B. Chen, W. Shi, "Effective Bandgap Narrowing of Cu–In–Zn–S Quantum Dots for Photocatalytic H2 Production via Cocatalyst-Alleviated Charge Recombination" Inorg. Chem. Front. 2018, 5, 258-265.
[57] X. Qu, P. J. J. Alvarez, Q. Li, "Applications of Nanotechnology in Water and Wastewater Treatment" Water Res. 2013, 47, 3931-3946.
[58] A. Kudo, Y. Miseki, "Heterogeneous Photocatalyst Materials for Water Splitting" Chem. Soc. Rev. 2009, 38, 253-278
[59] Y.-W. Su, W.-H. Lin, Y.-J. Hsu, K.-H. Wei, "Conjugated Polymer/Nanocrystal Nanocomposites for Renewable Energy Applications in Photovoltaics and Photocatalysis" Small 2014, 10, 4427-4442.
[60] L.-L. Tan, W.-J. Ong, S.-P. Chai, B. T. Goh, A. R. Mohamed, "Visible-Light-Active Oxygen-Rich TiO2 Decorated 2D Graphene Oxide with Enhanced Photocatalytic Activity toward Carbon Dioxide Reduction" Appl. Catal. B 2015,179, 160-170.
[61] F. Wang, Y. Jiang, D. J. Lawes, G. E. Ball, C. Zhou, Z. Liu, R. Amal, "Analysis of the Promoted Activity and Molecular Mechanismof Hydrogen Production over Fine Au-Pt Alloyed TiO2 Photocatalysts" ACS Catal. 2015, 5, 3924-3931.
[62] M. Antoniadou, V. M. Daskalaki, N. Balis, D. I. Kondarides, C. Kordulis, P. Lianos, "Photocatalysis and photoelectrocatalysis using (CdS-ZnS)/TiO2 combined photocatalysts" Appl. Catal. B 2011, 107, 188-196.
[63] C. Wang, Z. Chen, H. Jin, C. Cao, J. Li, Z. Mi, "Enhancing Visible-Light Photoelectrochemical Water Splitting through Transition-Metal Doped TiO2 nanorod arrays" J. Mater. Chem. A 2014, 2, 17820-17827.
[64] Y. Gao, X. Ding, J. Liu, L. Wang, Z. Lu, L. Li, L. Sun, "Visible Light Driven Water Splitting in a Molecular Device with Unprecedentedly High Photocurrent Density" J. Am. Chem. Soc. 2013, 135, 4219-4222.
[65] Z. Yu, F. Li, L. Sun, "Recent Advances in Dye-Sensitized Photoelectrochemical Cells for Solar Hydrogen Production Based on Molecular Components" Energy Environ. Sci. 2015, 8, 760−775.
[66] S. Shuang, R. Lv, Z. Xie, Z. Zhang, "Surface Plasmon Enhanced Photocatalysis of Au/Pt-decorated TiO2 Nanopillar Arrays" Sci. Rep. 2016, 6, 26670-26677.
[67] Y.-C. Pu, G. Wang, K.-D. Chang, Y. Ling, Y.-K. Lin, B. C. Fitzmorris, C.-M. Liu, X. Lu, Y. Tong, J. Z. Zhang, Y.-J. Hsu, "Au Nanostructure-Decorated TiO2 Nanowires Exhibiting Photoactivity Across Entire UV-Visible Region for Photoelectrochemical Water Splitting" Nano Lett. 2013, 13, 3817-3823.
[68] Y.-S. Chang, M. Choi, M. Baek, P.-Y. Hsieh, K. Yong, Y.-J. Hsu, "CdS/CdSe Co-Sensitized Brookite H:TiO2 Nanostructures: Charge Carrier Dynamics and Photoelectrochemical Hydrogen Generation" Appl. Catal. B 2018, 225, 379-385.
[69] Y.-L. Lee, C.-F. Chi, S.-Y. Liau, "CdS/CdSe Co-Sensitized TiO2 Photoelectrode for Efficient Hydrogen Generation in a Photoelectrochemical Cell" Chem. Mater. 2010, 22, 922-927.
[70] Y. Liu, L. Zhao, M. Li, L. Guo, "TiO2/CdSe Core−Shell Nanofiber Film for Photoelectrochemical Hydrogen Generation" Nanoscale 2014, 6, 7397-7404.
[71] X. Fu, X. Wang, Z. Chen, Z. Zhang, Z. Li, D. Y. C. Leung, L. Wu, X. Fu, "Photocatalytic Performance of Tetragonal and Cubic β-In2S3 for the Water Splitting under Visible Light Irradiation" Appl.Catal. B 2010, 95, 393-399.
[72] M.-Q. Yang, B. Weng, Y.-J. Xu, "Improving the Visible Light Photoactivity of In2S3-Graphene Nanocomposite via a Simple Surface Charge Modification Approach" Langmuir 2013, 29,10549-10558.
[73] X. Li, B. Weng, N. Zhang, Y.-J. Xu, "In Situ Synthesis of Hierarchical In2S3-Graphene Nanocomposite Photocatalyst for Selective Oxidation" RSC Adv. 2014, 4, 64484-64493.
[74] L. Wang, L. Xia, Y. Wu, Y. Tian, "Zr-Doped β-In2S3 Ultrathin Nanoflakes as Photoanodes: Enhanced Visible-Light-Driven Photoelectrochemical Water Splitting" ACS Sustainable Chem. Eng. 2016, 4, 2606-2614.
[75] C. Gao, J. Li, Z. Shan, F. Huang, H. Shen, "Preparation and Visible-Light Photocatalytic Activity of In2S3/TiO2 Composite" Mater.Chem. Phys. 2010, 122, 183-187.
