跳到主要內容

臺灣博碩士論文加值系統

(44.221.73.157) 您好!臺灣時間:2024/06/17 23:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:趙耿賢
研究生(外文):Chao, Keng-Hsien
論文名稱:可撓式薄膜電晶體共軛去氧核醣核酸適體與奈米粒子複合式汞離子感測器
論文名稱(外文):Flexible Thin Film Transistor with ssDNA Aptamer/Nanoparticles Conjugation for Mercury Ions Detecting
指導教授:柯富祥柯富祥引用關係
指導教授(外文):Ko, Fu-Hsiang
口試委員:游信強呂奇明
口試委員(外文):You, Hsin-ChiangLeu, Chyi-Ming
口試日期:2020-07-01
學位類別:碩士
校院名稱:國立交通大學
系所名稱:材料科學與工程學系奈米科技碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:130
中文關鍵詞:可撓式電晶體二氧化鉿金奈米粒子單股DNA適體金屬感測器電晶體
外文關鍵詞:Flexible Thin Film TransistorHafnium OxideGold NanoparticlesssDNA AptamerMetallic Ions SensorTransistor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:156
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文係以利用高介電材料二氧化鉿與無毒氧化鋅,在高透光度可撓式聚醯亞胺基版上製程半導體可撓式薄膜電晶體,並結合金奈米粒子和單股DNA適體,使其具有檢測汞金屬離子感測功能。
本研究所用的二氧化鉿為一高介電係數材料,今已被廣泛應用於半導體產業中做為高介電材料前幾首選,其能隙與介電係數為5.7 eV與25,使二氧化鉿可以大幅度降低電晶體的操作電壓,並且同時具有高電容的特性;而利用化學燃燒方法的合成方式改善了普通水合法的二氧化鉿在元件上的膜平整度與成膜穩定性,同時可以降低製程溫度,在常溫常壓下即可完成溶膠-凝膠旋轉塗佈法,結合半導體通道材料氧化鋅製程電晶體元件,即可降低操作電壓至-2~5伏特。另一方面,將二氧化鉿與氧化鋅沉積在可撓式的聚醯亞胺上,即可製程高透光度可撓式的薄膜電晶體,不但結合了上述之優勢更添增了多元應用性。
金屬離子檢測部分結合了金奈米粒子與單股DNA適體,金奈米粒子因具有表面修飾作用,能利用化學鍵結中的凡得瓦力(Van der Waals force)與去氧核醣核酸適體接合,在本實驗中所採用的適體為含有胸腺嘧啶(Thymine)序列的DNA,其結構特殊的專一性讓汞金屬離子能夠與胸腺嘧啶產生強而有力的化學離子鍵結並偵測到汞金屬。而利用金奈米粒子、單股DNA適體、汞金屬離子三者之間的電性改變就可以判斷感測的部分,並將汞離子金屬感測的這個技術用於電晶體的通道層上,使之在電性上有所改變,特別在臨界電壓上可飄移高於2伏特,展現了半導體電晶體技術與奈米技術結合的多樣化與應用性;也因為在常溫常壓下便可完成製程,讓此檢測機制可以在後續結合更多種檢測技術。
高靈敏度的可撓式薄膜電晶體感測器已成功在本研究中被開發,採用有機可撓基板和結合了奈米技術讓此元件有更多的應用性,並期望未來能廣泛應用於各項感測器中。
In this thesis, semiconductor thin-film transistor is fabricated on high-transmittance flexible polyimide-based substrate which depositing high-dielectric materials hafnium oxide and non-toxic zinc oxide. In order to sense the mercury ions, the transistors combine with technology of gold nanoparticle and ssDNA aptamer.
Hafnium dioxide has been widely applied in the semiconductor industry as one of the best candidate of dielectric materials which because of its high-dielectric-constant nowadays. Since hafnium oxide has energy gap of 5.7 eV and permittivity of 25, it can greatly reduce the operating voltage of the transistor, and at the same time has the characteristics of high capacitance. Furthermore, the better flatness of film and stability of film are contributed by the combustion method which compare to the ordinary hydration method. Combustion approach greatly reduces the process temperature, therefore, completes the device in room temperature by sol-gel spin coating. This transistor reduces it operation voltage to -2 ~ 5 V and has high dielectric constant of 27.
