跳到主要內容

臺灣博碩士論文加值系統

(44.192.48.196) 您好!臺灣時間:2024/06/14 17:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張芳卿
研究生(外文):Chang, Fang-Ching
論文名稱:高堆積密度之懸浮性自組裝多孔奈米立體陣列及其於表面增強拉曼光譜檢測上之應用
論文名稱(外文):Highly integrated quasi-ordered self-assembling spherical porous nano-array and its application in SERS detection
指導教授:陳軍華陳軍華引用關係
指導教授(外文):Chen, Chun-Hua
口試委員:李積琛陳軍華黃華宗陳信龍王禎翰
口試委員(外文):Lee, Chi-ShenChen, Chun-HuaWang, Wha-TzongChen, Hsin-LungWang, Jeng-Han
口試日期:2020-06-19
學位類別:博士
校院名稱:國立交通大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:109
中文關鍵詞:自組裝多孔奈米陣列表面增強拉曼散射光譜高堆積密度
外文關鍵詞:self-assembledporous nano-arraySERSHighly integratedPtPdAu
相關次數:
  • 被引用被引用:0
  • 點閱點閱:107
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
一種可作為新世代表面增強拉曼散射感測器(SERS sensor)的創新概念懸浮式自組裝三維奈米陣列,成功地以三嵌段高分子輔助的化學方式進行系列的合成。此懸浮式自組裝三維奈米陣列由鉑、鈀奈米粒子於三嵌段高分子(熱可逆水膠,Pluronic® F127)微胞構成之軟基板上所自組裝而成,形成一無機(金屬)/有機(雙性高分子)之複合結構,其整體均一性高且尺寸不超過100奈米。依自組裝的鉑、鈀一次奈米粒子型態不同,可分為:(1) 準秩序排列的球形懸浮式自組裝奈米陣列(granular Pt-Pd spherically-assembled floating nano-arrays, g-PtPd FNAs)與(2) 放射狀排列的花瓣型態懸浮式自組裝奈米陣列(petaloid Pt-Pd spherically-assembled floating nano-arrays, p-PtPd FNAs),兩系列均具有一富鈀分佈之核心結構。與傳統的鉑鈀奈米粒子相比,此二型態之鉑鈀懸浮式自組裝三維奈米陣列於可見光區具有一非典型的表面電漿子共振光譜特性,使其可作為表面增強拉曼散射感測器並達到傑出的分析偵測極限。
另一方面,利用熱可逆水膠軟基板的溫敏特性,成功地於合成過程中,將金奈米粒子修飾於球形鉑鈀自組裝奈米陣列(g-Au-PP SANSs)與放射狀排列的花瓣型態鉑鈀自組裝奈米陣列(p-Au-PP SANSs),使此無機(金屬)/有機(雙性高分子)複合結構之功能性擴增。值得一提的是,修飾於外層的金奈米粒子正好位於複合結構之親水區域,使之對不同極性的分子具有選擇性並進行不同幅度的訊號增強,展現其類似分子篩的概念,於處理實際水樣中之複雜系統更具應用潛力。
An innovative concept of floating nano-arrays (FNAs) as promising new-generation surface-enhanced Raman scattering (SERS) sensors was proposed for the first time and has been successfully realized via a facile tri-block-copolymer assisted chemical route. At least two categories of the complicated highly-uniform Pt-Pd FNAs with a fairly small assembled diameter of less than 100 nm respectively consisted of quasi-orderly assembled spherical and petal-like nanocrystals with unique radially-distributed compositions were evidently classified and reproducibly fabricated. The synthesized Pt-Pd FNAs were found to exhibit unusual strong surface plasmon resonance (SPR) bands in the visible region, and have been successfully demonstrated as practical SERS sensors with remarkably low analytical limits of detection.
Furthermore, a series of unique granular and petaloid Au capped Pt-Pd spherically-assembled nano-sieves (Au-PP SANSs) with a diameter of less than 100 nm, combining quasi-regularly integrated surface-enhanced Raman scattering (SERS) active nanocrystals and a functional amphiphilic organic frame, have been successfully synthesized through a facile chemical route with a temperature-sensitive triblock copolymer soft-template and demonstrated as a potential candidate for developing highly-selective molecule-sieve assisted SERS sensors. The distinct collaboration of the superposed inorganic and organic dual core-shell structures in Au-PP SANSs acts as a molecule-sieve, which plays a crucial role in the appearance of promising chemical selectivity in distinguishing polar malachite green oxalate salt and non-polar thiabendazole molecules.
