|
1. 楊嘉慧, 從肌肉認識運動員. 網路版科學人雜誌, 2008. 2. Bar-Cohen, Y. and I.A. Anderson, Electroactive polymer (EAP) actuators—background review. Mechanics of Soft Materials, 2019. 1(1): p. 5. 3. Roentgen, W., About the changes in shape and volume of dielectrics caused by electricity. Annual Physics and Chemistry Series, 1880. 11: p. 771-786. 4. Eguchi, M., XX. On the permanent electret. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1925. 49(289): p. 178-192. 5. Kawai, H., The piezoelectricity of poly (vinylidene fluoride). Japanese journal of applied physics, 1969. 8(7): p. 975. 6. Tanaka, T., et al., Collapse of gels in an electric field. Science, 1982. 218(4571): p. 467-469. 7. Asaka, K., et al., Bending of polyelectrolyte membrane–platinum composites by electric stimuli I. Response characteristics to various waveforms. Polymer Journal, 1995. 27(4): p. 436-440. 8. Baughman, R., Conducting polymer artificial muscles. Synthetic metals, 1996. 78(3): p. 339-353. 9. Nalwa, H.S., Ferroelectric polymers: chemistry: physics, and applications. 1995: CRC Press. 10. Zhang, Q., V. Bharti, and X. Zhao, Giant electrostriction and relaxor ferroelectric behavior in electron-irradiated poly (vinylidene fluoride-trifluoroethylene) copolymer. Science, 1998. 280(5372): p. 2101-2104. 11. Lehmann, W., et al., Giant lateral electrostriction in ferroelectric liquid-crystalline elastomers. Nature, 2001. 410(6827): p. 447-450. 12. Pelrine, R., et al., High-speed electrically actuated elastomers with strain greater than 100%. Science, 2000. 287(5454): p. 836-839. 13. Mishra, S., et al., Advances in piezoelectric polymer composites for energy harvesting applications: a systematic review. Macromolecular Materials and Engineering, 2019. 304(1): p. 1800463. 14. 什麼是正/逆壓電效應,兩者關係過程是什麼?. 互聯網, 2018. 15. Putson, C., Energy conversion from electroactive materials and Modeling of behaviour on these materials. 2010. p. 95-104 and 143-153. 16. Callister, W.D. and D.G. Rethwisch, Materials science and engineering: an introduction. Vol. 9. 2018: Wiley New York. 764-767. 17. Badr, A.M., H.A. Elshaikh, and I.M. Ashraf, Impacts of temperature and frequency on the dielectric properties for insight into the nature of the charge transports in the Tl2S layered single crystals. Journal of Modern Physics, 2011. 2011. 18. Mirfakhrai, T., J.D. Madden, and R.H. Baughman, Polymer artificial muscles. Materials today, 2007. 10(4): p. 30-38. 19. Xu, B., et al., Mechanically tissue-like elastomeric polymers and their potential as a vehicle to deliver functional cardiomyocytes. J Mech Behav Biomed Mater, 2013. 28: p. 354-65. 20. Karothu, D.P., et al., Global Performance Indices for Dynamic Crystals as Organic Thermal Actuators. Advanced Materials, 2020. 32(20): p. 1906216. 21. Pei, Q., et al. Multifunctional electroelastomer roll actuators and their application for biomimetic walking robots. in Smart Structures and Materials 2003: Electroactive Polymer Actuators and Devices (EAPAD). 2003. International Society for Optics and Photonics. 22. Zhu, Z., et al., Multiphysics of ionic polymer–metal composite actuator. Journal of Applied Physics, 2013. 114(8): p. 084902. 23. Qin, Y., et al., Polymer integration for packaging of implantable sensors. Sensors and Actuators B: Chemical, 2014. 202: p. 758-778. 24. Yuan, X., et al. Application review of dielectric electroactive polymers (DEAPs) and piezoelectric materials for vibration energy harvesting. in J. Phys. Conf. Ser. 2016. 