As for detection of metal ions, we apply the technology of conjugation of gold nanoparticles with ssDNA aptamer. Due to its surface modification, gold nanoparticles can utilize specific chemical ionic bond link to thymine sequence in ssDNA aptamer. The electric characteristic obviously demonstrates high threshold voltage change over 2 V once gold nanoparticles/ssDNA aptamer/mercury ions detect on channel layer of transistor. Comparing with other detection methods, the pure electric performance has more stability and environmental tolerance which shows the diversity and applicability of the combination of semiconductor transistor technology and nanomaterial technologies.
High-sensitivity flexible thin-film transistor sensor has been successfully developed in this study. Integrating with nanotechnology to expand the application of this device, organic polyimide substrate makes this device more suitable for real-world terrain that demonstrates its advantages and expects to be widely applied in various sensors in the future.
Abstract in Chinese I
Abstract in English II
Acknowledgements IV
Contents V
Lists of Tables VII
List of Figures VIII
Chapter 1: Introduction 1
1.1 Contamination from Heavy Metals 1
1.2 Modern Sensors for Environment and Heavy Metal 4
Chapter 2: Literature Review and Motivation 7
2.1 Field-Effect Transistor for Metallic Ions Detector 7
2.1.1 Overview of Modern Sensors for Metallic Ions Detection 7
2.1.2 TFT Sensor as Metallic Ions Detector 11
2.2 Conjugation of Gold Nanoparticles with Aptamer 13
2.2.1 Modification of Gold Nanoparticles with ssDNA Aptamer 13
2.2.1 Gold Nanoparticles/Aptamer Used in TFT Sensor 16
2.3 Semiconducting Layer Material – Zinc Oxide 17
2.4 High-k Dielectric Material – Hafnium Oxide 20
2.5 Flexible Organic Polymer Substrate - Polyimide 23
2.6 The Overview of Deposition Process 27
2.7 Motivation 31
Chapter 3: Performances of High-k HfO2-based Capacitor and TFT on Silicon Substrate 32
3.1 Capacitor and Transistor Device Fabrication Process 32
3.1.1 The Synthesis of High-k Material Hafnium Oxide (HfO2) 32
3.1.2 The Synthesis of Zinc Oxide Solution (ZnO) 33
3.1.3 The Fabrication of High Capacitance Capacitor by HfO2 33
3.1.4 The Fabrication of HfO2-based TFT device 33
3.2 Results and Discussion 35
3.2.1 The Physical Characteristics of HfO2-based Capacitors and Transistors 35
3.2.2 The Electrical Characteristics of HfO2-based Capacitors 41
3.2.3 The Electrical Characteristics of HfO2-based Transistors 49
3.3 Summary 59
Chapter 4: TFT Sensor with Au NPs/Aptamer Conjugation for Hg2+ Detecting 60
4.1 TFT Sensor Device Fabrication Process 60
4.1.1 The Synthesis of Gold Nanoparticles (Au NPs) 60
4.1.2 The Synthesis of Au NPs Conjugated with ssDNA Aptamer 60
4.1.3 The Procedure of Hg2+ ions and Other Metals Detection 61
4.1.4 The Fabrication of TFT Sensor for Metallic Ions Detection 61
4.2 The Performances of TFT Sensor after Detected Au NPs 63
