|
[1] A. L. Linsebigler, G. Q. Lu, J. T. Yates, "Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results" Chem. Rev. 1995, 95, 735-758. [2] A. Mills, S. L. Hunte, "An Overview of Semiconductor Photocatalysis" J. Photochem. Photobiol. A 1997, 108, 1-35. [3] T. Hisatomi, J. Kubota, K. Domen, "Recent Advances in Semiconductors for Photocatalytic and Photoelectrochemical Water Splitting" Chem. Soc. Rev. 2014, 43, 7520-7535. [4] A. Fujishima, K. Honda, "Electrochemical Photolysis of Water at a Semiconductor Electrode" Nature 1972, 238, 37-38. [5] J. Li, N. Wu, "Semiconductor-Based Photocatalysts and Photoelectrochemical Cells for Solar Fuel Generation: A Review" Catal. Sci. Techno. 2015, 5, 1360-1384. [6] S. Chandrasekaran, L. Yao, L, Deng, C. Bowen, Y. Zhang, S. Chen, Z. Lin, F. Peng, P. Zhang, "Recent Advances in Metal Sulfides: from Controlled Fabrication to Electrocatalytic, Photocatalytic and Photoelectrochemical Water Splitting and Beyond" Chem. Soc. Rev. 2019, 48, 4718-4280. [7] K. Zhang, L, Guo, "Metal Sulphide Semiconductors for Photocatalytic Hydrogen Production" Catal. Sci. Technol. 2013, 3, 1672-1690. [8] J. H. Kim, D. Hansora, P. Sharma, J.-W. Jang, J. S. Lee, "Toward Practical Solar Hydrogen Production – an Artifical Photosynthetic Leaf-to-Farm Challenge" Chem. Soc. Rev. 2019, 48, 1908-1971. [9] Y. Tachibana, L. Vayssieres, J. R. Durrent, "Artificial Photosynthesis for Solar Water-Splitting" Nat. Photonics 2012, 6, 511-518. [10] H. B. Yang, J. Miao, S.-F. Hung, F. Huo, H. M. Chen, B. Liu, "Stable Quantum Dot Photoelectrolysis Cell for Unassisted Visible Light Solar Water Splitting" ACS Nano 2014, 8, 10403-10413. [11] M. T. Trinh, L. Polak, J. M. Schins, A. J. Houtepen, R. Vaxenburg, G. I. Maikov, G. Grinbom, A. G. Midgett, J. M. Luther, M. C. Beard, A. J. Nozik, M. Bonn, E. Lifshitz, L. D. Siebbeles, "Anomalous Independence of Multiple Exciton Generation on Different Group IV−VI Quantum Dot Architectures" Nano Lett. 2011, 11, 1623-1629. [12] H. Goodwin, T. C. Jellicoe, N. J. L. K. Davis, M. L. Böhm, "Multiple Exciton Generation in Quantum Dot-Based Solar Cells" Nanophotonics 2018, 7, 111-126. [13] D. Aldakov, A. Lefrançois, P. J. Reiss, "Ternary and Quaternary Metal Chalcogenide Nanocrystals: Synthesis, Properties and Applications" Mater. Chem. C 2013, 1, 3756-3776. [14] F.-J. Fan, L. Wu, S.-H. Yu, "Energetic I–III–VI2 and I2–II–IV–VI4 Nanocrystals: Synthesis, Photovoltaic and Thermoelectric Applications" Energy Environ. Sci. 2014, 7, 190-208. [15] M. Sandroni, K. D. Wegner, D. Aldakov, P. Reiss, " Prospects of Chalcopyrite-Type Nanocrystals for Energy Applications" ACS Energy Lett. 2017, 2, 1076-1088. [16] T. Torimoto, T. Adachi, K. Okazaki, M. Sakuraoka, T. Shibayama, B. Ohtani, A. Kudo, S. Kuwabata, "Facile Synthesis of ZnS-AgInS2 Solid Solution Nanoparticles for a Color-Adjustable Luminophore" J. Am. Chem. Soc. 2007, 129, 12388-12389. [17] T. Kameyama, K. Sugiura, Y. Ishigami, T. Yamamoto, S. Kuwabata, T. Okuhata, N. Tamai, T. Torimoto, "Rod-Shaped Zn–Ag–In–Te Nanocrystals with Wavelength-Tunable Band-Edge Photoluminescence in the Near-IR Region" J. Mater. Chem. C 2018, 3, 2034-2042. [18] T. Kameyama, H. Yamauchi, T. Yamamoto, T. Mizumaki, H. Yukawa, M. Yamamoto, S. Ikeda, T. Uematsu, Y. Baba, S. Kuwabata, T. Torimoto, "Wavelength-Tunable Band-Edge Photoluminescence of Nonstoichiometric Ag–In–S Nanoparticles via Ga3+ Doping" ACS Appl. Nano Mater. 2020, 3, 3275-3287. [19] B. Chen, H. Zhong, W. Zhang, Z. Tan, Y. Li, C. Yu, T. Zhai, Y. Bando, S. Yang, B. Zou, " Highly Emissive and Color-Tunable CuInS2-Based Colloidal Semiconductor Nanocrystals: Off-Stoichiometry Effects and Improved Electroluminescence Performance" Adv. Funct. Mater. 2012, 22, 2081-2088. [20] H. Zhong, Z. Bai, B. Zou, "Tuning the Luminescence Properties of Colloidal I–III–VI Semiconductor Nanocrystals for Optoelectronics and Biotechnology Applications" J. Phys. Chem. Lett. 2012, 3, 3167-3175. [21] A. P. Lityin, I. V. Martynenko, F. Purcell-Milton, A. V. Baranov, A. V. Fedorov, Y. K. Gun’ko, "Colloidal Quantum Dots for Optoelectronics" J. Mater. Chem. A 2017, 5, 13252-13275. [22] L. Li, T. J. Daou, I. Texier, T. T. K. Chi, N. Q. Liem, P. Reiss, "Highly Luminescent CuInS2/ZnS Core/Shell Nanocrystals: Cadmium-Free Quantum Dots for In Vivo Imaging" Chem. Mater. 2009, 21, 2422-2429. [23] M. G. Panthani, T. A. Khan, D. K. Reid, D. J. Hellebusch, M. R. Rasch, J. A. Maynard, B. A. Korgel, "In Vivo Whole Animal Fluorescence Imaging of a Microparticle-Based Oral Vaccine Containing (CuInSexS2–x)/ZnS Core/Shell Quantum Dots" Nano Lett. 2013, 13, 4294-4298. [24] T. Kameyama, Y. Ishigami, H. Yukawa, T. Shimada, Y. Baba, T. Ishikawa, S. Kuwabata, T. Torimoto, "Crystal Phase-Controlled Synthesis of Rod-Shaped AgInTe2 Nanocrystals for In Vivo Imaging in the Near-Infrared Wavelength Region" Nanoscale 2016, 8, 5435-5440. [25] M. G. Panthani, V. Akhavan, B. Goodfellow, J. P. Schmidtke, L. Kunn, A. Dodabalapur, P. F. Barbara, B. A. Korgel, "Synthesis of CuInS2, CuInSe2, and Cu(InxGa1-x)Se2 (CIGS) Nanocrystal “Inks” for Printable Photovoltaics" J. Am. Chem. Soc. 2008, 130, 16770-16777. [26] B. Chen, S. Chang, D. Li, L. Chen, Y. Wang, T. Chen, B. Zou, H. Zhong, A. L. Rogach, " Template Synthesis of CuInS2 Nanocrystals from In2S3 Nanoplates and Their Application as Counter Electrodes in Dye-Sensitized Solar Cells" Chem. Mater. 