摘要 i
ABSTRACT iii
Acknowledgement v
Contents vi
Table Caption viii
Figure Caption ix
Chapter 1 Introduction 1
Chapter 2 Literature review 7
2.1 The development of SERS sensors and their applications 7
2.1.1 Zero- and one-dimension SERS sensors and their applications 11
2.1.1.1 Hotspot engineering 11
2.1.1.2 Analyte manipulation of zero- and one-dimension SERS sensors 14
2.1.2 Hotspot engineering of orderly-patterned two-dimensional (2D) nanostructured arrays 22
2.1.3 Three-dimensional (3D) nanostructured arrays and SERS sensors 28
2.1.4 SERS sensors for practical applications 32
2.2 Template-assisted synthesis of Pt, Pd and Pt-Pd NPs 34
Chapter 3 Experimental methods 40
3.1 Preparation of Pt-Pd floating nano-arrays (Pt-Pd FNAs) 41
3.2 Experimental section of Au capped Pt-Pd self-assembled nano-sieves (Au-PP SANSs) 43
3.2.1 Preparation of granular Au capped Pt-Pd self-assembled nano-sieves (g-Au-PP SANSs) 44
3.2.2 Preparation of petaloid Au capped Pt-Pd self-assembled nano-sieves (p-Au-PP SANSs) 45
3.3 Structural characterizations 46
3.4 Optical and SERS performance of Pt-Pd FNAs and Au-PP SANSs in detecting different target molecules 46
Chapter 4 Pt−Pd floating nano-arrays templated on Pluronic F127 micelles 48
4.1 Design concept of Pt−Pd floating nano-arrays 48
4.2 Structural characterizations 50
4.3 Synthesis mechanism 60
4.4 SERS performance 66
4.5 Conclusions 71
Chapter 5 Au capped Pt-Pd self-assembled nano-sieves 73
5.1 Design concept of Au capped Pt-Pd self-assembled nano-sieves 73
5.2 Synthesis mechanism 74
5.3 Structural characterizations 76
5.4 Conclusions 90
Chapter 6 Summary 92
References 94
[1] Zheng T., Holford T.R., Tessari J., Mayne S.T., Owens P.H., Ward B., Carter D., Boyle P., Dubrow R., Archibeque-Engle S. & Zahm S.H. (2000). Breast Cancer Risk Associated with Congeners of Polychlorinated Biphenyls, American Journal of Epidemiology 152 (1) 50-58.
[2] Järup L. Hazards of heavy metal contamination. (2003). British Medical Bulletin 68(1) 167-182.
[3] Sounderajan S., Udas A.C. & Venkataramani B. (2007). Characterization of arsenic (V) and arsenic (III) in water samples using ammonium molybdate and estimation by graphite furnace atomic absorption spectroscopy. Journal of Hazardous Materials 149(1) 238-242.
[4] Zhang N., Fub N., Fang Z., Feng Y. & Ke L. (2011). Simultaneous multi-channel hydride generation atomic fluorescence spectrometry determination of arsenic, bismuth, tellurium and selenium in tea leaves. Food Chemistry 124(3) 1185-1188.
[5] Galani-Nikolakaki S., Kallithrakas-Kontos K.& Katsanos A.A (2002). Trace element analysis of Cretan wines and wine products. Science of The Total Environment 285(1-3) 155-163.
[6] Gil R.A., Ferrúa N., Salonia J.A., Olsina R.A. & Martinez L.D. (2007). On-line arsenic co-precipitation on ethyl vinyl acetate turning-packed mini-column followed by hydride generation-ICP OES determination. Journal of Hazardous Materials 143(1-2) 431-436.
[7] Asensio L., González I., García T. & Martín R. (2008). Determination of food authenticity by enzyme-linked immunosorbent assay (ELISA). Food Control 19(1) 1-8.
[8] Tang H., Zhu C., Meng G. & Wu N. (2018). Review—Surface-Enhanced Raman Scattering Sensors for Food Safety and Environmental Monitoring. Journal of The Electrochemical Society 165(8) B3098-B3118.
[9] Fleischmann M., Hendra P.J. & McQuillan A.J. (1974). Raman spectra of pyridine adsorbed at a silver electrode. Chemical Physics Letters 26(2) 163-166.
[10] Ru E. and Etchegoin P. (2008). Principles of Surface-Enhanced Raman Spectroscopy: And Related Plasmonic Effects. Oxford, UK: Elsevier.
[11] Ding S. Y., You E. M., Tian Z. Q. & Moskovits M. (2017). Electromagnetic theories of surface-enhanced Raman spectroscopy. Chemical Society Reviews 46 4042-4076.
[12] Cardinal M. F., Ende E. V., Hackler R. A., McAnally M. O., Stair P. C., Schatz G. C. & Van Duyne R. P. (2017). Expanding applications of SERS through versatile nanomaterials engineering. Chemical Society Reviews 46 3886-3903.
[13] Le Ru E. C. and Etchegoin P. G. (2013). Quantifying SERS enhancements. MRS Bulletin 38(8) 631-640.
