跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/07 17:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:馬嘉瑩
研究生(外文):Ma, Chia-Yin
論文名稱:研究同軸靜電紡絲P(VDF-TrFE)/P(VDF-TrFE-CTFE)機械及電性質
論文名稱(外文):Study the mechanical and electrical properties of coaxial electrospun P(VDF-TrFE)/P(VDF-TrFE-CTFE) nanofibers
指導教授:黃爾文
指導教授(外文):Huang, E-Wen
口試委員:陳信龍黃爾文陳儀帆柯文清林秀玉
口試委員(外文):Chen, Hsin-LungHuang, E-WenChen, Yi-fanKo, Wen-ChingLam, Tu-Ngoc
口試日期:2020-07-16
學位類別:碩士
校院名稱:國立交通大學
系所名稱:材料科學與工程學系奈米科技碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:80
中文關鍵詞:電活性聚合物壓電性質PVDF共聚物同軸靜電紡絲廣角X光繞射
外文關鍵詞:Electroactive PolymerPiezoelectric propertiesPVDF-basedCoaxial electrospinningWide Angle X-ray Diffraction
相關次數:
  • 被引用被引用:0
  • 點閱點閱:575
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
P(VDF-TrFE)聚(偏氟乙烯-三氟乙烯)已是一種廣為人知的具壓電性的電活性聚合物(EAP),具有較高的結晶度。若加入第三單體CTFE形成P(VDF-TrFE-CTFE)聚(偏二氟乙烯-三氟乙烯-氯代三氟乙烯)會將鐵電晶體破壞成奈米極性區的弛豫鐵電微晶,並顯示出較高的介電常數。本研究利用同軸靜電紡絲,將P(VDF-TrFE)和P(VDF-TrFE-CTFE)混成在一起,並利用同步輻射Wide-angle X-ray Diffraction (WAXD)實驗研究其材料微結構、晶格結構等對機械及壓電性質的影響。結果發現利用同軸電紡製程的奈米纖維由於其與生物肌肉相近的楊氏模量,有很大的潛力可以應用於人造肌肉。並且當P(VDF-TrFE)作為奈米纖維的核心材料,P(VDF-TrFE-CTFE)作為奈米纖維的殼材料時,由於三元聚合物的加入及結晶度的上升,壓電常數d33高達50.5pm/V,因此作為人造肌肉致動器有很大的驅動應變能力。
P(VDF-TrFE) poly(vinylidene fluoride-trifluoroethylene) is a well-known piezoelectric electroactive polymer (EAP) with high crystallinity. If the third monomer (CTFE) is introduced to form P(VDF-TrFE-CTFE) poly(vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene), the ferroelectric domains will be fragmented into a relaxor ferroelectric domains which is nano polar region with high dielectric constant. In this study, we fabricated core-shell electrospun nanofibers by using coaxial electrospinning of P(VDF-TrFE) and P(VDF-TrFE-CTFE). We conducted wide angle x-ray diffraction (WAXD) to study the impact of lattice structure and crystallinity on the mechanical and piezoelectric properties. The coaxial electrospun nanofibers possess comparable Young’s modulus with that of the mammalian muscles. The core/shell-TrFE/CTFE has higher piezoelectric coefficient (d33) of 50.5 pm/V, ascribed to the addition of terpolymer and the increase of crystallinity, suggesting a potentially promising candidate for artificial muscle actuator strain.