2015, 27, 5949-5956. [27] A. I. Channa, X. Tong, J.-Y. Xu, Y. Liu, C. Wang, M. N. Sial, P. Yu, H. Ji, X. Niu, Z. M. Wang, "Tailored Near-Infrared-Emitting Colloidal Heterostructured Quantum Dots with Enhanced Visible Light Absorption for High Performance Photoelectrochemical cells" J. Mater. Chem. A 2019, 7, 10225-10230. [28] I. Tsuji, H. Kato, H. Kobayashi, A. Kudo, "Photocatalytic H2 Evolution Reaction from Aqueous Solutions over Band Structure-Controlled (AgIn)xZn2(1-x)S2 Solid Solution Photocatalysts with Visible-Light Response and Their Surface Nanostructures" J. Am. Chem. Soc. 2004, 126, 13406-13413. [29] I. Tsuji, H. Dato, A. Kudo, "Visible‐Light‐Induced H2 Evolution from an Aqueous Solution Containing Sulfide and Sulfite over a ZnS–CuInS2–AgInS2 Solid‐Solution Photocatalyst" Angew. Chem. Int. Ed. 2005, 44, 3565-3568. [30] I. Tsuji, H. Kato, A. Kudo, "Photocatalytic Hydrogen Evolution on ZnS−CuInS2−AgInS2 Solid Solution Photocatalysts with Wide Visible Light Absorption Bands" Chem. Mater. 2006, 18, 1969-1975. [31] R. Xie, M. Rutherford, X. Peng, "Formation of High-Quality I−III−VI Semiconductor Nanocrystals by Tuning Relative Reactivity of Cationic Precursors" J. Am. Chem. Soc. 2009, 131, 5691-5697. [32] T. Omata, K. Nose, K. Kurimoto, M. Kita, "Electronic Transition Responsible For Size-Dependent Photoluminescence of Colloidal CuInS2 Quantum Dots" J. Mater. Chem. C 2014, 2, 6867-6872. [33] K. E. Knowles, K. H. Hartstein, T. K. Kilburn, A. Marchioro, H. D. Nelson, P. J. Whitham, K. R. Gamelin, "Luminescent Colloidal Semiconductor Nanocrystals Containing Copper: Synthesis, Photophysics, and Applications" Chem. Rev. 2016, 116, 10820-10851. [34] S. L. Castro, S. G. Bailey, R. P. Raffaelle, K. K. Banger, A. F. Hepp, "Synthesis and Characterization of Colloidal CuInS2 Nanoparticles from a Molecular Single-Source Precursor" J. Phys. Chem. B 2004, 108, 12429-12435. [35] H. Nakamura, W. Kao, M. Uehara, K. Nose, T. Omata, S. Otsuka-Yao-Matsuo, M. Miyazaki, H. Maeda, "Tunable Photoluminescence Wavelength of Chalcopyrite CuInS2-Based Semiconductor Nanocrystals Synthesized in a Colloidal System" Chem. Mater. 2006, 18, 3330-3335. [36] T. Uematsu, K. Wajama, D. K. Sharma, S. Hirata, T. Yamamoto, T. Kameyama, M. Vacha, T. Torimoto, S. Kuwabata, "Narrow Band-edge Photoluminescence from AgInS2 Semiconductor Nanoparticles by the Formation of Amorphous III–VI Semiconductor Shells" NPG Asia Mater. 2018, 10, 713-726. [37] T. Torimoto, Y. Kamiya, T. Kameyama, H. Nishi, T. Uematsu, S. Kuwabata, T. Shibayama, "Controlling Shape Anisotropy of ZnS–AgInS2 Solid Solution Nanoparticles for Improving Photocatalytic Activity" ACS Appl. Mater. Interfaces 2016, 8, 27151-27161. [38] T. Kameyama, T. Takahashi, T. Machida, Y. Kamiya, T. Yamamoto, S. Kuwabata, T. Torimoto, "Controlling the Electronic Energy Structure of ZnS–AgInS2 Solid Solution Nanocrystals for Photoluminescence and Photocatalytic Hydrogen Evolution" J. Phys. Chem. C 2015, 119, 24740-24749. [39] T. Kameyama, S. Koyama, T. Yamamoto, S. Kuwabata, T. Torimoto, "Enhanced Photocatalytic Activity of Zn–Ag–In–S Semiconductor Nanocrystals with a Dumbbell-Shaped Heterostructure" J. Phys. Chem. C 2018, 122, 13705-13715. [40] T. Torimoto, T. Kameyama, S. Kuwabata, " Photofunctional Materials Fabricated with Chalcopyrite-Type Semiconductor Nanoparticles Composed of AgInS2 and Its Solid Solutions" J. Phys. Chem. Lett. 2014, 5, 336-347. [41] T. Kameyama, M. Kishi, C. Miyamae, D. K. Sharma, S. Hirata, T. Yamamoto, T. Uematsu, M. Vacha, S. Kuwabata, T. Torimoto, "Wavelength-Tunable Band-Edge Photoluminescence of Nonstoichiometric Ag–In–S Nanoparticles via Ga3+ Doping" ACS Appl. Mater. Interfaces 2018, 10, 42844-42855. [42] D. Deng, L. Qu, Y. Gu, "Near-Infrared Broadly Emissive AgInSe2/ZnS Quantum Dots for Biomedical Optical Imaging" J. Mater. Chem. C 2014, 2, 7077-7085. [43] T. Kameyama, Y. Kouke, H. Shibakawa, M. Kawaraya, H. Segawa, S. Kuwabata, T. Torimoto, " Widely Controllable Electronic Energy Structure of ZnSe–AgInSe2 Solid Solution Nanocrystals for Quantum-Dot-Sensitized Solar Cells" J. Phys. Chem. C 2014, 118, 29517-29524. [44] G. Prusty, A. K. Guria, B. K. Patra, N. Pradhan, "Diffusion-Induced Shape Evolution in Multinary Semiconductor Nanostructures" J. Phys. Chem. Lett. 2015, 6, 2421-2426. [45] A. S. Kshirsagar, P. Khanna, "Titanium dioxide (TiO2)-Decorated Silver Indium Diselenide (AgInSe2): Novel Nano-Photocatalyst for Oxidative Dye Degradation" Inorg. Chem. Front 2018, 5, 2242-2256. [46] J. Chang, Y. Ogomi, C. Ding, Y. H. Zhang, T. Toyoda, S. Hayase, K. Katayama and Q. Shen, "Ligand-Dependent Exciton Dynamics and Photovoltaic Properties of PbS Quantum Dot Heterojunction Solar Cells" Phys. Chem. Chem. Phys. 2017, 19, 6358-6367. [47] J. Völker, X. Zhou, X. Ma, S. Flessau, H. Lin, M. Schmittel, A. Mews, "Semiconductor Nanocrystals with Adjustable Hole Acceptors: Tuningthe Fluorescence Intensity by Metal–Ion Binding" Angew. Chem. Int. Ed. 2010, 49, 6865-6868. [48] P. Wang, J. Zhang, H. He, X. Xu, Y. Jin, "The Important Role of Surface Ligand on CdSe/CdS Core/Shell Nanocrystals in Affecting the Efficiency of H2 Photogeneration from Wate" Nanoscale 2015, 7, 5767-5775. [49] L. Zhou, K. Yu, F. Yang, H. Cong, N. Wang, J. Zheng, Y. Zuo, C. Li, B. Cheng, Q. Wang, "Insight into the Effect of Ligand-Exchange on Colloidal CsPbBr3 Perovskite Quantum Dot/Mesoporous-TiO2 Composite-Based Photodetectors: Much Faster Electron Injection" J. Mater. Chem. C 2017, 5, 6224-6233. [50] M. A. Hines, P. Guyot-Sionnest, "Bright UV-Blue Luminescent Colloidal ZnSe Nanocrystals" J. Phys. Chem. B 1998, 102, 3655-3657. [51] M. T. Ng, C. B. Boothroyd, J. J. Vittal, "One-Pot Synthesis of New-Phase AgInSe2 Nanorods" J. Am. Chem. Soc. 2006, 128, 7118−7119. [52] J. Yang, H. Yan, X. Wang, Y. Wen, Z. Wang, D. Fan, J. Shi, C. Li, " Roles of Cocatalysts in Pt–PdS/CdS with Exceptionally High Quantum Efficiency for Photocatalytic Hydrogen Production" J. Catal. 