[76] J. Herrero, J. Ortega, "n-TYPE In2S3 Thin Films Prepared by Gas Chalcogenization of Metallic Electroplated Indium: Photoelectrochemical Characrerization" Sol. Energy Mater. 1988, 17, 357-368.
[77] D. Meissner, R. Memming, B. Kastening, "Photoelectrochemistry of Cadmium Sulfide. 1. Reanalysis of Photocorrosion and Flat-Band Potential" J. Phys. Chem. 1988, 92, 3476-3483.
[78] A. Pareek, P. Paik, P. H. Borse, "Nanoniobia Modification of CdS Photoanode for an Efficient and Stable Photoelectrochemical Cell" Langmuir 2014, 30, 15540-15549.
[79] H. Yu, X. Huang, P. Wang, J. Yu, "Enhanced Photoinduced-Stability and Photocatalytic Activity of CdS by Dual Amorphous Cocatalysts: Synergistic Effect of Ti(IV)-Hole Cocatalyst and Ni(II)-Electron Cocatalyst" J. Phys. Chem. C 2016, 120, 3722-3730.
[80] W. Lee, H. J. Son, D.-K. Lee, B. Kim, H. Kim, K. Kim, M. J. Ko, "Suppression of Photocorrosion in CdS/CdSe Quantum Dot-Sensitized Solar Cells: Formation of a Thin Polymer Layer on the Photoelectrode Surface" Synth. Met. 2013, 165, 60-63.
[81] N. Soltani, E. Saion, W. Mahmood Mat Yunus, M. Navasery, G. Bahmanrokh, M. Erfani, M.R. Zare, E. Gharibshahi, "Photocatalytic Degradation of Methylene Blue under Visible Light Using PVP-Capped ZnS and CdS Nanoparticles" Sol. Energy 2013, 97, 147-154.
[82] D. Ma, J.-W. Shi, Y. Zou, Z. Fan, X. Ji, C. Niu, L. Wang, "Rational Design of CdS@ZnO Core-Shell Structure via Atomic Layer Deposition for Drastically Enhanced Photocatalytic H2 Evolution with Excellent Photostability" Nano Energy 2017, 39, 183-191.
[83] D. Huang, K. Wang, L. Yu, T. H. Nguyen, S. Ikeda, F. Jiang, "Over 1% Efficient Unbiased Stable Solar Water Splitting Based on a Sprayed Cu2ZnSnS4 Photocathode Protected by a HfO2 Photocorrosion-Resistant Film" ACS Energy Lett. 2018, 3, 1875-1881.
[84] M. Wang, L. Cai, Y. Wang, F. Zhou, K. Xu, X. Tao, Y. Chai, "Graphene-Draped Semiconductors for Enhanced Photocorrosion Resistance and Photocatalytic Properties" J. Am. Chem. Soc. 2017, 139, 4144-4151.
[85] J.-P. Song, P.-F. Yin, J. Mao, S.-Z. Qiao, X.-W. Du, "Catalytically Active and Chemically Inert CdIn2S4 Coating on CdS Photoanode for Efficient and Stable Water Splitting" Nanoscale 2017, 9, 6296-6301.
[86] Y. Zhou, D. Shin, E. Ngaboyamahina, W. Han, C. B. Parker, D. B. Mitzi, J. T. Glass, "Efficient and Stable Pt/TiO2/CdS/Cu2BaSn(S,Se)4 Photocathode for Water Electrolysis Applications" ACS Energy Lett. 2018, 3, 177-183.
[87] S. Cao, X. Yan, Z. Kang, Q. Liang, X. Liao, Y. Zhang, "Band Alignment Engineering for Improved Performance and Stability of ZnFe2O4 Modified CdS/ZnO Nanostructured Photoanode for PEC Water Splitting" Nano Energy 2016, 24, 25-31.
[88] J. Zhang, Q. Zhang, L. Wang, X. Li, W. Huang, "Interface Induce Growth of Intermediate Layer for Bandgap Engineering Insights into Photoelectrochemical Water Splitting" Sci. Rep. 2016, 6, 27241.
[89] Y. Liu, Y.-X. Yu, W.-D. Zhang, "MoS2/CdS Heterojunction with High Photoelectrochemical Activity for H2 Evolution under Visible Light: The Role of MoS2" J. Phys. Chem. C 2013, 117, 12949-12957.
[90] M.-Q. Yang, C. Han, Y.-J. Xu, "Insight into the Effect of Highly Dispersed MoS2 versus Layer-Structured MoS2 on the Photocorrosion and Photoactivity of CdS in Graphene−CdS−MoS2 Composites" J.Phys. Chem. C 2015, 119, 27234-27246.
[91] H. Zhang, Y. Zhu, "Significant Visible Photoactivity and Antiphotocorrosion Performance of CdS Photocatalysts after Monolayer Polyaniline Hybridization" J. Phys. Chem. C 2010, 114, 5822-5826.
[92] K.-A. Tsai, Y.-J. Hsu, "Graphene Quantum Dots Mediated Charge Transfer of CdSe Nanocrystals for Enhancing Photoelectrochemical Hydrogen Production" Appl. Catal. B 2015, 164, 271-278.
[93] A. Mumtaz, N. M. Mohamed, M. Mazhar, M. A. Ehsan, M. S. Mohamed Saheed, "Core−Shell Vanadium Modified Titania@β-In2S3Hybrid Nanorod Arrays for Superior Interface Stability and Photochemical Activity" ACS Appl. Mater. Interfaces 2016, 8, 9037-9049.