中文摘要 i
Abstract ii
誌 謝 iii
目 錄 iv
圖目錄 vi
表目錄 ix
一、 前言 1
二、 文獻回顧 2
2.1 電活性聚合物(Electroactive Polymer, EAP)之發展 2
2.2 電活性聚合物(Electroactive Polymer, EAP)分類 3
2.3 壓電效應 5
2.4 電活性聚合物(Electroactive Polymer, EPA)之性能 7
2.4.1 材料之介電常數介紹 7
2.4.2 EAP之機械性質 9
2.5 PVDF共聚物介紹 10
2.6 靜電紡絲製程介紹 12
2.6.1 靜電紡絲製程參數 13
2.6.2 同軸靜電紡絲介紹 16
2.6.3 同軸靜電紡絲製程參數 17
2.7 同步輻射X光散射實驗 18
2.7.1 同步輻射光源特性及優勢 21
2.7.2 廣角繞射介紹(Wide Angle X-ray Diffraction, WAXD) 21
三、 實驗 22
3.1 實驗目的 22
3.2 實驗材料 23
3.3 實驗樣品製備 23
3.4 纖維形貌觀察 26
3.4.1 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 26
3.5 微結構觀察 27
3.5.1 廣角 X 射線繞射儀(Wide Angle X-ray Diffraction, WAXD) 27
3.5.2 廣角軟體積分 28
3.5.3 重合峰值擬合分析 31
3.5.4 傅立葉轉換紅外線光譜儀(Fourier Transform InfraRed Spectroscopy, FTIR) 32
3.6 拉伸試驗 32
3.7 電性量測 34
四、 實驗結果 35
4.1 表面微觀結構觀察 35
4.2 傅立葉轉換紅外線光譜(FTIR)分析 38
4.3 X光繞射圖理論計算 40
4.4 廣角X光繞射(WAXD)繞射峰分析 42
4.4.1 繞射位置(2 theta position)分析 44
4.4.2 峰值強度(Intensity)分析 45
4.4.3 繞射峰半高寬(FWHM)分析 46
4.5 拉伸測試結果 47
4.6 低電場下介電性能 51
4.7 高電場下壓電性質 53
五、 結果與討論 54
5.1 電紡製程之纖維異向性 54
5.2 同軸電紡晶體結構之改變 57
5.3 同軸電紡機械性質優化 58
5.4 同軸電紡電性之改變 61
六、 結論 63
七、 建議未來工作 64
八、 參考文獻 66
九、 附錄 72
9.1 同軸電紡製程 72
9.2 GASAII軟體操作 73
9.3 Fityk軟體操作 74
9.4 簡歷 76
9.5 參加年會海報 77
9.6 年會得獎獎狀 80
1. 楊嘉慧, 從肌肉認識運動員. 網路版科學人雜誌, 2008.
2. Bar-Cohen, Y. and I.A. Anderson, Electroactive polymer (EAP) actuators—background review. Mechanics of Soft Materials, 2019. 1(1): p. 5.
3. Roentgen, W., About the changes in shape and volume of dielectrics caused by electricity. Annual Physics and Chemistry Series, 1880. 11: p. 771-786.
4. Eguchi, M., XX. On the permanent electret. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1925. 49(289): p. 178-192.
5. Kawai, H., The piezoelectricity of poly (vinylidene fluoride). Japanese journal of applied physics, 1969. 8(7): p. 975.
6. Tanaka, T., et al., Collapse of gels in an electric field. Science, 1982. 218(4571): p. 467-469.
7. Asaka, K., et al., Bending of polyelectrolyte membrane–platinum composites by electric stimuli I. Response characteristics to various waveforms. Polymer Journal, 1995. 27(4): p. 436-440.
8. Baughman, R., Conducting polymer artificial muscles. Synthetic metals, 1996. 78(3): p. 339-353.
9. Nalwa, H.S., Ferroelectric polymers: chemistry: physics, and applications. 1995: CRC Press.
10. Zhang, Q., V. Bharti, and X. Zhao, Giant electrostriction and relaxor ferroelectric behavior in electron-irradiated poly (vinylidene fluoride-trifluoroethylene) copolymer. Science, 1998. 280(5372): p. 2101-2104.
11. Lehmann, W., et al., Giant lateral electrostriction in ferroelectric liquid-crystalline elastomers. Nature, 2001. 410(6827): p. 447-450.
12. Pelrine, R., et al., High-speed electrically actuated elastomers with strain greater than 100%. Science, 2000. 287(5454): p. 836-839.
13. Mishra, S., et al., Advances in piezoelectric polymer composites for energy harvesting applications: a systematic review. Macromolecular Materials and Engineering, 2019. 304(1): p. 1800463.
14. 什麼是正/逆壓電效應,兩者關係過程是什麼?. 互聯網, 2018.
15. Putson, C., Energy conversion from electroactive materials and Modeling of behaviour on these materials. 2010. p. 95-104 and 143-153.
16. Callister, W.D. and D.G. Rethwisch, Materials science and engineering: an introduction. Vol. 9. 2018: Wiley New York. 764-767.
17. Badr, A.M., H.A. Elshaikh, and I.M. Ashraf, Impacts of temperature and frequency on the dielectric properties for insight into the nature of the charge transports in the Tl2S layered single crystals. Journal of Modern Physics, 2011. 2011.
18. Mirfakhrai, T., J.D. Madden, and R.H. Baughman, Polymer artificial muscles. Materials today, 2007. 10(4): p. 30-38.
19. Xu, B., et al., Mechanically tissue-like elastomeric polymers and their potential as a vehicle to deliver functional cardiomyocytes. J Mech Behav Biomed Mater, 2013. 28: p. 354-65.