[14] Le Ru E. C., Meyer M., Blackie E. & Etchegoin P. G. (2008). Advanced aspects of electromagnetic SERS enhancement factors at a hot spot. Journal of Raman Spectroscopy 39 1127-1134.
[15] Zhu W., Esteban R., Borisov A. G., Baumberg J. J., Nordlander P., Lezec H. J., Aizpurua J. & Crozier K. B. (2016). Quantum mechanical effects in plasmonic structures with subnanometre gaps. Nature Communications 7 1-14.
[16] Lombardi J. R. and Birke R. L. (2009). A Unified View of Surface-Enhanced Raman Scattering. Accounts of Chemical Research 42(6) 734-742.
[17] Otto A. (2005). The ‘chemical’ (electronic) contribution to surface‐enhanced Raman scattering. Journal of Raman Spectroscopy 36 497-509.
[18] Alessandri I. and Lombardi J. R. (2016). Enhanced Raman Scattering with Dielectrics. Chemical Reviews 116(24) 14921-14981.
[19] Otto A. (1984). Surface-enhanced Raman scattering: “Classical” and “Chemical” origins. In: Cardona M., Güntherodt G. (eds) Light Scattering in Solids IV. Topics in Applied Physics, vol 54. Springer, Berlin, Heidelberg.
[20] McFarland A. D. and Van Duyne R. P. (2003). Single Silver Nanoparticles as Real-Time Optical Sensors with Zeptomole Sensitivity. Nano Letters 3(8) 1057-1062.
[21] Haes A. J., Haynes C. L., McFarland A. D., Schatz G. C., Van Duyne R. P. & Zou S. (2005). MRS Bulletin 30(5) 368-375.
[22] Kelly K. L., Coronado E., Zhao L. L. & Schatz G. C. (2003) The Optical Properties of Metal Nanoparticles:  The Influence of Size, Shape, and Dielectric Environment. The Journal of Physical Chemistry B 107(3) 668-677.
[23] Miller M. M. and Lazarides A. A. (2005). Sensitivity of Metal Nanoparticle Surface Plasmon Resonance to the Dielectric Environment. The Journal of Physical Chemistry B 109(46) 21556-21565.
[24] Mock J. J., Barbic M., Smith D. R., Schultz D. A., & Schultz S. (2002). Shape effects in plasmon resonance of individual colloidal silver nanoparticles. The Journal of Chemical Physics 116 6755-6759.
[25] Haynes C. L., McFarland A. D., Smith M. T., Hulteen J. C., & Van Duyne R. P. (2002). Angle-Resolved Nanosphere Lithography:  Manipulation of Nanoparticle Size, Shape, and Interparticle Spacing. The Journal of Physical Chemistry B 106(8) 1898-1902.
[26] Warriner K., Reddy S. M., Namvar A., & Neethirajan S. (2014). Developments in nanoparticles for use in biosensors to assess food safety and quality. Trends in Food Science & Technology 40(2) 183-199.
[27] Yang T., Huang H., Zhu F., Lin Q., Zhang L. & Liu J. (2016). Recent Progresses in Nanobiosensing for Food Safety Analysis. Sensors 16(7), 1118.
[28] Zheng J. and He L. (2014). Surface‐Enhanced Raman Spectroscopy for the Chemical Analysis of Food. ComprehensiveReviewsin Food Scienceand Food Safety 13 317-328.
[29] Ai K., Liu Y. & Lu L. (2009). Hydrogen-bonding recognition-induced color change of gold nanoparticles for visual detection of melamine in raw milk and infant formula, Journal of the American Chemical Society 131(27) 9496-9497.
[30] Zhang Y., Wang Z., Wu L., Pei Y., Chen P. & Cui Y. (2014). Rapid simultaneous detection of multi-pesticide residues on apple using SERS technique. Analyst 139(20) 5148-5154.
[31] Han C. and Li H. (2010). Visual detection of melamine in infant formula at 0.1 ppm level based on silver nanoparticles. Analyst 135(3) 583-588.
[32] Shiohara A., Langer J., Polavarapu L. & Liz-Marzán L.M. (2014). Solution processed polydimethylsiloxane/gold nanostar flexible substrates for plasmonic sensing. Nanoscale 6 9817-9823.
[33] Restaino S.M. and White I.M. (2019). A critical review of flexible and porous SERS sensors for analytical chemistry at the point-of-sample. Anal Chim Acta 1060 17-29.
[34] Hou R., Panga S. & He L. (2015). In situ SERS detection of multi-class insecticides on plant surfaces. Analytical Methods 7(15) 6325-6330.
[35] Müller C., David L., Chis V. & Pînzaru S.C. (2014). Detection of thiabendazole applied on citrus fruits and bananas using surface enhanced Raman scattering. Food Chemistry 145 814-820.