[94] P. A. Sant, P. V. Kamat, "Interparticle Electron Transfer Between Size-Quantized CdS and TiO2 Semiconductor Nanoclusters" Phys. Chem. Chem. Phys. 2002, 4, 198-203.
[95] Z. Zhang, B. Chen, M. Baek, K. Yong, "Multichannel Charge Transport of a BiVO4/(RGO/WO3)/W18O49 Three-Storey Anode for Greatly Enhanced Photoelectrochemical Efficiency" ACS Appl. Mater.Interfaces 2018, 10, 6218-6227.
[96] X. Feng, K. Zhu, A. J. Frank, C. A. Grimes, T. E. Mallouk, "Rapid Charge Transport in Dye-Sensitized Solar Cells Made from Vertically Aligned Single-Crystal Rutile TiO2 Nanowires" Angew.Chem., Int. Ed. 2012, 51, 2727-2730.
[97] Y.-C. Chen, T.-C. Liu, Y.-J. Hsu, "ZnSe·0.5N2H4 Hybrid Nanostructures: A Promising Alternative Photocatalyst for Solar Conversion" ACS Appl. Mater. Interfaces 2015, 7, 1616-1623.
[98] Y.-C. Pu, Y. Ling, K.-D. Chang, C.-M. Liu, J. Z. Zhang, Y.-J. Hsu, Y. Li, "Surface Passivation of TiO2 Nanowires Using a Facile Precursor-Treatment Approach for Photoelectrochemical Water Oxidation" J. Phys. Chem. C 2014, 118, 15086-15094.
[99] B. Liu, E. S. Aydil, "Growth of Oriented Single-Crystalline Rutile TiO2 Nanorods on Transparent Conducting Substrates for Dye-Sensitized Solar Cells" J. Am. Chem. Soc. 2009, 131, 3985-3990.
[100] P. Pistor, J. M. Merino Álvarez, M. León, M. di Michiel, S. Schorr, R. Klenk, S. Lehmann, "Structure Reinvestigation of α-, β- and γ-In2S3" Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. 2016, 72, 410-415.
[101] Y.-H. Chiu, T.-H. Lai, C.-Y. Chen, P.-Y. Hsieh, K. Ozasa, M. Niinomi, K. Okada, T.-F. M. Chang, N. Matsushita, M. Sone, Y.-J. Hsu, "Fully Depleted Ti-Nb-Ta-Zr-O Nanotubes: Interfacial Charge Dynamics and Solar Hydrogen Production" ACS Appl. Mater.Interfaces 2018, 10, 22997-23008.
[102] W. -L. Weng, C.-Y. Hsu, J.-S. Lee, H.-H. Fan, C.-N. Liao, "Twin-Mediated Epitaxial Growth of Highly Lattice-Mismatched Cu/Ag Core-Shell Nanowires" Nanoscale 2018, 10, 9862-9866.
[103] Y. Wang, P. Gao, L. Sha, Q. Chi, L. Yang, J. Zhang, Y. Chen, M. Zhang, "The Spatial Separation of Electrons and Holes for Enhancing Semiconductor’s Gas-Sensing Property: ZnO/ZnSnO3 Nanorod Arrays Prepared by a Hetero-Epitaxial Growth" Nanotechnology 2018, 29, 175501.
[104] C. Cao, C. Hu, X. Wang, S. Wang, Y. Tian, H. Zhang, "UV Sensor Based on TiO2 Nanorod Arrays on FTO Thin Film" Sens. Actuators B 2011, 156, 114-119.
[105] J. Ning, K. Men, G. Xiao, L. Zhao, L. Wang, B. Liu, B. Zou, "Synthesis, Optical Properties and Growth Process of In2S3 Nanoparticles" J. Colloid Interface Sci. 2010, 347, 172-176.
[106] F. Wang, Z. Jin, Y. Jiang, E. H. G. Backus, M. Bonn, S. N. Lou, D. Turchinovich, R. Amal, "Probing the Charge Separation Process on In2S3/Pt-TiO2 Nanocomposites for Boosted Visible-light Photocatalytic Hydrogen Production" Appl. Catal. B 2016, 198, 25-31.
[107] Y.-H. Chiu, Y.-J. Hsu, "Au@Cu7S4 Yolk@Shell Nanocrystal-Decorated TiO2 Nanowires as an All-Day-Active Photocatalyst for Environmental Purification" Nano Energy 2017, 31, 286-295.
[108] C. Tapia, S. P. Berglund, D. Friedrich, T. Dittrich, P. Bogdanoff, Y. Liu, S. Levcenko, T. Unold, J. C. Conesa, A. L. DeLacey, M. Pita, S. Fiechter, "Synthesis and Characterization of V-Doped β-In2S3 Thin Films on FTO Substrates" J. Phys. Chem. C 2016, 120, 28753-28761.
[109] J. Gu, J. A. Aguiar, S. Ferrere, K. X. Steirer, Y. Yan, C. Xiao, J. L. Young, M. Al-Jassim, N. R. Neale, J. A. Turner, "A Graded Catalytic-Protective Layer for an Efficient and Stable Water-Splitting Photocathode" Nat. Energy 2017, 2, 16912.
[110] T. Yoshida, A. Yamaguchi, N. Umezawa, M. Miyauchi, "Photocatalytic CO2 Reduction Using a Pristine Cu2ZnSnS4 Film Electrode under Visible Light Irradiation" J. Phys. Chem. C 2018, 122, 21695-21702.
[111] H. Miyamoto, K. Matsuzaki, A. Yamaguchi, M. Miyauchi, "Visible-Light-Active Photoelectrochemical Z-Scheme System Basedon Top 5 Clarke-Number Elements" ACS Appl. Energy Mater. 2018, 1, 5954.