2012, 290, 151-157. [53] J. Yang, H. Yan, X. Zong, F. Wen, M. Liu, C. Li, "Roles of Cocatalysts In Semiconductor-Based Photocatalytic Hydrogen Production" Phil. Trans. R. Soc. A 2013, 371, 20110430. [54] G. Gong, Y. Liu, B. Mao, L. Tan, Y. Yang, W. Shi, "Ag Doping of Zn-In-S Quantum Dots for Photocatalytic Hydrogen Evolution: Simultaneous Bandgap Narrowing and Carrier Lifetime Elongation" Appl. Catal. B 2017, 216, 11-19. [55] W. Cao, Y. Qin, H. Huang, B. Mao, Y. Liu, Z. Kang, "Extraction of High-Quality Quantum Dot Photocatalysts via Combination of Size Selection and Electrochemiluminescence" ACS Sustainable Chem. Eng. 2019, 7, 20043-20050. [56] L. Tan, Y. Liu, B. Mao, B. Luo, G. Gong, Y. Hong, B. Chen, W. Shi, "Effective Bandgap Narrowing of Cu–In–Zn–S Quantum Dots for Photocatalytic H2 Production via Cocatalyst-Alleviated Charge Recombination" Inorg. Chem. Front. 2018, 5, 258-265. [57] X. Qu, P. J. J. Alvarez, Q. Li, "Applications of Nanotechnology in Water and Wastewater Treatment" Water Res. 2013, 47, 3931-3946. [58] A. Kudo, Y. Miseki, "Heterogeneous Photocatalyst Materials for Water Splitting" Chem. Soc. Rev. 2009, 38, 253-278 [59] Y.-W. Su, W.-H. Lin, Y.-J. Hsu, K.-H. Wei, "Conjugated Polymer/Nanocrystal Nanocomposites for Renewable Energy Applications in Photovoltaics and Photocatalysis" Small 2014, 10, 4427-4442. [60] L.-L. Tan, W.-J. Ong, S.-P. Chai, B. T. Goh, A. R. Mohamed, "Visible-Light-Active Oxygen-Rich TiO2 Decorated 2D Graphene Oxide with Enhanced Photocatalytic Activity toward Carbon Dioxide Reduction" Appl. Catal. B 2015,179, 160-170. [61] F. Wang, Y. Jiang, D. J. Lawes, G. E. Ball, C. Zhou, Z. Liu, R. Amal, "Analysis of the Promoted Activity and Molecular Mechanismof Hydrogen Production over Fine Au-Pt Alloyed TiO2 Photocatalysts" ACS Catal. 2015, 5, 3924-3931. [62] M. Antoniadou, V. M. Daskalaki, N. Balis, D. I. Kondarides, C. Kordulis, P. Lianos, "Photocatalysis and photoelectrocatalysis using (CdS-ZnS)/TiO2 combined photocatalysts" Appl. Catal. B 2011, 107, 188-196. [63] C. Wang, Z. Chen, H. Jin, C. Cao, J. Li, Z. Mi, "Enhancing Visible-Light Photoelectrochemical Water Splitting through Transition-Metal Doped TiO2 nanorod arrays" J. Mater. Chem. A 2014, 2, 17820-17827. [64] Y. Gao, X. Ding, J. Liu, L. Wang, Z. Lu, L. Li, L. Sun, "Visible Light Driven Water Splitting in a Molecular Device with Unprecedentedly High Photocurrent Density" J. Am. Chem. Soc. 2013, 135, 4219-4222. [65] Z. Yu, F. Li, L. Sun, "Recent Advances in Dye-Sensitized Photoelectrochemical Cells for Solar Hydrogen Production Based on Molecular Components" Energy Environ. Sci. 2015, 8, 760−775. [66] S. Shuang, R. Lv, Z. Xie, Z. Zhang, "Surface Plasmon Enhanced Photocatalysis of Au/Pt-decorated TiO2 Nanopillar Arrays" Sci. Rep. 2016, 6, 26670-26677. [67] Y.-C. Pu, G. Wang, K.-D. Chang, Y. Ling, Y.-K. Lin, B. C. Fitzmorris, C.-M. Liu, X. Lu, Y. Tong, J. Z. Zhang, Y.-J. Hsu, "Au Nanostructure-Decorated TiO2 Nanowires Exhibiting Photoactivity Across Entire UV-Visible Region for Photoelectrochemical Water Splitting" Nano Lett. 2013, 13, 3817-3823. [68] Y.-S. Chang, M. Choi, M. Baek, P.-Y. Hsieh, K. Yong, Y.-J. Hsu, "CdS/CdSe Co-Sensitized Brookite H:TiO2 Nanostructures: Charge Carrier Dynamics and Photoelectrochemical Hydrogen Generation" Appl. Catal. B 2018, 225, 379-385. [69] Y.-L. Lee, C.-F. Chi, S.-Y. Liau, "CdS/CdSe Co-Sensitized TiO2 Photoelectrode for Efficient Hydrogen Generation in a Photoelectrochemical Cell" Chem. Mater. 2010, 22, 922-927. [70] Y. Liu, L. Zhao, M. Li, L. Guo, "TiO2/CdSe Core−Shell Nanofiber Film for Photoelectrochemical Hydrogen Generation" Nanoscale 2014, 6, 7397-7404. [71] X. Fu, X. Wang, Z. Chen, Z. Zhang, Z. Li, D. Y. C. Leung, L. Wu, X. Fu, "Photocatalytic Performance of Tetragonal and Cubic β-In2S3 for the Water Splitting under Visible Light Irradiation" Appl.Catal. B 2010, 95, 393-399. [72] M.-Q. Yang, B. Weng, Y.-J. Xu, "Improving the Visible Light Photoactivity of In2S3-Graphene Nanocomposite via a Simple Surface Charge Modification Approach" Langmuir 2013, 29,10549-10558. [73] X. Li, B. Weng, N. Zhang, Y.-J. Xu, "In Situ Synthesis of Hierarchical In2S3-Graphene Nanocomposite Photocatalyst for Selective Oxidation" RSC Adv. 2014, 4, 64484-64493. [74] L. Wang, L. Xia, Y. Wu, Y. Tian, "Zr-Doped β-In2S3 Ultrathin Nanoflakes as Photoanodes: Enhanced Visible-Light-Driven Photoelectrochemical Water Splitting" ACS Sustainable Chem. Eng. 2016, 4, 2606-2614. [75] C. Gao, J. Li, Z. Shan, F. Huang, H. Shen, "Preparation and Visible-Light Photocatalytic Activity of In2S3/TiO2 Composite" Mater.Chem. Phys. 2010, 122, 183-187. [76] J. Herrero, J. Ortega, "n-TYPE In2S3 Thin Films Prepared by Gas Chalcogenization of Metallic Electroplated Indium: Photoelectrochemical Characrerization" Sol. Energy Mater. 