跳到主要內容

臺灣博碩士論文加值系統

(44.192.94.177) 您好!臺灣時間:2024/07/16 23:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡秉勳
研究生(外文):Tsai, Ping-Hsun
論文名稱:自組裝四氧化三鈷奈米結構之合成及光學特性之探討
論文名稱(外文):Synthesis and optical properties of self-assembled Co3O4 nanostructures
指導教授:陳軍華陳軍華引用關係
指導教授(外文):Chen, Chun-Hua
口試委員:黃華宗
口試委員(外文):Huang, Hua-Zong
口試日期:2020-06-19
學位類別:碩士
校院名稱:國立交通大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:66
中文關鍵詞:奈米自組裝吸收光譜四氧化三鈷
外文關鍵詞:Co3O4self-assemblednanostructures
相關次數:
  • 被引用被引用:0
  • 點閱點閱:111
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
四氧化三鈷(Co3O4)奈米材料由於其獨特之物化特性,因此被廣泛應用於諸如超級電容器、氣體感測器、光催化等領域。為進一步探索新穎具潛力之特性,許多學者將研發重點置於設計、合成特殊奈米結構並及調控其維度、尺度、形貌等。本論文主要分為兩個主題:其一是利用多元醇法合成一系列自組裝 Co3O4奈米結構,其二則為其吸光光譜特性之計算與探討。透過反應溫度及前驅物濃度之調控,成功合成發現五種不同特色形貌之 Co3O4 奈米自組裝結構,包括多孔性空心奈米球、奈米空心球、微米枕頭型結構、微米星型結構、長板型結構。本研究第二部分置重點於解析具不同特色形貌之 Co3O4 奈米組裝體分散液之紫外-可見光吸收光譜。為定量理解不同組裝形貌對於吸光特性之影響,本研究以米氏散射理論(Mie scattering theory)為基礎,並配合 T-矩陣理論(T-matrix theory)模擬,對量測光譜進行比對探討。藉由建立簡化之等效模型,合理解釋長板及球形等特定奈米組裝結構之消散、吸收和散射光譜。模擬結果除了可釐清組裝形貌對於光譜影響之外,也證實簡化等效模型確可作為奈米組裝結構光學特性預測之用。
Co3O4 nanomaterials have been widely applied in a variety of fields, such as supercapacitors, gas sensors, and photocatalysis, due to their unique physical and chemical properties. In order to further explore novel potential properties, researchers have put considerable effort into designing and synthesizing distinct nanostructures with controlled dimensions, size, morphology, and so on. The thesis is divided into two topics: (I) synthesis of a series of self-assembled Co3O4 nanostructures through a polyol method, and (II) comparison of the corresponding experimental and calculated the absorption spectra. By precisely tuning the reaction temperature and concentration of precursors, five new styles of self-assembled Co3O4 nanostructures, including porous hollow nanospheres, hollow nanospheres, micropillows, microstars, and longboards have been successfully synthesized. In the second part, we put focus on the analysis of the UV-vis absorption spectra of the formed Co3O4 nanoassemblies. In order to quantitatively understand the influence of the assembled architectures on the absorption properties, Mie scattering theory, and T-matrix simulation were utilized and compared with the measured spectra. By establishing simplified models, the extinction, absorption, and scattering spectra of specific assembled nanostructures can be reasonably explained. In addition to clarifying the architectural influence on the spectra, the present result also confirms the simplified equivalent model can be applied for conveniently and accurately predicting the optical properties of the nanoassemblies.
摘 要 i
ABSTRACT iii
致謝 v
圖目錄 ix
圖目錄 xiii
第一章 緒論 1
第二章 理論基礎與文獻回顧 2
2-1 奈米材料 2
2-2 Co3O4之基本材料性質與簡介 3
2-3 Co3O4 奈米材料之合成方法及特色 4
2-3-1水熱法 4
2-3-2熱分解法 5
2-3-3電沉積法 6
2-3-4共沉澱法 7
2-3-5溶劑熱法 8
2-3-6模板法 9
2-4 不同形貌維度之Co₃O₄ 10
2-4-1零維Co₃O₄材料 10
2-4-2一維Co₃O₄材料 12
2-4-3二維Co₃O₄材料 14
2-4-4三維Co₃O₄材料 17
2-5 Co₃O₄之應用簡介 23
2-5-1氣體感測器 23
2-5-2 電極材料 25
2-5-3 光催化劑 26
2-6 研究動機與目的 29
第三章 實驗方法與步驟 30
3-1 實驗設備 30
3-2 實驗藥品 31
3-3 實驗方法 31
3-3-1 Co₃O₄的奈米結構之合成 32
3-3-2 Co₃O₄光學感測 34
3-4 奈米粒子的鑑定與分析 35
3-4-1 場發射掃描式電子顯微鏡(Field Emission Scannig Electron Microscope, FESEM ) : 35
3-4-2 紫外光-可見光吸收光譜(UV-vis absorption spectra) : 35
3-4-3 X光繞射分析(XRD) : 36
3-4-4 場發射穿透式電子顯微鏡(Field Emission Transmission Electron Microscope, FETEM) : 36
第四章 結果與討論 37
4-1 Co₃O₄之分析與鑑定 37
4-1-1 反應溫度之影響 38
4-1-2 PVP分子量之影響 43
4-1-3 PVP濃度之影響 45
4-1-4 前驅物濃度之影響 47
4-1-5 退火溫度之影響 49
4-1-6 小結 52
4-2 Co₃O₄之光學性質量測與模擬 55
4-2-1 Co₃O₄光學感測與分析 55
4-2-2 Mieplot與T-Matrix簡介 56
4-2-3 特殊形貌之Co₃O₄光學模擬計算結果與實際比較 57
第五章 結論 60
參考文獻 61
[1] R. Kant, Natural Science, 2012, 4, 1, 22-26.