[112] Y. Shiga, N. Umezawa, N. Srinivasan, S. Koyasu, E. Sakai, M. Miyauchi, "A Metal Sulfide Photocatalyst Composed of Ubiquitous Elements for Solar Hydrogen Production" Chem. Commun. 2016, 52, 7470-7473.
[112] E. Ismail, S. Khamlich, M. Dhlamini, M. Maaza, "Green Biosynthesis of Ruthenium Oxide Nanoparticles on Nickel Foam as Electrode Material for Supercapacitor Applications" RSC Adv. 2016, 6, 86843-86850.
[114] J. Hong, D. S. Yoon, S. K. Kim, T. S. Kim, S. Kim, E. Y. Pak, K. No, "AC Frequency Characteristics of Coplanar Impedance Sensors as Design Parameters" Lab Chip 2005, 5, 270-279.
[115] Y.-H. Chiu, K.-D. Chang, Y.-J. Hsu, "Plasmon-Mediated Charge Dynamics and Photoactivity Enhancement for Au-Decorated ZnO Nanocrystals" J. Mater. Chem. A 2018, 6, 4286-4296.
[116] L. Zhu, Q. Lu, L. Lv, Y. Wang, Y. Hu, Z. Deng, Z. Lou, Y. Hou, F. Teng, "Ligand-Free Rutile and Anatase TiO2 Nanocrystals as Electron Extraction Layers for High Performance Inverted Polymer Solar Cells" RSC Adv. 2017, 7, 20084-20092.
[117] M. Dan, Q. Zhang, S. Yu, A. Prakash, Y. Lin, Y. Zhou, "Noble-Metal-Free MnS/In2S3 Composite as Highly Efficient Visible Light Driven Photocatalyst for H2 Production from H2S" Appl. Catal.B 2017, 217, 530-539.
[118] Y. Li, S. Luo, Z. Wei, D. Meng, M. Ding, C. Liu, "Electrodeposition Technique-Dependent Photoelectrochemical and Photocatalytic Properties of an In2S3/TiO2 Nanotube Array" Phys.Chem. Chem. Phys. 2014, 16, 4361-4368.
[119] B. Chai, T. Peng, P. Zeng, J. Mao, "Synthesis of Floriated In2S3 Decorated with TiO2 Nanoparticles for Efficient Photocatalytic Hydrogen Production under Visible Light" J. Mater. Chem. 2011, 21, 14587-14593.
[120] D. Archer, "Global Warming: Understanding the Forecast", Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Second Edition 2011..
[121] Full Report, BP Statistical Review of World Energy 2019.
[122] M. Grätzel, "Photoelectrochemical cells" Nature 2001, 414, 338-344.
[123] M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, N. S. Lewis, "Solar Water Splitting Cells" Chem. Rev. 2010, 110, 6446-6473.
[124] K. Sivula, R. V. D. Krol, "Semiconducting Materials for Photoelectrochemical Energy Conversion" Nat. Rev. Mater. 2016, 1, 1-16.
[125] D. K. Lee, D. Lee, M. A. Lumley, K.-S. Choi, "Progress on Ternary Oxide-Based Photoanodes for Use in Photoelectrochemical Cells for Solar Water Splitting" Chem. Soc. Rev. 2019, 48, 2126-2157.
[126] C. Jiang, S. J. A. Moniz, A. Wang, T. Zhang, J. Tang, "Photoelectrochemical Devices for Solar Water Splitting-Materials and Challenges" Chem. Soc. Rev. 2017, 46, 4645-4660.
[127] H. H. Do, D. L. T. Nguyen, X. C. Nguyen, T.-H. Le, T. P. Nguyen, Q. T. Trinh, S. H. Ahn, D.-V. Vo, S. Y. Kim, Q. V. Le, "Recent Progress in TiO2-Based Photocatalysts for Hydrogen Evolution Reaction: a Review" Arab. J. Chem. 2020, 13, 3653-3671.
[128] M. Tayebi, B.-K. Lee, "Recent Advances in BiVO4 Semiconductor Materials for Hydrogen Production Using Photoelectrochemical Water Splitting". Renew. Sust. Energ. Rev. 2019, 111, 332-343.
[129] J. H. Kim, J. S. Lee, "Elaborately Modified BiVO4 Photoanodes for Solar Water Splitting" Adv. Mater. 2019, 31, 1806938.
[130] S. Shen, S. A. Lindley, X. Chen, J. Z. Zhang, "Hematite Heterostructures for Photoelectrochemical Water Splitting: Rational Materials Design and Charge Carrier Dynamics" Energy Environ. Sci. 2016, 9, 2744-2775.
[131] P. Sharma, J.-W. Jang, J. W. Lee, "Key Strategies to Advance the Photoelectrochemical Water Splitting Performance of α-Fe2O3 Photoanode" ChemCatChem 2019, 11, 157-179.
[132] L. Pan, J. H. Kim, M. T. Mayer, M.-K. Son, A. Ummadisingu, J. S. Lee, A. Hagfeldt, J. Luo, M. Grätzel, "Boosting the Performance of Cu2O Photocathodes for Unassisted Solar Water Splitting Devices" Nat. Catal. 2018, 1, 412-420.
[133] I. V. Bagal, N. R. Chodankar, M. A. Hassan, A. Waseem, M. A. Johar, D.-H. Kim, S.-W Ryu, "Cu2O as an Emerging Photocathode for Solar Water Splitting – A Status Review" Int. J. Hydrog. Energy 2019, 44, 21351-21378.
[134] K.-H. Ye, H. Li, D. Huang, S. Xiao, W. Qiu, M. Li, Y. Hu, W. J. Mai, S. Yang, "Enhancing Photoelectrochemical Water Splitting by Combing Work Function Tuning and Heterojunction Engineering" Nat. Commun. 2019, 10, 3687.