25. Shehzad, M. and T. Malik, Antiferroelectric Behavior of P(VDF-TrFE) and P(VDF-TrFE-CTFE) Ferroelectric Domains for Energy Harvesting. Acs Applied Energy Materials, 2018. 1(6): p. 2832-2840. 26. Li, D. and Y. Xia, Electrospinning of nanofibers: reinventing the wheel? Advanced materials, 2004. 16(14): p. 1151-1170. 27. Kongkhlang, T., et al., Electrospinning as a new technique to control the crystal morphology and molecular orientation of polyoxymethylene nanofibers. Journal of the American Chemical Society, 2008. 130(46): p. 15460-15466. 28. Maurya, A.K., et al., Structural insights into semicrystalline states of electrospun nanofibers: a multiscale analytical approach. Nanoscale, 2019. 11(15): p. 7176-7187. 29. Gatford, J., A diagram of the electrospinning process showing the onset of instability. New Zealand, The New Zealand Institute for Plant and Food Research Ltd, 2008. 30. Deitzel, J.M., et al., The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer, 2001. 42(1): p. 261-272. 31. 王盈之, 以即時 X 光散射鑑定電紡製程之聚 (偏氟乙烯-三氟乙烯) 之變形機制以及壓電性質. 交通大學材料科學與工程系所學位論文, 2018: p. 9-28. 32. Qin, X., Coaxial electrospinning of nanofibers, in Electrospun Nanofibers. 2017. p. 41-71. 33. Loscertales, I.G., et al., Micro/nano encapsulation via electrified coaxial liquid jets. Science, 2002. 295(5560): p. 1695-8. 34. Sun, Z., et al., Compound Core–Shell Polymer Nanofibers by Co-Electrospinning. Advanced Materials, 2003. 15(22): p. 1929-1932. 35. Han, D. and A.J. Steckl, Coaxial Electrospinning Formation of Complex Polymer Fibers and their Applications. Chempluschem, 2019. 84(10): p. 1453-1497. 36. Pynn, R., A primer neutron scattering. Los Alamos Science Summer, 1990: p. 2-4. 37. 林宮玄, 淺談同步輻射光源應用. 全華圖書物理專刊, 第 10 期, 2015: p. 1-8. 38. 科教資源, 同步加速器光源簡介. 2010: p. 1-20. 39. 林麗娟, X 光繞射原理及其應用. X 光材料分析技術與應用專題, 1994: p. 1-10. 40. Lam, T.-N., et al., Tuning mechanical properties of electrospun piezoelectric nanofibers by heat treatment. Materialia, 2019. 8: p. 100461. 41. Jiang, Y., et al., Aligned P (VDF-TrFE) nanofibers for enhanced piezoelectric directional strain sensing. Polymers, 2018. 10(4): p. 364. 42. Begum, H. and K. Khan, Study on the various types of needle based and needleless electrospinning system for nanofiber production. Int. J. Text. Sci, 2017. 6: p. 110-117. 43. Baji, A., Y.-W. Mai, and S.-C. Wong, Effect of fiber size on structural and tensile properties of electrospun polyvinylidene fluoride fibers. Polymer Engineering & Science, 2015. 55(8): p. 1812-1817. 44. Ico, G., et al., Size-dependent piezoelectric and mechanical properties of electrospun P (VDF-TrFE) nanofibers for enhanced energy harvesting. Journal of Materials Chemistry A, 2016. 4(6): p. 2293-2304. 45. Na, H., et al., Anisotropic mechanical properties of hot‐pressed PVDF membranes with higher fiber alignments via electrospinning. Polymer Engineering & Science, 2009. 49(7): p. 1291-1298. 46. Habibur, R.M., et al., The effect of RGO on dielectric and energy harvesting properties of P (VDF-TrFE) matrix by optimizing electroactive β phase without traditional polling process. Materials Chemistry and Physics, 2018. 215: p. 46-55. 47. Hasegawa, R., et al., Crystal structures of three crystalline forms of poly (vinylidene fluoride). Polymer Journal, 1972. 3(5): p. 600-610. 48. Tan, S., et al., Significantly improving dielectric and energy storage properties via uniaxially stretching crosslinked P(VDF-co-TrFE) films. Journal of Materials Chemistry A, 2013. 