1988, 17, 357-368. [77] D. Meissner, R. Memming, B. Kastening, "Photoelectrochemistry of Cadmium Sulfide. 1. Reanalysis of Photocorrosion and Flat-Band Potential" J. Phys. Chem. 1988, 92, 3476-3483. [78] A. Pareek, P. Paik, P. H. Borse, "Nanoniobia Modification of CdS Photoanode for an Efficient and Stable Photoelectrochemical Cell" Langmuir 2014, 30, 15540-15549. [79] H. Yu, X. Huang, P. Wang, J. Yu, "Enhanced Photoinduced-Stability and Photocatalytic Activity of CdS by Dual Amorphous Cocatalysts: Synergistic Effect of Ti(IV)-Hole Cocatalyst and Ni(II)-Electron Cocatalyst" J. Phys. Chem. C 2016, 120, 3722-3730. [80] W. Lee, H. J. Son, D.-K. Lee, B. Kim, H. Kim, K. Kim, M. J. Ko, "Suppression of Photocorrosion in CdS/CdSe Quantum Dot-Sensitized Solar Cells: Formation of a Thin Polymer Layer on the Photoelectrode Surface" Synth. Met. 2013, 165, 60-63. [81] N. Soltani, E. Saion, W. Mahmood Mat Yunus, M. Navasery, G. Bahmanrokh, M. Erfani, M.R. Zare, E. Gharibshahi, "Photocatalytic Degradation of Methylene Blue under Visible Light Using PVP-Capped ZnS and CdS Nanoparticles" Sol. Energy 2013, 97, 147-154. [82] D. Ma, J.-W. Shi, Y. Zou, Z. Fan, X. Ji, C. Niu, L. Wang, "Rational Design of CdS@ZnO Core-Shell Structure via Atomic Layer Deposition for Drastically Enhanced Photocatalytic H2 Evolution with Excellent Photostability" Nano Energy 2017, 39, 183-191. [83] D. Huang, K. Wang, L. Yu, T. H. Nguyen, S. Ikeda, F. Jiang, "Over 1% Efficient Unbiased Stable Solar Water Splitting Based on a Sprayed Cu2ZnSnS4 Photocathode Protected by a HfO2 Photocorrosion-Resistant Film" ACS Energy Lett. 2018, 3, 1875-1881. [84] M. Wang, L. Cai, Y. Wang, F. Zhou, K. Xu, X. Tao, Y. Chai, "Graphene-Draped Semiconductors for Enhanced Photocorrosion Resistance and Photocatalytic Properties" J. Am. Chem. Soc. 2017, 139, 4144-4151. [85] J.-P. Song, P.-F. Yin, J. Mao, S.-Z. Qiao, X.-W. Du, "Catalytically Active and Chemically Inert CdIn2S4 Coating on CdS Photoanode for Efficient and Stable Water Splitting" Nanoscale 2017, 9, 6296-6301. [86] Y. Zhou, D. Shin, E. Ngaboyamahina, W. Han, C. B. Parker, D. B. Mitzi, J. T. Glass, "Efficient and Stable Pt/TiO2/CdS/Cu2BaSn(S,Se)4 Photocathode for Water Electrolysis Applications" ACS Energy Lett. 2018, 3, 177-183. [87] S. Cao, X. Yan, Z. Kang, Q. Liang, X. Liao, Y. Zhang, "Band Alignment Engineering for Improved Performance and Stability of ZnFe2O4 Modified CdS/ZnO Nanostructured Photoanode for PEC Water Splitting" Nano Energy 2016, 24, 25-31. [88] J. Zhang, Q. Zhang, L. Wang, X. Li, W. Huang, "Interface Induce Growth of Intermediate Layer for Bandgap Engineering Insights into Photoelectrochemical Water Splitting" Sci. Rep. 2016, 6, 27241. [89] Y. Liu, Y.-X. Yu, W.-D. Zhang, "MoS2/CdS Heterojunction with High Photoelectrochemical Activity for H2 Evolution under Visible Light: The Role of MoS2" J. Phys. Chem. C 2013, 117, 12949-12957. [90] M.-Q. Yang, C. Han, Y.-J. Xu, "Insight into the Effect of Highly Dispersed MoS2 versus Layer-Structured MoS2 on the Photocorrosion and Photoactivity of CdS in Graphene−CdS−MoS2 Composites" J.Phys. Chem. C 2015, 119, 27234-27246. [91] H. Zhang, Y. Zhu, "Significant Visible Photoactivity and Antiphotocorrosion Performance of CdS Photocatalysts after Monolayer Polyaniline Hybridization" J. Phys. Chem. C 2010, 114, 5822-5826. [92] K.-A. Tsai, Y.-J. Hsu, "Graphene Quantum Dots Mediated Charge Transfer of CdSe Nanocrystals for Enhancing Photoelectrochemical Hydrogen Production" Appl. Catal. B 2015, 164, 271-278. [93] A. Mumtaz, N. M. Mohamed, M. Mazhar, M. A. Ehsan, M. S. Mohamed Saheed, "Core−Shell Vanadium Modified Titania@β-In2S3Hybrid Nanorod Arrays for Superior Interface Stability and Photochemical Activity" ACS Appl. Mater. Interfaces 2016, 8, 9037-9049. [94] P. A. Sant, P. V. Kamat, "Interparticle Electron Transfer Between Size-Quantized CdS and TiO2 Semiconductor Nanoclusters" Phys. Chem. Chem. Phys. 2002, 4, 198-203. [95] Z. Zhang, B. Chen, M. Baek, K. Yong, "Multichannel Charge Transport of a BiVO4/(RGO/WO3)/W18O49 Three-Storey Anode for Greatly Enhanced Photoelectrochemical Efficiency" ACS Appl. Mater.Interfaces 2018, 10, 6218-6227. [96] X. Feng, K. Zhu, A. J. Frank, C. A. Grimes, T. E. Mallouk, "Rapid Charge Transport in Dye-Sensitized Solar Cells Made from Vertically Aligned Single-Crystal Rutile TiO2 Nanowires" Angew.Chem., Int. Ed. 2012, 51, 2727-2730. [97] Y.-C. Chen, T.-C. Liu, Y.-J. Hsu, "ZnSe·0.5N2H4 Hybrid Nanostructures: A Promising Alternative Photocatalyst for Solar Conversion" ACS Appl. Mater. Interfaces 2015, 7, 1616-1623. [98] Y.-C. Pu, Y. Ling, K.-D. Chang, C.-M. Liu, J. Z. Zhang, Y.-J. Hsu, Y. Li, "Surface Passivation of TiO2 Nanowires Using a Facile Precursor-Treatment Approach for Photoelectrochemical Water Oxidation" J. Phys. Chem. C 2014, 118, 15086-15094. [99] B. Liu, E. S. Aydil, "Growth of Oriented Single-Crystalline Rutile TiO2 Nanorods on Transparent Conducting Substrates for Dye-Sensitized Solar Cells" J. Am. Chem. Soc. 2009, 131, 3985-3990. [100] P. Pistor, J. M. Merino Álvarez, M. León, M. di Michiel, S. Schorr, R. Klenk, S. Lehmann, "Structure Reinvestigation of α-, β- and γ-In2S3" Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. 2016, 72, 410-415. [101] Y.-H. Chiu, T.-H. Lai, C.-Y. Chen, P.-Y. Hsieh, K. Ozasa, M. Niinomi, K. Okada, T.-F. M. Chang, N. Matsushita, M. Sone, Y.