[135] P. D. Antunez, D. A. Torelli, F. Yang, F. Rabuffetti, N. S. Lewis, R. L. Brutchey, "Low Temperature Solution-Phase Deposition of SnS thin films" Chem Mater. 2014, 26, 5444-5446.
[136] M. Seal, N. Singh, E. W. McFarland, J. Baltrusaitis, "Electrochemically Deposited Sb and In Doped Tin Sulphide (SnS) Photoelectrodes" J. Phys. Chem. C 2015. 119, 6471-6480.
[137] W. Gao, C. Wu, M. Cao, J. Huang, L. Wang, Y. Shen, "Thickness Tunable SnS Nanosheets for Photoelectrochemical Water Splitting" J. Alloys Compd. 2016, 688, 668-674.
[138] W. Cheng, N. Singh, W. Elliott, J. Lee, A. Rassoolkhani, X. Jin, E. W. McFarland, S. Mubeen, "Earth-Abundant Tin Sulfide-Based Photocathodes for Solar Hydrogen Production" Adv. Sci. 2018, 5, 1700362.
[139] M. Patel, M. Kumar, J. Kim, Y. K. Kim, "Photocurrent Enhancement by a Rapid Thermal Treatment of Nanodish-Shaped SnS Photocathodes" J. Phys. Chem. Lett. 2017, 8, 6099-6105.
[140] R. R. Prabhakar, W. Septina, S. Siol, T. Moehl, R. Wick-Joliat, S. D. Tilley, "Photocorrosion-Resistant Sb2Se3 Photocathodes with Earth Abundant MoSx Hydrogen Evolution Catalyst" J. Mater. Chem. A 2017. 5, 23139-23145.
[141] J. Kim, W. Yang, Y. Oh, H. Lee, S. Lee, H. Shin, J. Kim, J. Moon, "Self-Oriented Sb2Se3 Nanoeedle Photocathodes for Water Splitting Obtained by a Simple Spin-Coating Method" J. Mater. Chem. A 2017, 5, 2180-2187.
[142] L. Zhang, Y. Li, C. Li, Q. Chen, Z. Zhen, X. Jiang, M. Zhong, F. Zhang, H. Zhu, "Scalable Low-Band-Gap Sb2Se3 Thin-Film Photocathodes for Efficient Visible-Near-Infrared Solar Hydrogen Evolution" ACS Nano 2017, 11, 12753-12763.
[143] W. Yang, J. Ahn, Y. Oh, J. Tan, H. Lee, J. Park, H.-C. Kwon, J. Kim, W. Jo, J. Kim, J. Moon, "Adjusting the Anisotropy of 1D Sb2Se3 Nanostructures for Highly Efficient Photoelectrochemical Water Splitting" Adv. Energy Mater. 2018, 8, 1702888.
[144] J. Park, W. Yang, Y. Oh, J. Tan, H. Lee, R. Boppella, J. Moon, "Efficient Solar-to-Hydrogen Conversion from Neutral Electrolytes Using Morphology-Controlled Sb2Se3 Light Absorbers" ACS Energy Lett. 2019, 4, 517-526.
[145] H. Lee, W. Yang, J. Tan, Y. Oh, J. Park, J. Moon, "Cu-Doped NiOx as an Effective Hole-Selective Layer for a High-Performance Sb2Se3 Photocathode for Photoelectrochemical Water Splitting" ACS Energy Lett. 2019, 4, 995-1003.
[146] W. Yang, J. Moon, "Rapid Advances in Antimony Triselenide Photocathodes for Solar Hydrogen Generation" J. Mater. Chem. A 2019, 7, 20467-20477.
[147] J. Park, W. Yang, J. Tan, H. Lee, J. W. Yun, S. G. Shim, Y. S. Park, J. Moon, "Hierarchal Nanorod-Derived Bilayer Strategy to Enhance the Photocurrent Density of Sb2Se3 Photocathodes for Photoelectrochemical Water Splitting" ACS Energy Lett. 2020, 5, 136-145.
[148] M. Tekalgne, A. Hasani, Q. V. Le, S. Y. Kim, "Transition Metal Dichalcogenide-Based Composites for Hydrogen Production" Funct. Compos. Struct. 2019, 1, 012001.
[149] M. Tekalgne, A. Hasani, Q. V. Le, T. P. Nguyen, K. S. Choi, T. H. Lee, H. W. Jang, Z. Luo, S. Y. Kim, "CdSe Quantum Dots Doped WS2 Nanoflowers for Enhanced Solar Hydrogen Production" Phys. Status. Solidi A 2019, 216, 1800853.
[150] W. Guo, Q. V. Le, H. H. Do, A. Hasani, M. Tekalgne, S.-R. Bae, T. H. Lee, H. W. Jang, S. H. Ahn, S. Y. Kim, "Ni3S4@MoSe2 Composites for Hydrogen Evolution Reaction" Appl. Sci. 2019, 9, 5035.
[151] T. P. Nguyen, Q. V. Le, S. Choi, T. H. Lee, S.-P. Hong, K. S. Choi, H. W. Jang, M. H. Lee, T. J. Park, S. Y. Kim, "Surface Extension of MeS2 (Me=Mo or W) Nanosheets by Embedding MeSx for Hydrogen Evolution Reaction" Electrochim Acta 2018, 292, 136-141.
[152] M. A. Tekalgne, A. Hasani, D. Y. Heo, Q. V. Le, T. P. Nguyen, T. H. Lee, S. H. Ahn, H. W. Jang, S. Y. Kim, "SnO2@WS2/p-Si Heterostructure Photocathode for Photoelectrochemical Hydrogen Production" J. Phys. Chem. C 2020, 124, 647-652.