1(35). 49. Augustine, A., et al., Development of titanium dioxide nanowire incorporated poly (vinylidene fluoride–trifluoroethylene) scaffolds for bone tissue engineering applications. Journal of Materials Science: Materials in Medicine, 2019. 30(8): p. 96. 50. Mahapatra, S.S., et al., Highly stretchable, transparent and scalable elastomers with tunable dielectric permittivity. Journal of Materials Chemistry, 2011. 21(21). 51. Parangusan, H., D. Ponnamma, and M.A.A. Al-Maadeed, Stretchable Electrospun PVDF-HFP/Co-ZnO Nanofibers as Piezoelectric Nanogenerators. Sci Rep, 2018. 8(1): p. 754. 52. Jana, S., et al., The influence of hydrogen bonding on the dielectric constant and the piezoelectric energy harvesting performance of hydrated metal salt mediated PVDF films. Phys Chem Chem Phys, 2015. 17(26): p. 17429-36. 53. Dou, Y., C. Wu, and J. Chang, Preparation, mechanical property and cytocompatibility of poly (l-lactic acid)/calcium silicate nanocomposites with controllable distribution of calcium silicate nanowires. Acta Biomaterialia, 2012. 8(11): p. 4139-4150. 54. Markatos, D., A. Sarakinis, and D. Mavrilas, Tuning Fiber Alignment to Achieve Mechanical Anisotropy on Polymeric Electrospun Scaffolds for Cardiovascular Tissue Engineering. J Material Sci Eng, 2018. 7(466): p. 2169-0022.1000466. 55. Ngadiman, N.H.A., et al., Mechanical properties and biocompatibility of co-axially electrospun polyvinyl alcohol/maghemite. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2016. 230(8): p. 739-749. 56. Qin, X.H. and S.Y. Wang, Electrospun nanofibers from crosslinked poly (vinyl alcohol) and its filtration efficiency. Journal of applied polymer science, 2008. 109(2): p. 951-956. 57. Alharbi, H.F., et al., Fabrication of core-shell structured nanofibers of poly (lactic acid) and poly (vinyl alcohol) by coaxial electrospinning for tissue engineering. European Polymer Journal, 2018. 98: p. 483-491. 58. Dang, Z.-M., Dielectric Polymer Materials for High-Density Energy Storage. 2018: William Andrew. 59. Thakur, P., et al., Effect of in situ synthesized Fe2O3 and Co3O4 nanoparticles on electroactive beta phase crystallization and dielectric properties of poly(vinylidene fluoride) thin films. Phys Chem Chem Phys, 2015. 17(2): p. 1368-78. 60. Chen, X.-Z., et al., A polymer blend approach to tailor the ferroelectric responses in P(VDF–TrFE) based copolymers. Polymer, 2013. 54(9): p. 2373-2381. 61. Ardimas, C. Putson, and N. Muensit, High electromechanical performance of modified electrostrictive polyurethane three-phase composites. Composites Science and Technology, 2018. 158: p. 164-174. 62. Wan, C. and C.R. Bowen, Multiscale-structuring of polyvinylidene fluoride for energy harvesting: the impact of molecular-, micro-and macro-structure. Journal of Materials Chemistry A, 2017. 5(7): p. 3091-3128. 63. Zhao, X., et al., Enhanced piezoelectric response in the artificial ferroelectric polymer multilayers. Applied Physics Letters, 2014. 105(22): p. 222907. 64. Liu, X., et al., Nanoscale investigations on β-phase orientation, piezoelectric response, and polarization direction of electrospun PVDF nanofibers. RSC advances, 2016. 6(110): p. 109061-109066. 65. Determination of Degree of Orientation of Polymers by WAXD (Wide Angle X-ray Diffraction) Analysis. MITSUI CHEMICAL ANALYSIS & CONSULTING SERVICE, INC.
|