[2] K. Heinz, L. Hammer, Journal of Physics: Condensed Matter, 2010, 25, 17, 173001.
[3] E. Lester, G. Aksomaityte, J. Li, S. Gomez, J. Gonzalez-Gonzalez, M. Poliakoff, Progress in Crystal Growth and Characterization of Materials, 2012, 58, 1, 3-13.
[4] R. K. Gupta, A. K. Sinha, B. N. Sekhar, A. K. Srivastava, G. Singh, S. K. Deb, Appl Phys A, 2011, 103, 13–19.
[5] J. A. Koza, Z. He, A. S. Miller, J. A. Switzer, Chem. Mater, 2012, 24, 3567−3573.
[6] M. Janjua, Open Chem., 2019, 17: 865–873.
[7] L. Sun, H. Li, L. Ren, C. Hu, Solid State Sciences, 2009, 11, 108-112.
[8] M. Yao, Z. Hu, Z. Xu, Y. Liu, Journal of Alloys and Compounds, 2015, 644, 721–728.
[9] N. Izu, I. Matsubara, T. Uchida, T. Itoh, W. Shin, Journal of the Ceramic Society of Japan, 2017, 125, 9, 701-704.
[10] M. G. Kohan, R. Mazzaro, V. Morandi, S. You, I. Concina, A. Vomiero, J. Mater. Chem. A, 2019, 7, 26302 –26310.
[11] D. Zou, C. Xu, H. Luo, L. Wang, T. Ying, Materials Letters, 2008, 62, 1976–1978.
[12] H. Tototzintle-Huitle, E. Prokhorov, A. Mendoza-Galva´n, J. E. Urbina, J. Gonza´lez-Herna´ndez, Journal of Physics and Chemistry of Solids, 2003, 64, 975–980.
[13] J. Deng, L. Kang, G. Bai, Y. Li, P. Li, X. Liu, Y. Yang, F. Gaoa, W. Liang, Electrochimica Acta, 2014, 132, 127–135.
[14] P. Yang, F. Wu, L. Wang, X. Chen, J. Xie, ChemistrySelect, 2020, 5, 3638–3643.
[15] A. K. Sarfraz, S. K. Hasanain, Acta Physica Polonica A, 2014, Vol. 125, 139-144.
[16] C. Sun, X. Su, F. Xiao, C. Niu, J. Wang, Sensors and Actuators B, 2011, 157, 681–685.
[17] Y. Dong, K. He, L. Yin, A. Zhang, Nanotechnology, 2007, 18, 435602.
[18] T. Akamatsu, T. Itoh, N. Izu, W. Shin, Sensors, 2013, 13, 12467-12481.
[19] Z. S. Mehrabadi, A. Ahmadpour, N. Shahtahmasebi, Physica Scripta, 2011, 84, 015801.
[20] Y. Ding, Y. Wang, L. Su, M. Bellagamba, H. Zhang, Y. Lei, Biosensors and Bioelectronics, 2010, 26, 542–548.
[21] G. George, S. Anandha, Thin Solid Films, 2016, 610, 48-57.
[22] M. Kumar, A. Subramania, K. Balakrishnan, Electrochimica Acta, 2014, 149, 152–158.
[23] N. A. M. Barakat, M. S. Khil, F. A. Sheikh, H. Y. Kim, J. Phys. Chem. C, 2008, 112, 12225–12233.
[24] Z. Wen, L. Zhu, W. Mei, L. Hu, Y. Li, L. Sun, H. Cai, Z. Ye, Sensor and Actuators B, 2013, 172-179.