[153] T. Su, Z. D. Hood, M. Naguib, L. Bai, R. Luo, C. M. Rouleau, I. N. Ivanov, H. Ji, Z. Qin, Z. Wu, "2D/2D Heterojunction of Ti3C2/g-C3N4 Nanosheets for Enhanced Photocatalytic Hydrogen Evolution" Nanoscale 2019, 11, 8138-8149.
[154] V.-H. Nguyen, T. P. Nguyen, T.-H. Le, D.-V. Vo, D. L. Nguyen, Q. T. Trinh, I. T. Kim, Q. V. Le, "Recent Advances in Two-Dimensional Transition Metal Dichalcogenides as Photoelectrocatalyst for Hydrogen Evolution Reaction" J. Chem. Technol. Biotechnol. 2020, 1
[155] V.-H. Nguyen, B.-S. Nguyen, C. Hu, C. C. Nguyen, D. L. T. Nguyen, M. T. N. Kinh, D.-V. N. Vo, Q. T. Trinh, M. Shokouhimehr, A. Hasani, S. Y. Kim, Q. V. Le, "Novel Architecture Titanium Carbide (Ti3C2Tx) MXene Cocatalysts toward Photocatalytic Hydrogen Production: a Mini-Review" Nanomaterials 2020, 10, 602.
[156] A. Hasani, M. Tekalgne, Q. V. Le, H. W. Jang, S. Y. Kim, "Two-Dimensional Materials as Catalysts for Solar Fuels: Hydrogen Evolution Reaction and CO2 Reduction" J. Mater. Chem. A 2019, 7, 430-454.
[157] W. Ma, B. Yao, W. Zhang, Y. He, Y. Yu, J. Niu, C. Wang, "A Novel Multi-Flaw MoS2 Nanosheet Piezocatalyst with Superhigh Degradation Efficiency for Ciprofloxacin" Environ. Sci.: Nano 2018, 5, 2876–2887.
[158] H. Lee, S. Deshmukh, J. Wen, V. Z. Costa, J. S. Schuder, M. Sanchez, A. S. Ichimura, E. Pop, B. Wang, A. K. M. Newaz, "Layer-Dependent Interfacial Transport and Optoelectrical Properties of MoS2 on Ultraflat Metals" ACS Appl. Mater. Interfaces 2019, 11, 31543-31550.
[159] P. Atkin, T. Daeneke, Y. Wang, B. J. Carey, K. J. Berean, R. M. Clark, J. Z. Ou, A. Trinchi, I. S. Cole, K. Kalantar-zadeh, "2D WS2/Carbon Dot Hybrids with Enhanced Photocatalytic Activity" J. Mater. Chem. A 2016, 4, 13563-13571
[160] V. D. L. Asunción-Nadal, B. Jurado-Sánchez, L. Vázquez, A. Escarpa, "Near Infrared-Light Responsive WS2 Microengines with High-Performance Electro- and Photocatalytic Activities". Chem. Sci. 2020, 11, 132-140.
[161] A. Efekhari, "Molybdenum Diselenide (MoSe2) for Energy Storage, Catalysis, and Optoelectronics" Appl. Mater. Today 2017. 8, 1-17.
[162] X. Yu, K. Sivula, "Toward Large-Area Solar Energy Conversion with Semiconducting 2D Transition Metal Dichalcogenides" ACS Energy Lett. 2016, 1, 315-322.
[163] H. Jin, C. Guo, X. Liu, J. Liu, A. Vasileff, J. Yan, Y. Zheng, S.-Z. Qiao, "Emerging Two-Dimensional Nanomaterials for Electrocatalysis" Chem. Rev. 2018, 118, 6337-6408.
[164] M. A. Tekalgne, K. V. Nguyen, D. L. Nguyen, V. -H. Nguyen, T. P. Nguyen, D.-V. N. Vo, Q. T. Trinh, A. Hasani, H. H. Do, T. H. Lee, H. W. Jang, H. S. Le, Q. V. Le, S. Y. Kim, "Hierarchical Molybdenum Disulfide on Carbon Nanotube-Reduced Graphene Oxide Composite Paper as Efficient Catalysts for Hydrogen Evolution Reaction" J. Alloys Compd. 2020, 823, 153897.
[165] A. Hasani, W. V. Le, M. Tekalgne, M.-J. Choi, S. Choi, T. H. Lee, H. Kim, S. H. Ahn, H. W. Jang, S. Y. Kim, "Fabrication of a WS2/p-Si Heterostructure Photocathode Using Direct Hybrid Thermolysis". ACS Appl. Mater. Interfaces 2019, 11, 29910-29916.
[166] T. P. Nguyen, D. L. T. Nguyen, V.-H. Nguyen, T.-H. Le, Q. V. Ly, D.-V. N. Vo, Q. V. Nguyen, H. S. Le, H. W. Jang, S. Y. Kim, Q. V. Le, "Facile Synthesis of WS2 Hollow Spheres and Their Hydrogen Evolution Reaction Performance" Appl. Surf. Sci. 2020, 505,144574.
[167] T. P. Nguyen, S. Y. Kim, T. H. Lee, H. W. Jang, Q. V. Le, I. T. Kim, "Facile Synthesis of W2C@WS2 Alloy Nanoflowers and Their Hydrogen Generation Performance" Appl. Surf. Sci. 2020, 504, 144389.