4.2.1 The Physical Characteristics of TFT Sensor after Detected Au NPs 63
4.2.2 The Electrical Characteristics of TFT Sensor after Detected Au NPs 66
4.3 The Performances of TFT Sensor after Detected Conjugation of Au NPs and Aptamer 71
4.3.1 The Physical Characteristics of TFT Sensor after Detected Conjugation of Au NPs and Aptamer 71
4.3.2 The Electrical Characteristics of TFT Sensor after Detected Conjugation of Au NPs and Aptamer 76
4.4 The Performances of TFT Sensor after Detected Hg2+ Ions with Conjugation of Au NPs and Aptamer 80
4.5 The Working Mechanism of TFT Sensor after Detected Hg2+ Ions with Conjugation of Au NPs and Aptamer 89
4.6 Summary 94
Chapter 5: Flexible TFT Sensor with Aptamer/Au NPs Conjugation for Hg2+ Detecting 96
5.1 Flexible TFT Sensor Device Fabrication Process 96
5.1.1 The Fabrication of Normal Flexible TFT Device 96
5.1.2 The Fabrication of Flexible TFT Sensor for Metallic Ions Detection 96
5.2 The Performances of Flexible TFT Device 99
5.2.1 The Physical Characteristics of Polyimide Substrate 99
5.2.2 The Electrical Characteristics of Flexible TFT 102
5.3 The Performances of Flexible TFT Sensor for Detection of Hg2+ Ions 117
5.4 Summary 122
Chapter 6: Conclusion 123
Chapter 7: Future Work 125
References 126
[1] L. J. Folinsbee, Environmental Health Perspectives, 1992, 100, 45-56
[2] D. Han, M. J. Currell, G. Cao, Environmental Pollution, 2016, 218, 1222-1233
[3] X. Bi, X. Pan, S. Yuan, Q. Wang, J. Agric, Food Chem., 2013, 61, 39, 9502–9509
[4] L.Yang, Y. Qian, X. Y. Kong, M. Si, Y. Zhao, B. Niu, X. Zhao, Y. Wei, L. Jiang, L. Wen, ACS Appl. Mater. Interfaces, 2020, 12, 3, 3854–3861
[5] G.Sharma, B. Kandasubramanian, J. Chem. Eng. Data, 2020, 65, 396−418
[6] W. R. G. Niño, J.P. Chaverrí, Food and Chemical Toxicology, 2014, 69, 182-201
[7] A. Carpi, Water, Air, & Soil Pollution, 1997, 98, 241–254
[8] M. Horvat, Anal Bioanal Chem, 2002, 374, 981–982
[9] X. Zhang, T. Zhong, L. Liu, X. Ouyang, PLoS ONE, 2015, 0135182
[10] N. Sharma, Y. K. Walia, Asian J. Adv. Basic Sci., 2017, 5, 8-13
[11] Ameriresearch. Inc, 275, https://www.ameriresearch.com/product/gas-sensor-market/
[12] Global Environment Monitoring and Sensing Market Projected to be Worth USD 20.37 Billion by 2021.
https://www.businesswire.com/news/home/20170503006322/en/Global-Environment-Monitoring-Sensing-Market-Projected-Worth
[13] M. Li, H. Gou, I. A. Ogaidi, N. Wu, ACS Sustainable Chem. Eng., 2013, 1, 7, 713–723
[14] Z. Zou, A. J. Eric, T. MacKnight, P. M. Wu, J. Do, J. S. Shim, P. L. Bishop, C. H. Ahn, IEEE Sensors Journal, 2009, 9, 5, 586 - 594
[15] L. L. Shen, G. R. Zhang, W. Li, M. Biesalski, B. J. M. Etzold, ACS Omega, 2017, 2, 4593−4603
[16] K. E. Lorber, Waste Management & Research, 1986, 4, 3–13
[17] R.Kunkel, S. E. Manaban, Anal. Chem., 1973, 45, 8, 1465–1468
[18] M. L. Art|guez, A. Camedn, M. Repetto, J Anal Toxicol., 1993, 17, 18‐22.