[25] R. Xu, J. Wang, Q. Li, G. Sun, E. Wang, S. Li, J. Gu, M. Ju, Journal of Solid State Chemistry, 2009, 182, 3177–3182.
[26] K. Kaviyarasu, A. Raja, P. A. Devarajan, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2013, 114, 586–591.
[27] Z. Dong, Y. Fu, Q. Han, Y. Xu, H. Zhang, J. Phys. Chem. C, 2007, 111, 18475-18478.
[28] X. W. Lou, D. Deng, J. Y. Lee, J. Feng, L. A. Archer, Advanced Materials, 2008, 20, 258–262.
[29] W. Du, R. Liu, Y. Jiang, Q. Lu, Y. Fan, F. Gao, Journal of Power Sources, 2013, 227, 101-105.
[30] J. Deng, R. Zhang, L. Wang, Z. Lou, T. Zhang, Sensor and Actuators B, 2015, 209, 449-455.
[31] R. B. Rakhi, W. Chen, M. N. Hedhili, D. Cha, H. N. Alshareef, Applied Material &Interfaces, 2014, 6, 4196−4206.
[32] X. Wang, Y. Fan, R. A. Susantyoko, Q. Xiao, L. Sun, D. He, Q. Zhang, Nano Energy, 2014, 5, 91-96.
[33] S. Chen, Y. Zhao, B. Sun, Z. Ao, X. Xie, Y. Wei, G. Wang, Applied Material&Interfaces, 2015, 7, 3306−3313.
[34] Y. Q. Zhang, L. Li, S. J. Shi, Q. Q. Xiong, X. Y. Zhao, X. L. Wang, C. D. Gu, J. P. Tu, Journal of Power Sources, 2014, 256, 200-205.
[35] D. Zhang, F. Li, A. Chen, Q. Xie, M. Y. Wang, X. Zhang, S. Z. Li, J. Y. Gong, G. Han, A. Ying, Z. W. Tong, Solid State Science, 2011, 13, 1221-1225.
[36] L. Sun, H. Li, L. Ren, C. Hu, Solid State Sciences, 2009, 11, 108-112.
[37] C. Liang, D. Cheng, S. Ding, P. Zhao, M. Zhao, X. Song, F. Wang, Journal of Power Sources, 2014, 251, 351-356.
[38] W. Wang, J. Xu, Physica E, 2015, 69, 19-23.
[39] Z. Han, X. Zheng, S. Yao, H. Xiao, F. Qu, X. Wu, Applied Surface Science, 2016, 240-244.
[40] C. V. Niveditha, R. Aswini, M. J. Fatima, R. Ramanarayan, N. Pullanjiyot, S. Swaminathan, Mater. Res. Express, 2018, 5, 065501.
[41] W. Wang, J. Xu, Applied Material Interfaces, 2015, 7, 415-421.
[42] X. Wang, X. Wu, Y. Guo, Y. Zhong, X. Cao, Y. Ma, J. Yao, Adv. Funct. Mater., 2010, 20,1680-1686.
[43] J. Tan, M. Dun, L. Li, X. Huang, Mater. Res. Express5, 2018, 045036.
[44] C. Sun, S. Rajasekhara, Y. Chen, John B. Goodenough, Chem. Commun ., 2011, 47, 12852–12854
[45] X. Yu, X. Liu, M. Wu, Z. Sun, G. Li, X. Chen, Chinese Journal Of Chemical Physics, 2014, 27, 1.
[46] S. Deng, N. Chen, D. Deng, Y. Li, X. Xing, Y. Wang, Ceramics International, 2015, 41, 9, 11004-11012.
[47] A. Liu, H. Che, J. Mu, Y. Bai, S. Zhao, J. Hou, X. Zhang, Chem. Lett., 2014, 43, 1447–1449.
[48] J. Deng, L. Wang, Z. Lou, T. Zhang, RSC Adv., 2014, 4, 21115–21120.
[49] Y. Liu, G. Zhu, B. Ge, H. Zhou, A. Yuan, X. Shen, CrystEngComm, 2012, 14, 6264–6270.
[50] L. Jin, X. Li, H. Ming, H. Wang, Z. Jia, Y. Fu, J. Adkins, Q. Zhoub, J. Zheng, RSC Adv., 2014, 4, 6083–6089.
[51] X. Wang, H. Guan, S. Chen, H. Li, T. Zhai, D. Tang, Y. Bandoa, D. Golberg, Chem. Commun., 2011, 47, 12280–12282.
[52] P. Zhang, J. Wang, X. Lv, H. Zhang, X. Sun, Nanotechnology, 2015, 26, 275501.
[53] L. Wang, J. Deng, Z. Lou, T. Zhang, Sensors and Actuators B: Chemical, 2014, 201, 1-6.
[54] Z. Xu, A. Younis, D. Chu, Z. Ao, H. Xu, Sean Li, Journal of Nanomaterials Volume, 2014, 902730.