-J. Hsu, "Fully Depleted Ti-Nb-Ta-Zr-O Nanotubes: Interfacial Charge Dynamics and Solar Hydrogen Production" ACS Appl. Mater.Interfaces 2018, 10, 22997-23008. [102] W. -L. Weng, C.-Y. Hsu, J.-S. Lee, H.-H. Fan, C.-N. Liao, "Twin-Mediated Epitaxial Growth of Highly Lattice-Mismatched Cu/Ag Core-Shell Nanowires" Nanoscale 2018, 10, 9862-9866. [103] Y. Wang, P. Gao, L. Sha, Q. Chi, L. Yang, J. Zhang, Y. Chen, M. Zhang, "The Spatial Separation of Electrons and Holes for Enhancing Semiconductor’s Gas-Sensing Property: ZnO/ZnSnO3 Nanorod Arrays Prepared by a Hetero-Epitaxial Growth" Nanotechnology 2018, 29, 175501. [104] C. Cao, C. Hu, X. Wang, S. Wang, Y. Tian, H. Zhang, "UV Sensor Based on TiO2 Nanorod Arrays on FTO Thin Film" Sens. Actuators B 2011, 156, 114-119. [105] J. Ning, K. Men, G. Xiao, L. Zhao, L. Wang, B. Liu, B. Zou, "Synthesis, Optical Properties and Growth Process of In2S3 Nanoparticles" J. Colloid Interface Sci. 2010, 347, 172-176. [106] F. Wang, Z. Jin, Y. Jiang, E. H. G. Backus, M. Bonn, S. N. Lou, D. Turchinovich, R. Amal, "Probing the Charge Separation Process on In2S3/Pt-TiO2 Nanocomposites for Boosted Visible-light Photocatalytic Hydrogen Production" Appl. Catal. B 2016, 198, 25-31. [107] Y.-H. Chiu, Y.-J. Hsu, "Au@Cu7S4 Yolk@Shell Nanocrystal-Decorated TiO2 Nanowires as an All-Day-Active Photocatalyst for Environmental Purification" Nano Energy 2017, 31, 286-295. [108] C. Tapia, S. P. Berglund, D. Friedrich, T. Dittrich, P. Bogdanoff, Y. Liu, S. Levcenko, T. Unold, J. C. Conesa, A. L. DeLacey, M. Pita, S. Fiechter, "Synthesis and Characterization of V-Doped β-In2S3 Thin Films on FTO Substrates" J. Phys. Chem. C 2016, 120, 28753-28761. [109] J. Gu, J. A. Aguiar, S. Ferrere, K. X. Steirer, Y. Yan, C. Xiao, J. L. Young, M. Al-Jassim, N. R. Neale, J. A. Turner, "A Graded Catalytic-Protective Layer for an Efficient and Stable Water-Splitting Photocathode" Nat. Energy 2017, 2, 16912. [110] T. Yoshida, A. Yamaguchi, N. Umezawa, M. Miyauchi, "Photocatalytic CO2 Reduction Using a Pristine Cu2ZnSnS4 Film Electrode under Visible Light Irradiation" J. Phys. Chem. C 2018, 122, 21695-21702. [111] H. Miyamoto, K. Matsuzaki, A. Yamaguchi, M. Miyauchi, "Visible-Light-Active Photoelectrochemical Z-Scheme System Basedon Top 5 Clarke-Number Elements" ACS Appl. Energy Mater. 2018, 1, 5954. [112] Y. Shiga, N. Umezawa, N. Srinivasan, S. Koyasu, E. Sakai, M. Miyauchi, "A Metal Sulfide Photocatalyst Composed of Ubiquitous Elements for Solar Hydrogen Production" Chem. Commun. 2016, 52, 7470-7473. [112] E. Ismail, S. Khamlich, M. Dhlamini, M. Maaza, "Green Biosynthesis of Ruthenium Oxide Nanoparticles on Nickel Foam as Electrode Material for Supercapacitor Applications" RSC Adv. 2016, 6, 86843-86850. [114] J. Hong, D. S. Yoon, S. K. Kim, T. S. Kim, S. Kim, E. Y. Pak, K. No, "AC Frequency Characteristics of Coplanar Impedance Sensors as Design Parameters" Lab Chip 2005, 5, 270-279. [115] Y.-H. Chiu, K.-D. Chang, Y.-J. Hsu, "Plasmon-Mediated Charge Dynamics and Photoactivity Enhancement for Au-Decorated ZnO Nanocrystals" J. Mater. Chem. A 2018, 6, 4286-4296. [116] L. Zhu, Q. Lu, L. Lv, Y. Wang, Y. Hu, Z. Deng, Z. Lou, Y. Hou, F. Teng, "Ligand-Free Rutile and Anatase TiO2 Nanocrystals as Electron Extraction Layers for High Performance Inverted Polymer Solar Cells" RSC Adv. 2017, 7, 20084-20092. [117] M. Dan, Q. Zhang, S. Yu, A. Prakash, Y. Lin, Y. Zhou, "Noble-Metal-Free MnS/In2S3 Composite as Highly Efficient Visible Light Driven Photocatalyst for H2 Production from H2S" Appl. Catal.B 2017, 217, 530-539. [118] Y. Li, S. Luo, Z. Wei, D. Meng, M. Ding, C. Liu, "Electrodeposition Technique-Dependent Photoelectrochemical and Photocatalytic Properties of an In2S3/TiO2 Nanotube Array" Phys.Chem. Chem. Phys. 2014, 16, 4361-4368. [119] B. Chai, T. Peng, P. Zeng, J. Mao, "Synthesis of Floriated In2S3 Decorated with TiO2 Nanoparticles for Efficient Photocatalytic Hydrogen Production under Visible Light" J. Mater. Chem. 2011, 21, 14587-14593. [120] D. Archer, "Global Warming: Understanding the Forecast", Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Second Edition 2011.. [121] Full Report, BP Statistical Review of World Energy 2019. [122] M. Grätzel, "Photoelectrochemical cells" Nature 2001, 414, 338-344. [123] M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, N. S. Lewis, "Solar Water Splitting Cells" Chem. Rev. 2010, 110, 6446-6473. [124] K. Sivula, R. V. D. Krol, "Semiconducting Materials for Photoelectrochemical Energy Conversion" Nat. Rev. Mater. 2016, 1, 1-16. [125] D. K. Lee, D. Lee, M. A. Lumley, K.-S. Choi, "Progress on Ternary Oxide-Based Photoanodes for Use in Photoelectrochemical Cells for Solar Water Splitting" Chem. Soc. Rev. 2019, 48, 2126-2157. [126] C. Jiang, S. J. A. Moniz, A. Wang, T. Zhang, J. Tang, "Photoelectrochemical Devices for Solar Water Splitting-Materials and Challenges" Chem. Soc. Rev. 2017, 46, 4645-4660. [127] H. H. Do, D. L. T. Nguyen, X. C. Nguyen, T.-H. Le, T. P. Nguyen, Q. T. Trinh, S. H. Ahn, D.-V. Vo, S. Y. Kim, Q. V. Le, "Recent Progress in TiO2-Based Photocatalysts for Hydrogen Evolution Reaction: a Review" Arab. J. Chem. 2020, 13, 3653-3671. [128] M. Tayebi, B.-K. Lee, "Recent Advances in BiVO4 Semiconductor Materials for Hydrogen Production Using Photoelectrochemical Water Splitting". Renew. Sust. Energ. Rev. 2019, 111, 332-343. [129] J. H. Kim, J. S. Lee, "Elaborately Modified BiVO4 Photoanodes for Solar Water Splitting" Adv. Mater. 