[19] N. H. Bings, A. Bogaerts, J. A. C. Broekaert, Anal. Chem., 2006, 78, 3917
[20] A. Ono, H. Togashi, Angew. Chem., 2004, 43, 4300–4302
[21] M. Hoang, P. J. J. Huang, J. Liu, ACS Sens., 2016, 1, 137−143
[22] M. Li, S. K. Cushing, J. Zhang, J.Lankford, Z. P. Aguilar, D. Ma, N. Wu, Nanotechnology, 2012, 23, 115501
[23] B. Doiron, M. Mota, M. P. Wells, R. Bower, A. Mihai, Y. Li, L. F. Cohen, N. M. Alford, P. K. Petrov, R. F. Oulton, S. A. Maier, ACS Photonics, 2019, 6, 2, 240–259
[24] X. B. Zhang, R. M. Kong, Y. Lu, Annu. Rev. Anal. Chem., 2011. 4, 105–28
[25] J. Li, L. Chen, T. Lou, Y. Wang, ACS Appl. Mater. Interfaces, 2011, 3, 3936–3941
[26] X. Xue, F. Wang, X. Liu, J. Am. Chem. Soc., 2008, 130, 3244-3245
[27] X. G. Li, H. Feng, M. R. Huang, G. L. Gu, M. G. Moloney, Anal. Chem., 2012, 84, 134–140
[28] D. W. Kimmel, G. LeBlanc, M. E. Meschievitz, D. E. Cliffel, Anal. Chem. 2012, 84, 685–707
[29] W. Zhang, S. Shi, W. Zhu, C. Yang, S. Li, X. Liu, N. Hu, L. Huang, R. Wang, Y. Suo, Z. Li, J. Wang, ACS Appl. Mater. Interfaces, 2017, 9, 32720−32726
[30] S. Mondal, C. Subramaniam, ACS Sustainable Chem. Eng., 2019, 7, 14569−14579
[31] G. Zhou, J. Chang, H. Pu, K. Shi, S. Mao, X. Sui, R. Ren, S. Cui, J. Chen, ACS Sens., 2016, 1, 295−302
[32] K. Chen, G. Lu, J. Chang, S. Mao, K. Yu, S. Cui, J. Chen, Anal. Chem., 2012, 84, 4057−4062
[33] N. Moser, C. L. Leong, Y. Hu, C. Cicatiello, S. Gowers, M. Boutelle, P. Georgiou, Anal. Chem., 2020, 92, 5276−5285
[34] S. M. Majd, F. Ghasemi, A. Salimi, T. K. Sham, ACS Appl. Electron. Mater., 2020, 2, 635−645
[35] J. Zhang, M. Rupakula, F. Bellando, E. G. Cordero, J. Longo, F. Wildhaber, G. Herment, H. Guérin, A. M. Ionescu, ACS Sens., 2019, 4, 2039−2047
[36] T. H. Kim, J. Lee, S. Hong, J. Phys. Chem. C, 2009, 113, 45, 19393–19396
[37] P. Ambhorkar, Z. Wang, H. Ko, S. Lee, K. Koo, K. Kim, D. Cho, Micromachines, 2018, 9, 679
[38] K. Chena, B. R. Li, Y. T. Chen, Nano Today, 2011, 6, 131-154
[39] H. G. Sudibya, Q. He, H. Zhang, P. Chen, ACS Nano, 2011, 5, 3, 1990–1994
[40] D. Son, S. Y. Park, B. Kim, J. T. Koh, T. H. Kim, S. An, D. Jang, G. T. Kim, W. Jhe, S. Hong, ACS Nano, 2011, 5, 5, 3888–3895