[55] S. Raj, S. K. Srivastava, P. Kar, P. Roy, Electrochimica Acta, 2019, 302, 327-337.
[56] J. A. Koza, Z. He, A. S. Miller, J. A. Switzer, Chem. Mater., 2012, 24, 18, 3567–3573.
[57] X. Yang, J. Chen, Y. Chen, P. Feng, H. Lai, J. Li, X. Luo, Nano-Micro Lett, 2018, 10, 15.
[58] Y. Dou, T. Liao, Z. Ma, D. Tian, Q. Liu, F. Xiao, Z. Sun, J. H. Kim, S. X. Dou, Nano Energy, 2016, 30, 267-275.
[59] C. R. Dhas, R. Venkatesh, R. Sivakumar, T. Dhandayuthapani, B. Subramanian, C. Sanjeeviraja, A. M. Raj, Journal of Alloys and Compounds, 2019, 784, 49-59.
[60] S. Wang, C. Xiao, P. Wang, Z. Li, B. Xiao, R. Zhao, T. Yang, M. Zhang, Materials Letters, 2014, 137, 289–292.
[61] Z. Zhang, L. Zhu, Z. Wen, Z. Ye, Sensors and Actuators B, 2017, 238, 1052-1059.
[62] B. Wu, L. Wang, H. Wu, K. Kan, G. Zhang, Y. Xie, Y. Tian, L. Li, K. Shi, Microporous and Mesoporous Materials, 2016, 225, 154-163.
[63] H. Li, Z. Li, X. Wu, L. Zhang, C. Fan, H. Wang, X. Li, K. Wang, H. Sun, J. Zhang, J. Mater. Chem. A, 2016, 4, 8242-8248.
[64] P. Sennu, H. S. Kim, J. Y. An, V. Aravindan, Y. S. Lee, Chem. Asian J., 2015, 10, 1776 – 1783.
[65] L. Fan, W. Zhang, S. Zhu, Y. Lu, Ind. Eng. Chem. Res., 2017, 56, 2046−2053.
[66] S. Wang, R. Wang, J. Chang, N. Hu, C. Xu, Scientific Reports, 2018, 8, 3182.
[67] M. M. El-Sheekh, M.M. Gharieb, G.W. Abou-El-Souod, International Biodeterioration & Biodegradation, 2009, 63, 699–704.
[68] D. Moussa, A. Doubla, G. Kamgang-Youbi, J. Brisset, Plasma Science, 2007, 35, 2, 444-453.
[69] P. Nigam, G. Armour, I. M. Banat, D. Singh, R. Marchant, Bioresource Technology, 2000, 72, 219-226.
[70] A. B. Vennela, D. Mangalaraj, N. Muthukumarasamy, S. Agilan, K. V. Hemalatha, Int. J. Electrochem. Sci., 2019, 14, 3535 – 3552.
[71] H. Li, G. T. Fei, M. Fang, P. Cui, X. Guo, P. Yan, L. D. Zhang, Applied Surface Science, 2011, 257, 6527-6530.
[72] X. Zhao, Z. Pang, M. Wu, X. Liua, H. Zhanga, Y. Ma, Z. Sun, L. Zhang, X. Chen, Materials Research Bulletin, 2013, 48, 92–95.
[73] K. Deori, S. K. Ujjain, R. K. Sharma, S. Deka, ACS Appl. Mater. Interfaces, 2013, 5, 10665−10672.
[74] R. Itteboina, T. K. Sau, Materials Today: Proceedings, 2019, 9, 458–467.
[75] H. Jiang, Y. An, Y. Tian, J. Feng, X. Tian, Materials Technology, 2020, 1-6.
[76] A. Numan, P. R. kumar, M. Khalid, S. Ramesh, K. Ramesh, E. M. Shamsudin, Y. Zhan, P. Jagadesh, Journal of Alloys and Compounds, 2020, 819, 153019.
[77] Y. Zheng, R. Gao, L. Zheng, L. Sun, Z. Hu, X. Liu, ACS Catalysis, 2019, 9, 3773−3782.
[78] X. Lv, Y. Liu, R. Hao, W. Tian, Z. Yuan, ACS Applied Materials Interfaces, 2020, 12, 17502−17508.
[79] Q. Ren, Z. Feng, S. Mo, C. Huang, S. Li, W. Zhang, L. Chen, M. Fu, J. Wu, D. Ye, Catalysis Today, 2018, 332, 160-167.
[80] W. Liu, R. Liu, X. Zhang, Applied Surface Science, 2020, 507, 145174.
[81] D. Patil, P. Patil, V. Subramanian, P. A. Joy, H. S. Potdar, Talanta, 2010, 81, 37–43.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top