[36] Chen J., Huang Y., Kannan P., Zhang L., Lin Z., Zhang J., Chen T. & Guo L. (2016). Flexible and Adhesive Surface Enhance Raman Scattering Active Tape for Rapid Detection of Pesticide Residues in Fruits and Vegetables. Analytical Chemistry 88(4) 2149-2155.
[37] Chou S.Y., Yu C.C., Yen Y.T., Lin K.T., Chen H.L. & Su W.F. (2015). Romantic Story or Raman Scattering? Rose Petals as Ecofriendly, Low-Cost Substrates for Ultrasensitive Surface-Enhanced Raman Scattering. Analytical Chemistry 87(12) 6017-6024.
[38] Keskin S. and Culha M. (2012). Label-free detection of proteins from dried-suspended droplets using surface enhanced Raman scattering. Analyst 137 2651-2657.
[39] Lamprecht B., Schider G., Lechner R. T., Ditlbacher H., Krenn J. R., Leitner A., & Aussenegg F. R. (2000). Metal Nanoparticle Gratings: Influence of Dipolar Particle Interaction on the Plasmon Resonance. Physical Review Letters 84(20) 4721-4724.
[40] Wang H., Levin C. S., & Halas N. J. (2005). Nanosphere Arrays with Controlled Sub-10-nm Gaps as Surface-Enhanced Raman Spectroscopy Substrates. Journal of the American Chemical Society 127(43) 14992-14993.
[41] Zou S., Janel N., & Schatz G. C. (2004). Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes. The Journal of Chemical Physics 120(23) 10871.
[42] Brus L. (2008). Noble Metal Nanocrystals: Plasmon Electron Transfer Photochemistry and Single-Molecule Raman Spectroscopy. Accounts of Chemical Research 41(12) 1742-1749.
[43] Zou S. and Schatz G. C. (2005). Silver nanoparticle array structures that produce giant enhancements in electromagnetic fields. Chemical Physics Letters 403(1-3) 62-67.
[44] Zhang L., Jiang C., & Zhang Z. (2013). Graphene oxide embedded sandwich nanostructures for enhanced Raman readout and their applications in pesticide monitoring. Nanoscale 5 3773-3779.
[45] Zhu C., Meng G., Zheng P., Huang Q., Li Z., Hu X., Wang X., Huang Z., Li F. & Wu N. (2016). A Hierarchically Ordered Array of Silver-Nanorod Bundles for Surface-Enhanced Raman Scattering Detection of Phenolic Pollutants. Advanced Materials 28(24) 4871-4876.
[46] Dai Z., XiaoX., Lei Liao, Zheng J., Mei F., Wu W., Ying J., Ren F., and Jiang C. Large-area, well-ordered, uniform-sized bowtie nanoantenna arrays for surface enhanced Raman scattering substrate with ultra-sensitive detection. Applied Physics Letters 103(4) 041903.
[47] Li J. F., Huang Y. F., Ding Y., Yang Z. L., Li S. B., Zhou X. S., Fan F. R., Zhang W., Zhou Z. Y., Wu D. Y., Ren B., Wang Z. L. & Tian Z. Q. (2010). Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 464 392–395.
[48] Angelis F. D., Gentile F., Mecarini F., Das G., Moretti M., Candeloro P., Coluccio M. L., Cojoc G.,. Accardo A, Liberale C., Zaccaria R. P., Perozziello G., Tirinato L., Toma A., Cuda G., Cingolani R. & Di Fabrizio E. (2011). Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures. Nature Photonics 5 682–687.
[49] Tang H., Meng G., Huang Q., Zhang Z., Huang Z. and Zhu C. (2011). Arrays of Cone‐Shaped ZnO Nanorods Decorated with Ag Nanoparticles as 3D Surface‐Enhanced Raman Scattering Substrates for Rapid Detection of Trace Polychlorinated Biphenyls. Advanced Functional Materials 22(1) 218-224.
[50] Zhou N., Meng G., Huang Z., Ke Y., Zhoua Q. & Hu X. (2016). A flexible transparent Ag-NC@PE film as a cut-and-paste SERS substrate for rapid in situ detection of organic pollutants. Analyst 141(20) 5864-5869.
[51] Li Z., Meng G., Huang Q., Hu X., He X., Tang H., Wang Z. & Li F. (2015). Ag Nanoparticle‐Grafted PAN‐Nanohump Array Films with 3D High‐Density Hot Spots as Flexible and Reliable SERS Substrates. Small 11(40) 5452-5459.
[52] Pei L., Huang Y., Li C., Zhang Y., Rasco B. A. & Lai K. (2014). Detection of Triphenylmethane Drugs in Fish Muscle by Surface-Enhanced Raman Spectroscopy Coupled with Au-Ag Core-Shell Nanoparticles. Journal of Nanomaterials 2014 730915.