[41] T. Uchiyama, T. Miura, H. Takeuchi, T. Dairaku1, T. Komuro, T. Kawamura, Y. Kondo, L. Benda, V. Sychrovsky, P. Bour, I. Okamoto, A. Ono, Y. Tanaka, Nucleic Acids Research, 2012, 40, 12, 5766–5774
[42] Y. Du, W. Wei, X. Zhang, Y. Li, J. Phys. Chem. C, 2018, 122, 14, 7997–8002
[43] Q. Zhang, Y. Gong, X. Guo, P. Zhang, C. Ding, ACS Appl. Mater. Interfaces, 2018, 10, 34840−34848
[44] Y. Chen, Y. Xianyu, X. Jiang, Acc. Chem. Res., 2017, 50, 310−319
[45] P. Da, W. Li, X. Lin, Y. Wang, J.Tang, G. Zheng, Anal. Chem., 2014, 86, 6633−6639
[46] S. Park, K. H. Schifferli, ACS Nano, 2010, 4, 5, 2555–2560
[47] X. Xue, F. Wang, X. Liu, J. AM. CHEM. SOC., 2008, 130, 3244-3245
[48] S. Wang, C. Liu, G. Li, Y. Sheng, Y. Sun, H. Rui, J. Zhang, J. Xu, D. Jiang, ACS Sens., 2017, 2, 364−370
[49] W. Zhou, R. Saran, J. Liu, Chem. Rev., 2017, 117, 8272−8325
[50] A. Ono, H. Togashi, Angew. Chem., 2004, 43, 4300–4302
[51] Y Miyake, H. Togashi, M. Tashiro, H. Yamaguchi, S. Oda, M. Kudo, Y. Tanaka, Y. Kondo, R. Sawa, T. Fujimoto, T. Machinami, A. Ono, J. Am. Chem. Soc., 2006, 128, 2172-2173
[52] T. Uchiyama, T. Miura, H. Takeuchi, T. Dairaku1, T. Komuro, T. Kawamura, Y. Kondo, L. Benda, V. Sychrovsky, P. Bour, I. Okamoto, A. Ono, Y. Tanaka, Nucleic Acids Research, 2012, 40, 12, 5766–5774
[53] M. A. Rı´os-Corripio, B. E. Garcı´a-Pe´rez, M. E. Jaramillo-Flores, V. L. Gayou, M. Rojas-Lo´pez, J. Nanopart Res., 2013, 15, 1624
[54] G. Sener, L. Uzun, A. Denizli, ACS Appl. Mater. Interfaces, 2014, 6, 18395−18400
[55] M. Li, Q. Wang, X. Shi, L. A. Hornak, N. Wu, Anal. Chem., 2011, 83, 7061–7065
[56] H. Zhang, H. Dong, G. Yang, H. Chen, C. Cai, Anal. Chem., 2016, 88, 11108−11114
[57] K. Myny, Nat Electron, 2018, 1, 30–39
[58] W. Xu, H. Li, J. B. Xu, L. Wang, ACS Appl. Mater. Interfaces, 2018, 10, 25878−25901
[59] M. A. Borysiewicz, Crystals, 2019, 9, 505
[60] C. J. Frederickson, J. Y. Koh, A. I. Bush, Nat Rev Neurosci, 2005, 6, 449–462
[61] C. J. Wang, H. C. You, K. Lin, J. H. Ou, K. H. Chao, F. H. Ko, Materials, 2019, 12, 3639
[62] Morkoç, H.; Özgür, Ü. Zinc Oxide: Fundamentals, Materials and Device Technology, 1st ed.; WILEY-VCH Verlag GmbH & Co. KGaA:Weinheim, Germany, 2009.