2019, 31, 1806938. [130] S. Shen, S. A. Lindley, X. Chen, J. Z. Zhang, "Hematite Heterostructures for Photoelectrochemical Water Splitting: Rational Materials Design and Charge Carrier Dynamics" Energy Environ. Sci. 2016, 9, 2744-2775. [131] P. Sharma, J.-W. Jang, J. W. Lee, "Key Strategies to Advance the Photoelectrochemical Water Splitting Performance of α-Fe2O3 Photoanode" ChemCatChem 2019, 11, 157-179. [132] L. Pan, J. H. Kim, M. T. Mayer, M.-K. Son, A. Ummadisingu, J. S. Lee, A. Hagfeldt, J. Luo, M. Grätzel, "Boosting the Performance of Cu2O Photocathodes for Unassisted Solar Water Splitting Devices" Nat. Catal. 2018, 1, 412-420. [133] I. V. Bagal, N. R. Chodankar, M. A. Hassan, A. Waseem, M. A. Johar, D.-H. Kim, S.-W Ryu, "Cu2O as an Emerging Photocathode for Solar Water Splitting – A Status Review" Int. J. Hydrog. Energy 2019, 44, 21351-21378. [134] K.-H. Ye, H. Li, D. Huang, S. Xiao, W. Qiu, M. Li, Y. Hu, W. J. Mai, S. Yang, "Enhancing Photoelectrochemical Water Splitting by Combing Work Function Tuning and Heterojunction Engineering" Nat. Commun. 2019, 10, 3687. [135] P. D. Antunez, D. A. Torelli, F. Yang, F. Rabuffetti, N. S. Lewis, R. L. Brutchey, "Low Temperature Solution-Phase Deposition of SnS thin films" Chem Mater. 2014, 26, 5444-5446. [136] M. Seal, N. Singh, E. W. McFarland, J. Baltrusaitis, "Electrochemically Deposited Sb and In Doped Tin Sulphide (SnS) Photoelectrodes" J. Phys. Chem. C 2015. 119, 6471-6480. [137] W. Gao, C. Wu, M. Cao, J. Huang, L. Wang, Y. Shen, "Thickness Tunable SnS Nanosheets for Photoelectrochemical Water Splitting" J. Alloys Compd. 2016, 688, 668-674. [138] W. Cheng, N. Singh, W. Elliott, J. Lee, A. Rassoolkhani, X. Jin, E. W. McFarland, S. Mubeen, "Earth-Abundant Tin Sulfide-Based Photocathodes for Solar Hydrogen Production" Adv. Sci. 2018, 5, 1700362. [139] M. Patel, M. Kumar, J. Kim, Y. K. Kim, "Photocurrent Enhancement by a Rapid Thermal Treatment of Nanodish-Shaped SnS Photocathodes" J. Phys. Chem. Lett. 2017, 8, 6099-6105. [140] R. R. Prabhakar, W. Septina, S. Siol, T. Moehl, R. Wick-Joliat, S. D. Tilley, "Photocorrosion-Resistant Sb2Se3 Photocathodes with Earth Abundant MoSx Hydrogen Evolution Catalyst" J. Mater. Chem. A 2017. 5, 23139-23145. [141] J. Kim, W. Yang, Y. Oh, H. Lee, S. Lee, H. Shin, J. Kim, J. Moon, "Self-Oriented Sb2Se3 Nanoeedle Photocathodes for Water Splitting Obtained by a Simple Spin-Coating Method" J. Mater. Chem. A 2017, 5, 2180-2187. [142] L. Zhang, Y. Li, C. Li, Q. Chen, Z. Zhen, X. Jiang, M. Zhong, F. Zhang, H. Zhu, "Scalable Low-Band-Gap Sb2Se3 Thin-Film Photocathodes for Efficient Visible-Near-Infrared Solar Hydrogen Evolution" ACS Nano 2017, 11, 12753-12763. [143] W. Yang, J. Ahn, Y. Oh, J. Tan, H. Lee, J. Park, H.-C. Kwon, J. Kim, W. Jo, J. Kim, J. Moon, "Adjusting the Anisotropy of 1D Sb2Se3 Nanostructures for Highly Efficient Photoelectrochemical Water Splitting" Adv. Energy Mater. 2018, 8, 1702888. [144] J. Park, W. Yang, Y. Oh, J. Tan, H. Lee, R. Boppella, J. Moon, "Efficient Solar-to-Hydrogen Conversion from Neutral Electrolytes Using Morphology-Controlled Sb2Se3 Light Absorbers" ACS Energy Lett. 2019, 4, 517-526. [145] H. Lee, W. Yang, J. Tan, Y. Oh, J. Park, J. Moon, "Cu-Doped NiOx as an Effective Hole-Selective Layer for a High-Performance Sb2Se3 Photocathode for Photoelectrochemical Water Splitting" ACS Energy Lett. 2019, 4, 995-1003. [146] W. Yang, J. Moon, "Rapid Advances in Antimony Triselenide Photocathodes for Solar Hydrogen Generation" J. Mater. Chem. A 2019, 7, 20467-20477. [147] J. Park, W. Yang, J. Tan, H. Lee, J. W. Yun, S. G. Shim, Y. S. Park, J. Moon, "Hierarchal Nanorod-Derived Bilayer Strategy to Enhance the Photocurrent Density of Sb2Se3 Photocathodes for Photoelectrochemical Water Splitting" ACS Energy Lett. 2020, 5, 136-145. [148] M. Tekalgne, A. Hasani, Q. V. Le, S. Y. Kim, "Transition Metal Dichalcogenide-Based Composites for Hydrogen Production" Funct. Compos. Struct. 2019, 1, 012001. [149] M. Tekalgne, A. Hasani, Q. V. Le, T. P. Nguyen, K. S. Choi, T. H. Lee, H. W. Jang, Z. Luo, S. Y. Kim, "CdSe Quantum Dots Doped WS2 Nanoflowers for Enhanced Solar Hydrogen Production" Phys. Status. Solidi A 2019, 216, 1800853. [150] W. Guo, Q. V. Le, H. H. Do, A. Hasani, M. Tekalgne, S.-R. Bae, T. H. Lee, H. W. Jang, S. H. Ahn, S. Y. Kim, "Ni3S4@MoSe2 Composites for Hydrogen Evolution Reaction" Appl. Sci. 2019, 9, 5035. [151] T. P. Nguyen, Q. V. Le, S. Choi, T. H. Lee, S.-P. Hong, K. S. Choi, H. W. Jang, M. H. Lee, T. J. Park, S. Y. Kim, "Surface Extension of MeS2 (Me=Mo or W) Nanosheets by Embedding MeSx for Hydrogen Evolution Reaction" Electrochim Acta 2018, 292, 136-141. [152] M. A. Tekalgne, A. Hasani, D. Y. Heo, Q. V. Le, T. P. Nguyen, T. H. Lee, S. H. Ahn, H. W. Jang, S. Y. Kim, "SnO2@WS2/p-Si Heterostructure Photocathode for Photoelectrochemical Hydrogen Production" J. Phys. Chem. C 2020, 124, 647-652. [153] T. Su, Z. D. Hood, M. Naguib, L. Bai, R. Luo, C. M. Rouleau, I. N. Ivanov, H. Ji, Z. Qin, Z. Wu, "2D/2D Heterojunction of Ti3C2/g-C3N4 Nanosheets for Enhanced Photocatalytic Hydrogen Evolution" Nanoscale 2019, 11, 8138-8149. [154] V.-H. Nguyen, T. P. Nguyen, T.-H. Le, D.-V. Vo, D. L. Nguyen, Q. T. Trinh, I. T. Kim, Q. V. Le, "Recent Advances in Two-Dimensional Transition Metal Dichalcogenides as Photoelectrocatalyst for Hydrogen Evolution Reaction" J. Chem. Technol. Biotechnol. 2020, 1 [155] V.