[53] Kang H., Jeong S., Park Y., Yim J., Jun B., Kyeong S., Yang J., Kim G., Hong S., Lee L. P., Kim J., Lee H., Jeong D. H. & Lee Y. (2013). Near‐Infrared SERS Nanoprobes with Plasmonic Au-Ag Hollow‐Shell Assemblies for In Vivo Multiplex Detection. Advanced Functional Materials 23(30) 3719-3727.
[54] Yang D., Chen S., Huang P., Wang X., Jiang W., Pandolia O. & Cui D. (2010). Bacteria-template synthesized silver microspheres with hollow and porous structures as excellent SERS substrate. Green Chemistry 12(11) 2038-2042.
[55] Ye S., Benz F., Wheeler M. C., Oram J., Baumberg J. J., Cespedes O., Christenson H. K., Coletta P. L., Jeuken L. J. C., Markham A. F., Critchleya K. & Evans S. D. (2016). One-step fabrication of hollow-channel gold nanoflowers with excellent catalytic performance and large single-particle SERS activity. Nanoscale 8(32) 14932-14942.
[56] Wang X., Shi W., Jin Z., Huang W., Lin J., Ma G., Li S. & Guo L. (2017). Remarkable SERS Activity Observed from Amorphous ZnO Nanocages. Angewandte Chemie International Edition 56(33) 9851-9855.
[57] Huang F., Ma G., Liu J., Lin J., Wang X. & Guo L. (2016). High‐Yield Synthesis of Hollow Octahedral Silver Nanocages with Controllable Pack Density and Their High‐Performance Sers Application. Small 12(8) 5442-5448.
[58] Yu K., Sun X., Pan L., Liu T., Liu A., Chen G. & Huang Y. (2017). Hollow Au–Ag Alloy Nanorices and Their Optical Properties. Nanomaterials 7(9) 255-262.
[59] Maxwell Garnett J. C.and Joseph L. (1997). XII. Colours in metal glasses and in metallic filmsPhilosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character 203 385-420.
[60] Mie G. (1908). Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Annals of Physics 330(3) 377-445.
[61] Gans R. (1912). Über die Form ultramikroskopischer Goldteilchen. Annals of Physics 342(5) 881-900.
[62] Gans R. (1915). Über die Form ultramikroskopischer Goldteilchen. Annals of Physics 352(10) 270-284.
[63] Zsigmondy R., Spear E. B., Norton J. F. & Bitting K. G. Collection on Gastronomy (Library of Congress) (1917). The chemistry of colloids. New York: John Wiley & Sons, Inc.
[64] Myroshnychenko V., Rodríguez-Fernández J., Pastoriza-Santos I., Funston A. M., Novo C., Mulvaney P., Liz-Marzánb L. M. & García de Abajo F. J. (2008). Modelling the optical response of gold nanoparticles. Chemical Society Reviews 37(9) 1792-1805.
[65] Zhang R., Bursi L., Cox J. D., Cui Y., Krauter C. M., Alabastri A., Manjavacas A., Calzolari A., Corni S., Molinari E., Carter E. A., García de Abajo F. J., Zhang H.& Nordlander P. (2017). How to identify plasmons from the optical response of nanostructures. ACS Nano 11(7) 7321-7335.
[66] Solís D. M., Taboada J. M., Obelleiro F., Liz-Marzán L. M. & García de Abajo F. J. (2014). Toward ultimate nanoplasmonics modeling. ACS Nano 8(8) 7559-7570.
[67] Willets K. A. and Van Duyne R. P. (2007). Localized Surface Plasmon Resonance Spectroscopy and Sensing. Annual Review of Physical Chemistry 58 267-297.
[68] Brockman J. M., Nelson B. P. & Corn R. M. (2000). Surface plasmon resonance imaging measurements of ultrathin organic films. Annual Review of Physical Chemistry 51 41-63.
[69] Knoll W. (1998). Interfaces and thin films as seen by bound electromagnetic waves. Annual Review of Physical Chemistry 49 569-638.
[70] Knobloch H., Brunner H., Leitner A., Aussenegg F. & Knoll W. (1993). Probing the evanescent field of propagating plasmon surface polaritons by fluorescence and Raman spectroscopies. The Journal of Chemical Physics 98(12) 10093-10095.
[71] Jensen T. R., Duval M. L., Kelly K. L., Lazarides A. A., Schatz G. C. & Van Duyne R. P. (1999). Nanosphere lithography: effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles. The Journal of Physical Chemistry B 103(45) 9846-9853.
[72] Lee H. K., Lee Y. H., Koh C. S. L., Phan-Quang G. C., Han X., Lay C. L., Sim H. Y. F., Kao Y., An Q. & Ling X. Y. (2019). Designing surface-enhanced Raman scattering (SERS) platforms beyond hotspot engineering: emerging opportunities in analyte manipulations and hybrid materials. Chemical Society Reviews 48(3) 731-756.