[63] Wurtzite polyhedra.png, https :// commons. wikimedia .org/ wiki/ File: Wurtzite _polyhedra.png
[64] D.C. Look, Materials Science and Engineering, 2001, 80, 383–387
[65] F. Shan, S. J. Kim, Phys. Status Solidi A, 2019, 216, 1900018
[66] P. Rajkumar, B. K. Sarma, Applied Surface Science, 2020, 509, 144798
[67] J. Yoon, G. Y. Bae, S. Yoo, J. I. Yoo, N. H. You, W. K. Hong, H. C. Ko, Journal of Alloys and Compounds, 2020, 817, 152788
[68] G. S. R. Mullapudi, G. A. V. Nevarez, C. A. Avendano, J. A. T. Ochoa, M. A. Q. López, R. R. Bon, ACS Appl. Electron. Mater., 2019, 1, 1003−1011
[69] Q. Xu, L. Cheng, L. Meng, Z. Wang, S. Bai, X. Tian, X. Jia, Y. Qin, ACS Appl. Mater. Interfaces, 2019, 11, 26127−26133
[70] J. Chen, R. E. Ruther, Y. Tan, L. M. Bishop, R. J., Hamers, Langmuir, 2012, 28, 10437−10445
[71] W. J. Min, J. Kim, K. Park, Anal. Chem., 2019, 91, 9315−9322
[72] K. Yim, Y. Yong, J. Lee, K. Lee, H. H. Nahm, J. Yoo, C. Lee, C. S. Hwang, S. Han, NPG Asia Materials, 2015, 7
[73] J. Robertson, R. M. Wallace, Materials Science and Engineering, 2015, 88, 1–41
[74] Y. Shao, X. Xiao, X. He, W. Deng, S. Zhang, IEEE ELECTRON DEVICE LETTERS, 2015, 36, 6
[75] H. Y Chang, S. Yang, J. Lee, L. Tao, W. S. Hwang, D. Jena, N. Lu, D. Akinwande, ACS Nano, 2013, 7, 6, 5446–5452
[76] P. K. Yang, C. H. Ho, D. H. Lien, J. R. D.Retamal, C. F. Kang, K. M. Chen, T. H. Huang, Y. C.Yu, C. I Wu, J. H. He, Sci Rep, 2015, 5, 15087
[77] D. Chen. Q. Pei, Chem. Rev., 2017, 117, 11239−11268
[78] B. Wang, W. Huang, L. Chi, M. A. Hashimi, T. J. Marks, A. Facchetti, Chem. Rev., 2018, 118, 5690−5754
[79] T. R. Ray, J. Choi, A. J. Bandodkar, S. Krishnan, P. Gutruf, L. Tian, R. Ghaffari, J. A. Rogers, Chem. Rev., 2019, 119, 5461−5533
[80] N. P. Shetti, A. Mishra, S. Basu, R. J. Mascarenhas, R. R. Kakarla, T. M. Aminabhavi, ACS Biomater. Sci. Eng., 2020, 6, 1823−1835
[81] Y. Yamamoto, S. Harada, D. Yamamoto, W. Honda, T. Arie, S. Akita, K. Takei, Sci. Adv., 2016, 2, 11
[82] D. Akinwande, N. Petrone, J. Hone, Nat Commun, 2014, 5, 5678
[83] Y. Gao, L. Yu, J. C. Yeo, C. T. Lim, Adv. Mater., 2019, 1902133
[84] S. Wang, J. Xu, W. Wang, G. J. N. Wang, R. Rastak, F. M. Lopez, J. W. Chung, S. Niu, V. R. Feig, J. Lopez, T. Lei, S. K. Kwon, Y. Kim, A. M. Foudeh, A. Ehrlich, A. Gasperini, Y. Yun, B. Murmann, J. B. H. Tok, Z. Bao, Nature, 2018, 555, 83–88
[85] H. Fang, K. J. Yu, C. Gloschat, Z. Yang, E. Song, C. H. Chiang, J. Zhao, S. M. Won, S. Xu, M. Trumpis, Y. Zhong, S. W. Han, Y. Xue, D. Xu, S. W. Choi, G. Cauwenberghs, M. Kay, Y. Huang, J. Viventi, I. R. Efimov, J. A. Rogers, Nat Biomed Eng, 2017, 1, 0038
[86] S. J. Kim, H. Kim, J. Ahn, D. K. Hwang, H. Ju, M. C. Park, H. Yang, S. H. Kim, H. W. Jang, J. A. Lim, Adv. Mater., 2019, 31, 1900564
[87] Y. Kumaresan, R. Lee, N. Lim, Y. Pak, H. Kim, W. Kim, G. Y. Jung, Adv. Electron. Mater., 2018, 1800167