[168] A. Hasani, Q. V. Le, M. Tekalgne, M.-J. Choi, T. H. Lee, H. W. Jang, S. Y. Kim, "Direct Synthesis of Two-Dimensional MoS2 on p-type Si and Application to Solar Hydrogen Production" NPG Asia Mater. 2019, 11, 47.
[169] T. P. Nguyen, D. M. T. Nguyen, D. L. Tran, H. K. Le, D.-V. N. Vo, S. S. Lam, R. S. Varma, M. Shokouhimehr, C. C. Nguyen, Q. V. Le, "MXenes: Applications in Electrocatalytic, Photocatalytic Hydrogen Evolution Reaction and CO2 Reduction" Mol. Catal. 2020, 486, 110850.
[170] X. Yu, N. Guijarro, M. Johnson, K. Sivula, "Defect Mitigation of Solution-Processed 2D WSe2 Nanoflakes for Solar-to-Hydrogen Conversion" Nano Lett. 2018, 18, 215-222.
[171] T. S. Lopes, J. M. V. Cunha, S. Bose, J. R. S. Barbosa, J. Borme, O. Donzel-Gargand, C. Rocha, R. Silva, A. Hultqvist, W.-C. Chen, A. G. Silva, M. Edoff, P. A. Fernandes, M. P. Salomé, "Rear Optical Reflection and Passivation Using a Nanopatterned Metal/Dielectric Structure in Thin-Film Solar Cells" IEEE J. Photovolt. 2019, 9, 1421-1427.
[172] C.-W. Chen, H.-W. Tsai, Y.-C. Wang, Y.-C. Shih, T.-T. Su, C.-H. Yang, W.-S. Lin, C.-H. Shen, J.-M. Shieh, Y.-L. Chueh, "Rear-Passivated Ultrathin Cu(In,Ga)Se2 Films by Al2O3 Nanostructures Using Glancing Angle Deposition toward Photovoltaic Devices with Enhanced Efficiency" Adv. Funct. Mater. 2019, 29, 1905040.
[173] G. Birant, J. D. Wild, M. Meuris, J. Poortmans, B. Vermang, "Dielectric-Based Rear Surface Passivation Approaches for Cu(In,Ga)Se2 Solar Cells-a Review" Appl. Sci. 2019, 9, 677.
[174] S. Ishizuka, "CuGaSe2 Thin Film Solar Cells: Challenges for Developing Highly Efficient Wide-Gap Chalcopyrite Photovoltaics" Phys. Status Solidi A 2019, 216, 1800873.
[175] C.-C Tseng, G. Wu, L.-B. Chang, M.-J. Jeng, W.-S. Feng, D. W. Chen, L.-C. Chen, K.-L. Lee, "Effects of Annealing on Characteristics of Cu2ZnSnSe4/CH3NH3PbI3/ZnS/IZO Nanostructures for Enhanced Photovoltaic Solar Cells" Nanomaterials 2020, 10,521.
[176] T. Unold, C. A. Kaufmann, "Chalcopyrite thin-film materials and solar cells" Renew. Energ. 2012, 1, 399-422.
[177] J. Luo, S. D. Tilley, L. Steier, M. Schreier, M. T. Mayer, H. J. Fan, M. Grätzel, "Solution Transformation of Cu2O into CuInS2 for Solar Water Splitting" Nano Lett. 2015, 15, 1395-1402.
[178] W. Septina, Gunawan, S. Ikeda, T. Harada, M. Higashi, R. Abe, M. Matsumura, "Photosplitting of Water from Wide-Gap Cu(In,Ga)S2 Thin Films Modified with a CdS Layer and Pt Nanoparticles for a High-Onset-Potential Photocathode" J. Phys. Chem. C 2015, 119, 8576-8583.
[179] W. Hou, S. B. Cronin, "A review of surface plasmon resonance-enhanced photocatalysis" Adv. Funct. Mater. 2013, 23, 1612-1619.
[180] H. Robatjazi, S. M. Bahauddin, C. Doiron, I. Thomann, "Direct Plasmon-Driven photoelectrocatalysis" Nano Lett. 2015, 15, 6155-6161.
[181] X. Zeng, Y. Zhou, S. Ji, H. Luo, H. Yao, X. Huang, P. Jin, "The Preparation of a High Performance Nearinfrared Shielding CsxWO3/SiO2 Composite Resin Coating and Research on Its Optical Stability under Ultraviolet Illumination" J. Mater. Chem. C 2015, 3, 8050-8060.
[182] J. Zhang, X. Jin, P. I. Morales-Guzman, X. Yu, H. Liu, H. Zhang, L. Razzari, J. P. Claverie, "Engineering the Absorption and Field Enhancement Properties of Au-TiO2 Nanohybrids via Whispering Gallery Mode Resonances for Photocatalytic Water Splitting" ACS Nano 2016, 10 4496-4503.
[183] H. Bai, W. Yi, J. Li, G. Xi, Y. Li, H. Yanga, J. Liu, "Direct Growth of Defect-Rich MoO3-x Ultrathin Nanobelts for Efficiently Catalyzed Conversion of Isopropyl Alcohol to Propylene under Visible Light" J. Mater. Chem. A 2015, 4, 1566-1571.
[184] S. Kasani, P. Zheng, J. Bright, N. Wu, "Tunable Visible-Light Surface Plasmon Resonance of Molybdenum Oxide Thin Films Fabricated by E–beam Evaporation" ACS Appl. Electron. Mater. 2019, 1, 2389-2395.
[185] A. H. Odda, Y. Xu, J. Lin, G. Wang, N. Ullah, A. Zeb, K. Liang, L.-P. Wen, A.-W. Xu, "Plasmonic MoO3-x Nanoparticles Incorporated in Prussian Blue Frameworks Exhibit Highly Efficient Dual Photothermal/Photodynamic Therapy" J. Mater. Chem. B 2019, 7, 2032-2042.