-H. Nguyen, B.-S. Nguyen, C. Hu, C. C. Nguyen, D. L. T. Nguyen, M. T. N. Kinh, D.-V. N. Vo, Q. T. Trinh, M. Shokouhimehr, A. Hasani, S. Y. Kim, Q. V. Le, "Novel Architecture Titanium Carbide (Ti3C2Tx) MXene Cocatalysts toward Photocatalytic Hydrogen Production: a Mini-Review" Nanomaterials 2020, 10, 602. [156] A. Hasani, M. Tekalgne, Q. V. Le, H. W. Jang, S. Y. Kim, "Two-Dimensional Materials as Catalysts for Solar Fuels: Hydrogen Evolution Reaction and CO2 Reduction" J. Mater. Chem. A 2019, 7, 430-454. [157] W. Ma, B. Yao, W. Zhang, Y. He, Y. Yu, J. Niu, C. Wang, "A Novel Multi-Flaw MoS2 Nanosheet Piezocatalyst with Superhigh Degradation Efficiency for Ciprofloxacin" Environ. Sci.: Nano 2018, 5, 2876–2887. [158] H. Lee, S. Deshmukh, J. Wen, V. Z. Costa, J. S. Schuder, M. Sanchez, A. S. Ichimura, E. Pop, B. Wang, A. K. M. Newaz, "Layer-Dependent Interfacial Transport and Optoelectrical Properties of MoS2 on Ultraflat Metals" ACS Appl. Mater. Interfaces 2019, 11, 31543-31550. [159] P. Atkin, T. Daeneke, Y. Wang, B. J. Carey, K. J. Berean, R. M. Clark, J. Z. Ou, A. Trinchi, I. S. Cole, K. Kalantar-zadeh, "2D WS2/Carbon Dot Hybrids with Enhanced Photocatalytic Activity" J. Mater. Chem. A 2016, 4, 13563-13571 [160] V. D. L. Asunción-Nadal, B. Jurado-Sánchez, L. Vázquez, A. Escarpa, "Near Infrared-Light Responsive WS2 Microengines with High-Performance Electro- and Photocatalytic Activities". Chem. Sci. 2020, 11, 132-140. [161] A. Efekhari, "Molybdenum Diselenide (MoSe2) for Energy Storage, Catalysis, and Optoelectronics" Appl. Mater. Today 2017. 8, 1-17. [162] X. Yu, K. Sivula, "Toward Large-Area Solar Energy Conversion with Semiconducting 2D Transition Metal Dichalcogenides" ACS Energy Lett. 2016, 1, 315-322. [163] H. Jin, C. Guo, X. Liu, J. Liu, A. Vasileff, J. Yan, Y. Zheng, S.-Z. Qiao, "Emerging Two-Dimensional Nanomaterials for Electrocatalysis" Chem. Rev. 2018, 118, 6337-6408. [164] M. A. Tekalgne, K. V. Nguyen, D. L. Nguyen, V. -H. Nguyen, T. P. Nguyen, D.-V. N. Vo, Q. T. Trinh, A. Hasani, H. H. Do, T. H. Lee, H. W. Jang, H. S. Le, Q. V. Le, S. Y. Kim, "Hierarchical Molybdenum Disulfide on Carbon Nanotube-Reduced Graphene Oxide Composite Paper as Efficient Catalysts for Hydrogen Evolution Reaction" J. Alloys Compd. 2020, 823, 153897. [165] A. Hasani, W. V. Le, M. Tekalgne, M.-J. Choi, S. Choi, T. H. Lee, H. Kim, S. H. Ahn, H. W. Jang, S. Y. Kim, "Fabrication of a WS2/p-Si Heterostructure Photocathode Using Direct Hybrid Thermolysis". ACS Appl. Mater. Interfaces 2019, 11, 29910-29916. [166] T. P. Nguyen, D. L. T. Nguyen, V.-H. Nguyen, T.-H. Le, Q. V. Ly, D.-V. N. Vo, Q. V. Nguyen, H. S. Le, H. W. Jang, S. Y. Kim, Q. V. Le, "Facile Synthesis of WS2 Hollow Spheres and Their Hydrogen Evolution Reaction Performance" Appl. Surf. Sci. 2020, 505,144574. [167] T. P. Nguyen, S. Y. Kim, T. H. Lee, H. W. Jang, Q. V. Le, I. T. Kim, "Facile Synthesis of W2C@WS2 Alloy Nanoflowers and Their Hydrogen Generation Performance" Appl. Surf. Sci. 2020, 504, 144389. [168] A. Hasani, Q. V. Le, M. Tekalgne, M.-J. Choi, T. H. Lee, H. W. Jang, S. Y. Kim, "Direct Synthesis of Two-Dimensional MoS2 on p-type Si and Application to Solar Hydrogen Production" NPG Asia Mater. 2019, 11, 47. [169] T. P. Nguyen, D. M. T. Nguyen, D. L. Tran, H. K. Le, D.-V. N. Vo, S. S. Lam, R. S. Varma, M. Shokouhimehr, C. C. Nguyen, Q. V. Le, "MXenes: Applications in Electrocatalytic, Photocatalytic Hydrogen Evolution Reaction and CO2 Reduction" Mol. Catal. 2020, 486, 110850. [170] X. Yu, N. Guijarro, M. Johnson, K. Sivula, "Defect Mitigation of Solution-Processed 2D WSe2 Nanoflakes for Solar-to-Hydrogen Conversion" Nano Lett. 2018, 18, 215-222. [171] T. S. Lopes, J. M. V. Cunha, S. Bose, J. R. S. Barbosa, J. Borme, O. Donzel-Gargand, C. Rocha, R. Silva, A. Hultqvist, W.-C. Chen, A. G. Silva, M. Edoff, P. A. Fernandes, M. P. Salomé, "Rear Optical Reflection and Passivation Using a Nanopatterned Metal/Dielectric Structure in Thin-Film Solar Cells" IEEE J. Photovolt. 2019, 9, 1421-1427. [172] C.-W. Chen, H.-W. Tsai, Y.-C. Wang, Y.-C. Shih, T.-T. Su, C.-H. Yang, W.-S. Lin, C.-H. Shen, J.-M. Shieh, Y.-L. Chueh, "Rear-Passivated Ultrathin Cu(In,Ga)Se2 Films by Al2O3 Nanostructures Using Glancing Angle Deposition toward Photovoltaic Devices with Enhanced Efficiency" Adv. Funct. Mater. 2019, 29, 1905040. [173] G. Birant, J. D. Wild, M. Meuris, J. Poortmans, B. Vermang, "Dielectric-Based Rear Surface Passivation Approaches for Cu(In,Ga)Se2 Solar Cells-a Review" Appl. Sci. 2019, 9, 677. [174] S. Ishizuka, "CuGaSe2 Thin Film Solar Cells: Challenges for Developing Highly Efficient Wide-Gap Chalcopyrite Photovoltaics" Phys. Status Solidi A 2019, 216, 1800873. [175] C.-C Tseng, G. Wu, L.-B. Chang, M.-J. Jeng, W.-S. Feng, D. W. Chen, L.-C. Chen, K.-L. Lee, "Effects of Annealing on Characteristics of Cu2ZnSnSe4/CH3NH3PbI3/ZnS/IZO Nanostructures for Enhanced Photovoltaic Solar Cells" Nanomaterials 2020, 10,521. [176] T. Unold, C. A. Kaufmann, "Chalcopyrite thin-film materials and solar cells" Renew. Energ. 2012, 1, 399-422. [177] J. Luo, S. D. Tilley, L. Steier, M. Schreier, M. T. Mayer, H. J. Fan, M. Grätzel, "Solution Transformation of Cu2O into CuInS2 for Solar Water Splitting" Nano Lett. 2015, 15, 1395-1402. [178] W. Septina, Gunawan, S. Ikeda, T. Harada, M. Higashi, R. Abe, M. Matsumura, "Photosplitting of Water from Wide-Gap Cu(In,Ga)S2 Thin Films Modified with a CdS Layer and Pt Nanoparticles for a High-Onset-Potential Photocathode" J. Phys. Chem. C 2015, 119, 8576-8583. [179] W. Hou, S. B. Cronin, "A review of surface plasmon resonance-enhanced photocatalysis" Adv. Funct. Mater. 