[73] Liu Y., Pedireddy S., Lee Y. H., Hegde R. S., Tjiu W. W., Cui Y. & Ling X. Y. (2014). Precision Synthesis: Designing Hot Spots over Hot Spots via Selective Gold Deposition on Silver Octahedra Edges. Small 10(23) 4940-4950.
[74] Gentile F., Coluccio M. L., Coppedè N., Mecarini F., Das G., Liberale C., Tirinato L., Leoncini M., Perozziello G., Candeloro P., De Angelis F. & Di Fabrizio E. (2012). Superhydrophobic Surfaces as Smart Platforms for the Analysis of Diluted Biological Solutions. ACS Applied Materials & Interfaces 4(6) 3213-3224.
[75] Yang T., Zhang Z., Zhao B., Hou R., Kinchla A., Clark J. M. & He L. (2016). Real-time and in situ Monitoring of Pesticide Penetration in Edible Leaves by Surface-Enhanced Raman Scattering Mapping. Analytical Chemistry 88(10) 5243-5250.
[76] Goh M. S., Lee Y. H., Pedireddy S., Phang I. Y., Tjiu W. W., Tan J. M. R. & Ling X. Y. (2012). A Chemical Route To Increase Hot Spots on Silver Nanowires for Surface-Enhanced Raman Spectroscopy Application. Langmuir 28(40) 14441-14449.
[77] Sari Setiogi: ‘Experts set tolerable level for melamine intake’, WHO, Geneva, 2008
[78] Zhu L., Gamez G., Chen H., Chingina K. & Zenobi R. (2009). Rapid detection of melamine in untreated milk and wheat gluten by ultrasound-assisted extractive electrospray ionization mass spectrometry (EESI-MS). Chemical Communications 5 559-561.
[79] Lee Y. H., Shi W., Lee H. K., Jiang R., Phang I. Y., Cui Y., Isa L., Yang Y., Wang J., Li S. & Ling X. Y. (2015). Nanoscale surface chemistry directs the tunable assembly of silver octahedra into three two-dimensional plasmonic superlattices. Nature Communications 6 6990.
[80] Zhu C., Wang X., Shi X., Yang F., Meng G., Xiong Q., Ke Y., Wang H., Lu Y. & Wu N. (2017). Detection of Dithiocarbamate Pesticides with a Spongelike Surface-Enhanced Raman Scattering Substrate Made of Reduced Graphene Oxide-Wrapped Silver Nanocubes. ACS Applied Materials & Interfaces 9(45) 39618-39625.
[81] Hu Y., Liao J., Wang D. & Li G. (2014). Fabrication of Gold Nanoparticle-Embedded Metal–Organic Framework for Highly Sensitive Surface-Enhanced Raman Scattering Detection. Analytical Chemistry 86(8) 3955-3963.
[82] Kreno L. E., Greeneltch N. G., Farha O. K., Hupp J. T. & Van Duyne R. P. (2014). SERS of molecules that do not adsorb on Ag surfaces: a metal–organic framework-based functionalization strategy. Analyst 139(16) 4073-4080.
[83] Palma C., Cecchini M. & Samorì P. (2012). Predicting self-assembly: from empirism to determinism. Chemical Society Reviews 41(10) 3713-3730.
[84] Wang L. and Yamauchi Y. (2009). Block Copolymer Mediated Synthesis of Dendritic Platinum Nanoparticles. Journal of the American Chemical Society 131(26) 9152-9153.
[85] Wang L., Nemoto Y. & Yamauchi Y. (2011). Direct Synthesis of Spatially-Controlled Pt-on-Pd Bimetallic Nanodendrites with Superior Electrocatalytic Activity. Journal of the American Chemical Society 133(25) 9674-9677.
[86] Centomo P., Canton P., Ferronic M. & Zecca M. (2010). Template controlled synthesis of monometallic zerovalent metal nanoclusters inside cross-linked polymer frameworks: the effect of a single matrix on the size of different metal nanoparticles. New Journal of Chemistry 34(12) 2956-2961.
[87] Garcia R. M., Song Y., Dorin R. M., Wang H., Moreno A. M., Jiang Y., Tian Y., Qiu Y., Medforth C. J., Coker E. N., Swol F., Millera J. E. & Shelnutt J. A. (2011). Templated growth of platinum nanowheels using the inhomogeneous reaction environment of bicelles. Physical Chemistry Chemical Physics 13(11) 4846-4852.
[88] Yan N., Liu X., Zhu J., Zhu Y. & Jiang W. (2019). Well-Ordered Inorganic Nanoparticle Arrays Directed by Block Copolymer Nanosheets. ACS Nano 13(6) 6638-6646.
[89] Tharmavaram M., Rawtani D. & Pandey G. (2017). Fabrication routes for one-dimensional nanostructures via block copolymers. Nano Convergence 4 12.