20. Karothu, D.P., et al., Global Performance Indices for Dynamic Crystals as Organic Thermal Actuators. Advanced Materials, 2020. 32(20): p. 1906216.
21. Pei, Q., et al. Multifunctional electroelastomer roll actuators and their application for biomimetic walking robots. in Smart Structures and Materials 2003: Electroactive Polymer Actuators and Devices (EAPAD). 2003. International Society for Optics and Photonics.
22. Zhu, Z., et al., Multiphysics of ionic polymer–metal composite actuator. Journal of Applied Physics, 2013. 114(8): p. 084902.
23. Qin, Y., et al., Polymer integration for packaging of implantable sensors. Sensors and Actuators B: Chemical, 2014. 202: p. 758-778.
24. Yuan, X., et al. Application review of dielectric electroactive polymers (DEAPs) and piezoelectric materials for vibration energy harvesting. in J. Phys. Conf. Ser. 2016.
25. Shehzad, M. and T. Malik, Antiferroelectric Behavior of P(VDF-TrFE) and P(VDF-TrFE-CTFE) Ferroelectric Domains for Energy Harvesting. Acs Applied Energy Materials, 2018. 1(6): p. 2832-2840.
26. Li, D. and Y. Xia, Electrospinning of nanofibers: reinventing the wheel? Advanced materials, 2004. 16(14): p. 1151-1170.
27. Kongkhlang, T., et al., Electrospinning as a new technique to control the crystal morphology and molecular orientation of polyoxymethylene nanofibers. Journal of the American Chemical Society, 2008. 130(46): p. 15460-15466.
28. Maurya, A.K., et al., Structural insights into semicrystalline states of electrospun nanofibers: a multiscale analytical approach. Nanoscale, 2019. 11(15): p. 7176-7187.
29. Gatford, J., A diagram of the electrospinning process showing the onset of instability. New Zealand, The New Zealand Institute for Plant and Food Research Ltd, 2008.
30. Deitzel, J.M., et al., The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer, 2001. 42(1): p. 261-272.
31. 王盈之, 以即時 X 光散射鑑定電紡製程之聚 (偏氟乙烯-三氟乙烯) 之變形機制以及壓電性質. 交通大學材料科學與工程系所學位論文, 2018: p. 9-28.
32. Qin, X., Coaxial electrospinning of nanofibers, in Electrospun Nanofibers. 2017. p. 41-71.
33. Loscertales, I.G., et al., Micro/nano encapsulation via electrified coaxial liquid jets. Science, 2002. 295(5560): p. 1695-8.
34. Sun, Z., et al., Compound Core–Shell Polymer Nanofibers by Co-Electrospinning. Advanced Materials, 2003. 15(22): p. 1929-1932.
35. Han, D. and A.J. Steckl, Coaxial Electrospinning Formation of Complex Polymer Fibers and their Applications. Chempluschem, 2019. 84(10): p. 1453-1497.
36. Pynn, R., A primer neutron scattering. Los Alamos Science Summer, 1990: p. 2-4.
37. 林宮玄, 淺談同步輻射光源應用. 全華圖書物理專刊, 第 10 期, 2015: p. 1-8.
38. 科教資源, 同步加速器光源簡介. 2010: p. 1-20.
39. 林麗娟, X 光繞射原理及其應用. X 光材料分析技術與應用專題, 1994: p. 1-10.
40. Lam, T.-N., et al., Tuning mechanical properties of electrospun piezoelectric nanofibers by heat treatment. Materialia, 2019. 8: p. 100461.
41. Jiang, Y., et al., Aligned P (VDF-TrFE) nanofibers for enhanced piezoelectric directional strain sensing. Polymers, 2018. 10(4): p. 364.
42. Begum, H. and K. Khan, Study on the various types of needle based and needleless electrospinning system for nanofiber production. Int. J. Text. Sci, 2017. 6: p. 110-117.
43. Baji, A., Y.-W. Mai, and S.-C. Wong, Effect of fiber size on structural and tensile properties of electrospun polyvinylidene fluoride fibers. Polymer Engineering & Science, 2015. 55(8): p. 1812-1817.
44. Ico, G., et al., Size-dependent piezoelectric and mechanical properties of electrospun P (VDF-TrFE) nanofibers for enhanced energy harvesting. Journal of Materials Chemistry A, 2016. 4(6): p. 2293-2304.
45. Na, H., et al., Anisotropic mechanical properties of hot‐pressed PVDF membranes with higher fiber alignments via electrospinning. Polymer Engineering & Science, 2009. 49(7): p. 1291-1298.