[186] Z. Li, M. Zheng, N. Wei, Y. Lin, W. Chu, R. Xu, H. Wang, J. Tian, H. Cui, "Broadband-Absorbing WO3-x Nanorod-Decorated Wood Evaporator for Highly Efficient Solar-Driven Interfacial Steam Generation". Sol. Energy Mater Sol. Cells 2020, 205, 110254.
[187] L. Pan, J. Zhang, X. Jia, Y.-H. Ma, X. Zhang, L. Wang, J.-J. Zou, "Highly Efficient Z-scheme WO3-x Quantum Dots/TiO2 for Photocatalytic Hydrogen Generation Chinese" J. Catal. 2017, 38, 253-259.
[188] Y. Ren, C. Li, Q. Xu, J. Yan, Y. Li, P. Yuan, H. Xia, C. Niu, X. Yang, Y. Jia, "Two-Dimensional Amorphous Heterostructures of Ag/a-WO3-x for High efficiency Photocatalytic Performance". Appl. Catal. B 2019, 245, 648-655.
[189] Y. Li, X. Wu, J. Li, K. Wang, G. Zhang, "Z-scheme g-C3N4@CsxWO3 Heterostructure as Smart Window Coating for UV Isolating, Vis Penetrating, NIR Shielding and Full Spectrum Photocatalytic Decomposing VOCs". Appl. Catal. B 2018, 229, 218-226.
[190] A. Shi, H. Li, S. Yin, J. Zhang, Y. Wang, "H2 Evolution over g-C3N4/CsxWO3 under NIR Light". Appl. Catal. B 2018, 228, 75-86.
[191] S. Yang, Y. Wang, H. Sun, "Advances and Prospects for Whispering Gallery Mode Microcavities" Adv. Opt. Mater. 2015, 3, 1136-1162.
[192] X. Shao, T. Zhang, B. Li, Y. Wu, X. Ma, J. Wang, S. Jiang, "Cu-Deficient Plasmonic Cu2-xS Nanocrystals Induced Tunable Photocatalytic Activities". CrystEngComm 2020, 22, 678-685.
[193] S. Sun, P. Li, S. Liang, Z. Yang, "Diversified Copper Sulfide (Cu2-xS) micro-/Nanostructures: A Comprehensive Review on Synthesis, Modifications and Applications" Nanoscale 2017, 9, 11357-11404.
[194] L. Zhou, Z. Liu, Z. Guan, B. Tian, L. Wang, Y. Zhou, Y. Zhou, J. Lei, J. Zhang, Y. Liu, "0D/2D Plasmonic Cu2-xS/g-C3N4 Nanosheets Harnessing UV-Vis-NIR Broad Spectrum for Photocatalytic Degradation of Antibiotic Pollutant" Appl. Catal. B 2019, 263,118326.
[195] Y. Liu, S. Shen, J. Zhang, W. Zhong, X. Huang, "Cu2-xSe/CdS Composite Photocatalyst with Enhanced Visible Light Photocatalysis Activity" Appl. Surf. Sci. 2019, 478, 762-769.
[196] X. Xie, R. Wang, E. Liu, J. Fan, B. Chen, X. Hu, "Fabrication of a Cu2-xSe/rGO Heterojunction Photocatalyst to Achieve Efficient Photocatalytic H2 Generation" Int. J. Hydrog. Energy 2019, 44, 32042-32053.
[197] S. Zhang, Q. Huang, L. Zhang, H. Zhang, Y. Han, Q. Sun, Z. Cheng, H. Qin, S. Dou, Z. Li, "Vacancy Engineering of Cu2-xSe Nanoparticles with Tunable LSPR and Magnetism for Dual-Modal Imaging Guided Photothermal Therapy of Cancer" Nanoscale 2018, 10, 3130-3143.
[198] P. Srathongluan, R. Kuhamaneechot, P. Sukthao, V. Vailikhit, S. Choopun, A. Tubtimtae, "Photovoltaic Performances of Cu2-xTe Sensitizer Based on Undoped and Indium 3+-Doped TiO2 Photoelectrodes and Assembled Counter Electrodes" J. Colloid Interface Sci. 2015, 463, 222-228.
[199] H.-J. Yang, C.-Y. Chen, F.-W. Yuan, H.-Y. Tuan, "Designed Synthesis of Solid and Hollow Cu2-xTe Nanocrystals with Tunable Near-Infrared Localized Surface Plasmon Resonance" J. Phys. Chem. C 2013, 117, 21955-21964.
[200] J. Zheng, B. Dai, J. Liu, J. Liu, M. Ji, J. Liu, Y. Zhou, M. Xu, J. Zhang, "Hierarchical Self-Assembly of Cu7Te5 Nanorods into Superstructures with Enhanced SERS Performance" ACS Appl. Mater. Interfaces. 2016, 8, 35426-35434.
[201] N. Li, H. Fanb, Y. Daib, J. Kongb, L. Ge, "Insight into the Solar Utilization of a Novel Z-scheme Cs0.33WO3/CdS Heterostructure for UV-Vis-NIR Driven Photocatalytic Hydrogen Evolution". Appl. Surf. Sci. 2020, 508, 145200.
[202] Z. Lian, M. Sakamoto, J. J. M. Vequizo, C. S. Kumara Ranasinghe, A. Yamakata, T. Nagai, K. Kimoto, Y. Kobayashi, N. Tamai, T. Teranishi, "Plasmonic p-n Junction for Infrared Light to Chemical Energy Conversion" J. Am. Chem. Soc. 2019, 141, 2446-2450.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