[90] Song Y., Yang Y., Medforth C. J., Pereira E., Singh A. K., Xu H., Jiang Y., Brinker C. J., Swol F. & Shelnutt, J. A. (2004). Controlled Synthesis of 2-D and 3-D Dendritic Platinum Nanostructures. Journal of the American Chemical Society 126(2) 635-645.
[91] Sakai T. and Alexandridis P. (2005). Mechanism of Gold Metal Ion Reduction, Nanoparticle Growth and Size Control in Aqueous Amphiphilic Block Copolymer Solutions at Ambient Conditions. The Journal of Physical Chemistry B 109(16) 7766-7777.
[92] Piao Y., Jang Y., Shokouhimehr M., Lee I. S. & Hyeon T. (2007). Facile Aqueous-Phase Synthesis of Uniform Palladium Nanoparticles of Various Shapes and Sizes. Small 3(2) 255-260.
[93] Mohanty A., Garg N. & Jin R. (2010). A Universal Approach to the Synthesis of Noble Metal Nanodendrites and Their Catalytic Properties. Angewandte Chemie International Edition 49(29) 4962-4966.
[94] Wang L. & Yamauchi Y. (2010). Autoprogrammed Synthesis of Triple-Layered Au@Pd@Pt Core-Shell Nanoparticles Consisting of a Au@Pd Bimetallic Core and Nanoporous Pt Shell. Journal of the American Chemical Society 132(39) 13636-13638.
[95] Wang L. & Yamauchi Y. (2013). Metallic Nanocages: Synthesis of Bimetallic Pt−Pd Hollow Nanoparticles with Dendritic Shells by Selective Chemical Etching. Journal of the American Chemical Society 135(45) 16762-16765.
[96] Wang X., Meng G., Zhu C., Huang Z., Qian Y., Sun K. & Zhu X. (2013). A Generic Synthetic Approach to Large-Scale PristineGraphene/Metal-Nanoparticles Hybrids. Advanced Functional Materials 23(46) 5771-5777.
[97] Wanka G., Hoffmann H. & Ulbrich, W. (1994). Phase Diagrams and Aggregation Behavior of Poly(oxyethy1ene)-Poly (oxypropylene)-Poly( oxyet hylene) Triblock Copolymers in Aqueous Solutions. Macromolecules 27(15) 4145-4159.
[98] Wu C., Liu T. & Chu B. (1997). Characterization of the PEO-PPO-PEO Triblock Copolymer and Its Application as a Separation Medium in Capillary Electrophoresis. Macromolecules 30(16) 4574-4583.
[99] Navarro R. M., Pawelec B., Trejo J. M., Mariscal R. & Fierro J. L. G. (2000). Hydrogenation of Aromatics on Sulfur-Resistant PtPd Bimetallic Catalysts. Journal of Catalysis 189(1) 184-194.
[100] Kim H. S., Kim T. W., Koh H. L., Lee S. H. & Min B. R. (2005). Complete Benzene Oxidation over Pt-Pd Bimetal Catalyst Supported on γ-Alumina: Influence of Pt-Pd Ratio on the Catalytic Activity. Applied Catalysis A: General 280(2) 125-131.
[101] Li S. S., Lv J. J., Hu Y. Y., Zheng J. N., Chen J. R., Wang A. J. & Feng J. J. (2014). Facile Synthesis of Porous Pt-Pd Nanospheres Supported on Reduced Graphene Oxide Nanosheets for Enhanced Methanol Electrooxidation. Journal of Power Sources 247 213-218.
[102] Kim Y., Noh Y., Lim E. J., Lee S., Choid S. M. & Kim W. B. (2014). Star-shaped Pd@Pt Core–Shell Catalysts Supported on Reduced Graphene Oxide with Superior Electrocatalytic Performance. Journal of Materials Chemistry A 2(19) 6976-6986.
[103] Fiermans L., Gryse R. D., Doncker G. D., Jacobs P. A. & Martens J. A. (2000). Pd Segregation to the Surface of Bimetallic Pt–Pd Particles Supported on H-β Zeolite Evidenced with X-Ray Photoelectron Spectroscopy and Argon Cation Bombardment. Journal of Catalysis 193(1) 108-114.
[104] Rill R. L., Locke B. R., Liu Y. & Van Winkle D. H. (1998). Electrophoresis in Lyotropic Polymer Liquid Crystals. Proceedings of the National Academy of Sciences of the United States of America 95(4) 1534-1539.
[105] Prud’homme R. K., Wu G. & Schneider D. K. (1996). Structure and Rheology Studies of Poly(oxyethylene-oxypropylene-oxyethylene) Aqueous Solution. Langmuir 12(20) 4651-4659.
[106] Li Y., Shi T., Sun Z., An L. & Huang Q. (2006). Investigation of Sol-Gel Transition in Pluronic F127/D2O Solutions Using a Combination of Small-Angle Neutron Scattering and Monte Carlo Simulation. The Journal of Physical Chemistry B 110(51) 26424-26429.