2013, 23, 1612-1619. [180] H. Robatjazi, S. M. Bahauddin, C. Doiron, I. Thomann, "Direct Plasmon-Driven photoelectrocatalysis" Nano Lett. 2015, 15, 6155-6161. [181] X. Zeng, Y. Zhou, S. Ji, H. Luo, H. Yao, X. Huang, P. Jin, "The Preparation of a High Performance Nearinfrared Shielding CsxWO3/SiO2 Composite Resin Coating and Research on Its Optical Stability under Ultraviolet Illumination" J. Mater. Chem. C 2015, 3, 8050-8060. [182] J. Zhang, X. Jin, P. I. Morales-Guzman, X. Yu, H. Liu, H. Zhang, L. Razzari, J. P. Claverie, "Engineering the Absorption and Field Enhancement Properties of Au-TiO2 Nanohybrids via Whispering Gallery Mode Resonances for Photocatalytic Water Splitting" ACS Nano 2016, 10 4496-4503. [183] H. Bai, W. Yi, J. Li, G. Xi, Y. Li, H. Yanga, J. Liu, "Direct Growth of Defect-Rich MoO3-x Ultrathin Nanobelts for Efficiently Catalyzed Conversion of Isopropyl Alcohol to Propylene under Visible Light" J. Mater. Chem. A 2015, 4, 1566-1571. [184] S. Kasani, P. Zheng, J. Bright, N. Wu, "Tunable Visible-Light Surface Plasmon Resonance of Molybdenum Oxide Thin Films Fabricated by E–beam Evaporation" ACS Appl. Electron. Mater. 2019, 1, 2389-2395. [185] A. H. Odda, Y. Xu, J. Lin, G. Wang, N. Ullah, A. Zeb, K. Liang, L.-P. Wen, A.-W. Xu, "Plasmonic MoO3-x Nanoparticles Incorporated in Prussian Blue Frameworks Exhibit Highly Efficient Dual Photothermal/Photodynamic Therapy" J. Mater. Chem. B 2019, 7, 2032-2042. [186] Z. Li, M. Zheng, N. Wei, Y. Lin, W. Chu, R. Xu, H. Wang, J. Tian, H. Cui, "Broadband-Absorbing WO3-x Nanorod-Decorated Wood Evaporator for Highly Efficient Solar-Driven Interfacial Steam Generation". Sol. Energy Mater Sol. Cells 2020, 205, 110254. [187] L. Pan, J. Zhang, X. Jia, Y.-H. Ma, X. Zhang, L. Wang, J.-J. Zou, "Highly Efficient Z-scheme WO3-x Quantum Dots/TiO2 for Photocatalytic Hydrogen Generation Chinese" J. Catal. 2017, 38, 253-259. [188] Y. Ren, C. Li, Q. Xu, J. Yan, Y. Li, P. Yuan, H. Xia, C. Niu, X. Yang, Y. Jia, "Two-Dimensional Amorphous Heterostructures of Ag/a-WO3-x for High efficiency Photocatalytic Performance". Appl. Catal. B 2019, 245, 648-655. [189] Y. Li, X. Wu, J. Li, K. Wang, G. Zhang, "Z-scheme g-C3N4@CsxWO3 Heterostructure as Smart Window Coating for UV Isolating, Vis Penetrating, NIR Shielding and Full Spectrum Photocatalytic Decomposing VOCs". Appl. Catal. B 2018, 229, 218-226. [190] A. Shi, H. Li, S. Yin, J. Zhang, Y. Wang, "H2 Evolution over g-C3N4/CsxWO3 under NIR Light". Appl. Catal. B 2018, 228, 75-86. [191] S. Yang, Y. Wang, H. Sun, "Advances and Prospects for Whispering Gallery Mode Microcavities" Adv. Opt. Mater. 2015, 3, 1136-1162. [192] X. Shao, T. Zhang, B. Li, Y. Wu, X. Ma, J. Wang, S. Jiang, "Cu-Deficient Plasmonic Cu2-xS Nanocrystals Induced Tunable Photocatalytic Activities". CrystEngComm 2020, 22, 678-685. [193] S. Sun, P. Li, S. Liang, Z. Yang, "Diversified Copper Sulfide (Cu2-xS) micro-/Nanostructures: A Comprehensive Review on Synthesis, Modifications and Applications" Nanoscale 2017, 9, 11357-11404. [194] L. Zhou, Z. Liu, Z. Guan, B. Tian, L. Wang, Y. Zhou, Y. Zhou, J. Lei, J. Zhang, Y. Liu, "0D/2D Plasmonic Cu2-xS/g-C3N4 Nanosheets Harnessing UV-Vis-NIR Broad Spectrum for Photocatalytic Degradation of Antibiotic Pollutant" Appl. Catal. B 2019, 263,118326. [195] Y. Liu, S. Shen, J. Zhang, W. Zhong, X. Huang, "Cu2-xSe/CdS Composite Photocatalyst with Enhanced Visible Light Photocatalysis Activity" Appl. Surf. Sci. 2019, 478, 762-769. [196] X. Xie, R. Wang, E. Liu, J. Fan, B. Chen, X. Hu, "Fabrication of a Cu2-xSe/rGO Heterojunction Photocatalyst to Achieve Efficient Photocatalytic H2 Generation" Int. J. Hydrog. Energy 2019, 44, 32042-32053. [197] S. Zhang, Q. Huang, L. Zhang, H. Zhang, Y. Han, Q. Sun, Z. Cheng, H. Qin, S. Dou, Z. Li, "Vacancy Engineering of Cu2-xSe Nanoparticles with Tunable LSPR and Magnetism for Dual-Modal Imaging Guided Photothermal Therapy of Cancer" Nanoscale 2018, 10, 3130-3143. [198] P. Srathongluan, R. Kuhamaneechot, P. Sukthao, V. Vailikhit, S. Choopun, A. Tubtimtae, "Photovoltaic Performances of Cu2-xTe Sensitizer Based on Undoped and Indium 3+-Doped TiO2 Photoelectrodes and Assembled Counter Electrodes" J. Colloid Interface Sci. 2015, 463, 222-228. [199] H.-J. Yang, C.-Y. Chen, F.-W. Yuan, H.-Y. Tuan, "Designed Synthesis of Solid and Hollow Cu2-xTe Nanocrystals with Tunable Near-Infrared Localized Surface Plasmon Resonance" J. Phys. Chem. C 2013, 117, 21955-21964. [200] J. Zheng, B. Dai, J. Liu, J. Liu, M. Ji, J. Liu, Y. Zhou, M. Xu, J. Zhang, "Hierarchical Self-Assembly of Cu7Te5 Nanorods into Superstructures with Enhanced SERS Performance" ACS Appl. Mater. Interfaces. 2016, 8, 35426-35434. [201] N. Li, H. Fanb, Y. Daib, J. Kongb, L. Ge, "Insight into the Solar Utilization of a Novel Z-scheme Cs0.33WO3/CdS Heterostructure for UV-Vis-NIR Driven Photocatalytic Hydrogen Evolution". Appl. Surf. Sci. 2020, 508, 145200. [202] Z. Lian, M. Sakamoto, J. J. M. Vequizo, C. S. Kumara Ranasinghe, A. Yamakata, T. Nagai, K. Kimoto, Y. Kobayashi, N. Tamai, T. Teranishi, "Plasmonic p-n Junction for Infrared Light to Chemical Energy Conversion" J. Am. Chem. Soc. 2019, 141, 2446-2450.
|