[88] M. Qian, V. J. Murray, W. Wei, B. C. Marshall, T. K. Minton, ACS Appl. Mater. Interfaces, 2016, 8, 33982−33992
[89] C. Wang, Y. Guo, Y. Yang, S. Chu, C. Zhou, Y. Wang, Z. Zou, ACS Appl. Mater. Interfaces, 2014, 6, 4321−4328
[90] Q. Zhao, D. Yang, C. Zhang, X. H. Liu, X. Fan, A. K. Whittaker, X. S. Zhao, ACS Appl. Mater. Interfaces, 2018, 10, 43730−43739
[91] Z. Xu, X. Zhuang, C.Yang, J. Cao, Z. Yao, Y. Tang , J. Jiang, D. Wu, X. Feng, Adv. Mater., 2016, 28, 1981–1987
[92] S. Jiang, B. Uch, S. Agarwal, A. Greiner, ACS Appl. Mater. Interfaces, 2017, 9, 32308−32315
[93] J. Wang, C. Zhang, C. Yang, C. Zhang, M. Wang, J. Zhang, Y. Xu, ACS Appl. Mater. Interfaces, 2017, 9, 5468−5476
[94] G. S. C.Bermúdez, D. D. Karnaushenko, D. Karnaushenko, A. Lebanov, L. Bischoff, M. Kaltenbrunner, J. Fassbender, O. G. Schmidt, D. Makarov, Science Advances, 2018, 4, 1
[95] D. S. Ghosh, T. L. Chen, V. Mkhitaryan, V. Pruneri, ACS Appl. Mater. Interfaces, 2014, 6, 20943−20948
[96] Z. Wu, G. Yan, J. Lu, G. Zhang, J. Yang, Ind. Eng. Chem. Res., 2019, 58, 6992−7000
[97] Comprehensive Guide on Polyimide (PI), https:// omnexus. specialchem. com/ selection-guide/polyimide-pi-plastic
[98] S. M. George, Chem. Rev., 2010, 110, 111–131
[99] Q. Zhang, D. Sando, V. Nagarajan, J. Mater. Chem. C, 2016, 4, 4092
[100] Y. Gao, H. Leiste, S. Ulrich, M. Stueber, Thin Solid Films, 2017, 644, 129–137
[101] L. Znaidi, Materials Science and Engineering, 2010, 174, 18–30
[102] J. Weng, W. Chen, Wei Xia, J. Zhang, Y. Jiang, G. Zhu, J Sol-Gel Sci Technol, 2017, 81, 662–668
[103] H. C. You, C. J. Wang, Materials, 2017, 10, 234
[104] S. Link, M. A. El-Sayed, J. Phys. Chem. B., 1999, 103, 8410-8426.
[105] S. Nakata, T. Arie, S. Akita, K. Takei, ACS Sens., 2017, 2, 443−448
[106] J. Kwon, B. H. Lee, S. Y. Kim, J. Y. Park, H. Bae, Y. K. Choi, J. H. Ahn, ACS Sens., 2019, 4, 1724−1729
[107] R. A. John, N. A. Chien, S. Shukla, N. Tiwari, C. Shi, N. G. Ing, N. Mathews, Chem. Mater., 2016, 28, 8305−8313
[108] C. J. Wang, H. C. You, F. H. Ko, Microelectronic Engineering, 2017, 177, 87–92
[109] M. Y. Tsai, A.Tarasov, Z. R. Hesabi, H. Taghinejad, P. M. Campbell, C. A. Joiner, A. Adibi, E. M. Vogel, ACS Appl. Mater. Interfaces, 2015, 7, 12850−12855
[110] W. H. Choi, M. Kim, W. Jeon, J. S. Park, AIP Advances, 2020, 10, 015239
[111] J. H. Park, Y. B. Yoo, K. H. Lee, W. S. Jang, J. Y. Oh, S. S. Chae, H W. Lee, S. W. Han, H. K. Baik, ACS Appl. Mater. Interfaces, 2013, 5, 8067−8075
[112] J. S. Hur, J. O. Kim, H. A Kim, J. K. Jeong, ACS Appl. Mater. Interfaces, 2019, 11, 21675−21685
[113] G. Zhou, J. Chang, S. Cui, H. Pu, Z. Wen, J. Chen, ACS Appl. Mater. Interfaces, 2014, 6, 19235−19241
電子全文 電子全文(網際網路公開日期:20250816)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top