46. Habibur, R.M., et al., The effect of RGO on dielectric and energy harvesting properties of P (VDF-TrFE) matrix by optimizing electroactive β phase without traditional polling process. Materials Chemistry and Physics, 2018. 215: p. 46-55.
47. Hasegawa, R., et al., Crystal structures of three crystalline forms of poly (vinylidene fluoride). Polymer Journal, 1972. 3(5): p. 600-610.
48. Tan, S., et al., Significantly improving dielectric and energy storage properties via uniaxially stretching crosslinked P(VDF-co-TrFE) films. Journal of Materials Chemistry A, 2013. 1(35).
49. Augustine, A., et al., Development of titanium dioxide nanowire incorporated poly (vinylidene fluoride–trifluoroethylene) scaffolds for bone tissue engineering applications. Journal of Materials Science: Materials in Medicine, 2019. 30(8): p. 96.
50. Mahapatra, S.S., et al., Highly stretchable, transparent and scalable elastomers with tunable dielectric permittivity. Journal of Materials Chemistry, 2011. 21(21).
51. Parangusan, H., D. Ponnamma, and M.A.A. Al-Maadeed, Stretchable Electrospun PVDF-HFP/Co-ZnO Nanofibers as Piezoelectric Nanogenerators. Sci Rep, 2018. 8(1): p. 754.
52. Jana, S., et al., The influence of hydrogen bonding on the dielectric constant and the piezoelectric energy harvesting performance of hydrated metal salt mediated PVDF films. Phys Chem Chem Phys, 2015. 17(26): p. 17429-36.
53. Dou, Y., C. Wu, and J. Chang, Preparation, mechanical property and cytocompatibility of poly (l-lactic acid)/calcium silicate nanocomposites with controllable distribution of calcium silicate nanowires. Acta Biomaterialia, 2012. 8(11): p. 4139-4150.
54. Markatos, D., A. Sarakinis, and D. Mavrilas, Tuning Fiber Alignment to Achieve Mechanical Anisotropy on Polymeric Electrospun Scaffolds for Cardiovascular Tissue Engineering. J Material Sci Eng, 2018. 7(466): p. 2169-0022.1000466.
55. Ngadiman, N.H.A., et al., Mechanical properties and biocompatibility of co-axially electrospun polyvinyl alcohol/maghemite. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2016. 230(8): p. 739-749.
56. Qin, X.H. and S.Y. Wang, Electrospun nanofibers from crosslinked poly (vinyl alcohol) and its filtration efficiency. Journal of applied polymer science, 2008. 109(2): p. 951-956.
57. Alharbi, H.F., et al., Fabrication of core-shell structured nanofibers of poly (lactic acid) and poly (vinyl alcohol) by coaxial electrospinning for tissue engineering. European Polymer Journal, 2018. 98: p. 483-491.
58. Dang, Z.-M., Dielectric Polymer Materials for High-Density Energy Storage. 2018: William Andrew.
59. Thakur, P., et al., Effect of in situ synthesized Fe2O3 and Co3O4 nanoparticles on electroactive beta phase crystallization and dielectric properties of poly(vinylidene fluoride) thin films. Phys Chem Chem Phys, 2015. 17(2): p. 1368-78.
60. Chen, X.-Z., et al., A polymer blend approach to tailor the ferroelectric responses in P(VDF–TrFE) based copolymers. Polymer, 2013. 54(9): p. 2373-2381.
61. Ardimas, C. Putson, and N. Muensit, High electromechanical performance of modified electrostrictive polyurethane three-phase composites. Composites Science and Technology, 2018. 158: p. 164-174.
62. Wan, C. and C.R. Bowen, Multiscale-structuring of polyvinylidene fluoride for energy harvesting: the impact of molecular-, micro-and macro-structure. Journal of Materials Chemistry A, 2017. 5(7): p. 3091-3128.
63. Zhao, X., et al., Enhanced piezoelectric response in the artificial ferroelectric polymer multilayers. Applied Physics Letters, 2014. 105(22): p. 222907.
64. Liu, X., et al., Nanoscale investigations on β-phase orientation, piezoelectric response, and polarization direction of electrospun PVDF nanofibers. RSC advances, 2016. 6(110): p. 109061-109066.
65. Determination of Degree of Orientation of Polymers by WAXD (Wide Angle X-ray Diffraction) Analysis. MITSUI CHEMICAL ANALYSIS & CONSULTING SERVICE, INC.
電子全文 電子全文(網際網路公開日期:20250723)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top