[107] Abdelsalam M. E., Mahajan S., Bartlett P. N., Baumberg J. J. & Russell A. E. (2007). SERS at Structured Palladium and Platinum Surfaces. Journal of the American Chemical Society 129(23) 7399-7406.
[108] Pomfret M. B., Pietron J. J. & Owrutsky J. C. (2010). Measurement of Benzenethiol Adsorption to Nanostructured Pt, Pd, and PtPd Films Using Raman Spectroelectrochemistry. Langmuir 26(9) 6809-6817.
[109] Zhang L. F., Zhong S. L. & Xu A. W. (2013). Highly Branched Concave Au/Pd Bimetallic Nanocrystals with Superior Electrocatalytic Activity and Highly Efficient SERS Enhancement. Angewandte Chemie International Edition 52(2) 645-649.
[110] Song H. M., Dengab L. & Khashab N. M. (2013). Intracellular Surface-Enhanced Raman Scattering (SERS) with Thermally Stable Gold Nanoflowers Grown from Pt and Pd Seeds. Nanoscale 5(10) 4321-4329.
[111] Cui Q., Shen G., Yan X., Li L., Möhwald H. & Bargheer M. (2014). Fabrication of Au@Pt Multibranched Nanoparticles and Their Application to In Situ SERS Monitoring. ACS Applied Materials & Interfaces 6(19) 17075-17081.
[112] Chen L., Chabu J. M. & Liu Y. (2013). Bimetallic AgM (M = Pt, Pd, Au) Nanostructures: Synthesis and Applications for Surface-Enhanced Raman Scattering. RSC Advances 3(13) 4391-4399.
[113] Hao, E., Schatz, G. C. & Hupp J. T. (2004). Synthesis and Optical Properties of Anisotropic Metal Nanoparticles. Journal of Fluorescence 14(4) 331-341.
[114] Zhu C., Meng G., Huang Q., Zhang Z., Xu Q., Liu G., Huang Z. & Chu Z. (2011). Ag Nanosheet-Assembled Micro-Hemispheres as Effective SERS Substrates. Chemical Communications 47(9) 2709-2711.
[115] Zhu C., Meng G., Huang Q., Wang X., Qian Y., Hu X., Tang H. & Wu N. (2015). ZnO-nanotaper array sacrificial templated synthesis of noble-metal building-block assembled nanotube arrays as 3D SERS-substrates. Nano Research 8(3) 957-966.
[116] Payne E. K., Rosi N. L., Xue C. & Mirkin C. A. (2005). Sacrificial Biological Templates for the Formation of Nanostructured Metallic Microshells. Angewandte Chemie International Edition 44(32) 5064-5067.
[117] Tiwari V. S., Oleg T., Darbha G. K., Hardy W., Singh J.P. & Ray P. C. (2007). Non-resonance SERS effects of silver colloids with different shapes. Chemical Physics Letters 446(1-3) 77-82.
[118] Hong S. and Li X. (2013). Optimal Size of Gold Nanoparticles for Surface-Enhanced Raman Spectroscopy under Different Conditions. Journal of Nanomaterials 2013(2) 790323.
[119] Le Ru E. C., Blackie E., Meyer M. & Etchegoin P. G. (2007). Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study. The Journal of Physical Chemistry C 111(37) 13794-13803.
[120] Chang F.C., Li Y.C., Wu R.J. & Chen C.H. (2019). Pt−Pd Floating Nanoarrays Templated on Pluronic F127 Micelles as Effective Surface-Enhanced Raman Scattering Sensors. ACS Applied Nano Materials 2(4) 2515-2524.
[121] Fortuni B., Fujita Y., Ricci M., Inose T., Aubert R., Lu G., Hutchison J.A., Hofkens J., Latterini L. & Uji-I H. (2017). A novel method for in-situ synthesis of SERS-active gold nanostars on polydimethylsiloxane film. Chemical Communications 53(37) 5121-5124.
[122] Lin L., Dong T., Nie P., Qu F., He Y., Chu B. & Xiao S. (2018). Rapid Determination of Thiabendazole Pesticides in Rape by Surface Enhanced Raman Spectroscopy. Sensors 18(4) 1082-1095.
[123] Kim M.S., Kim M.K., Lee C.J., Jung Y.M. & Lee M.S. (2009). Surface-enhanced Raman Spectroscopy of Benzimidazolic Fungicides: Benzimidazole and Thiabendazole. Bulletin of the Korean Chemical Society 30(12) 2930-2934.
[124] Liu B., Han G., Zhang Z., Liu R., Jiang C., Wang S. & Han M.Y. (2012). Shell thickness-dependent Raman enhancement for rapid identification and detection of pesticide residues at fruit peels. Analytical Chemistry 84(1) 255-261.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