跳到主要內容

臺灣博碩士論文加值系統

(100.28.132.102) 您好!臺灣時間:2024/06/21 22:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡承祐
研究生(外文):Tsai, Cheng-Yu
論文名稱:以刮刀溶液製程製備高效大面積有機太陽能電池及戶外穩定性探討
論文名稱(外文):Fabrication and Outdoor Stability of High-Efficiency Large-Area Organic Solar Cells by Blade Coating Solution Process
指導教授:孟心飛
指導教授(外文):Meng, Hsin-Fei
口試委員:張正宏孟心飛趙宇強
口試委員(外文):Chang, Cheng-HungMeng, Hsin-FeiChao, Yu-Chiang
口試日期:2020-07-24
學位類別:碩士
校院名稱:國立交通大學
系所名稱:物理研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:65
中文關鍵詞:有機太陽能電池刮刀塗佈大面積非富勒烯穩定性熱老化紫外線A老化
外文關鍵詞:organic solar cellsblade-coatinglarge-areanon-fullerenestabilitythermal stabilityUVA stability
相關次數:
  • 被引用被引用:0
  • 點閱點閱:112
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著石油能源的短缺,現代生活對「電力」的需求逐漸提升,如何在地球上取得環保且低成本的電力能源是現代人所面臨的重大問題。由此,有機太陽能電池被視為一個重要的發展方向。隨著新穎有機材料持續更新,小面積有機太陽能電池能量轉換效率最高可達15%以上。然而,因旋塗製程上的各項因素,多數研究團隊無法將小面積元件成果完美的轉移至大面積元件上。為了實現有機太陽能電池商業化之目標,本論文採用刮刀塗佈製程製備有機太陽能電池元件。大面積元件效率可達小面積元件的八成,這意味著我們能將小面積的成果盡可能複製到大面積上,以達成量產之需求。
本實驗以非富勒烯材料NF3000-N及NF3000-P作為主動層,氯苯(Chlorobenzene)為溶劑,加入DIO介面活性劑,ITO為陽極、鋁為陰極製備正結構有機太陽能電池。介面層的部分,比較TASiW-12、ZrOx以及LiF,最終以TASiW-12取代其他介面層。小面積能量轉換效率達12.5%、大面積更是達9.5%,突破學界紀錄。
在通往商業化的路上,除了高效率及量產可行性(刮刀大面積製程)以外,另一個重要的目標即是有機太陽電池的壽命穩定性。然而,研究壽命穩定性需耗時較久,且未知變數較多,所以大多研究團體著重在效率提升的部分。為了縮短研究戶外穩定性的時間,本論文以室內加速老化系統作為戶外穩定性的前端測試。以NF3000系列材料為主動層,搭配TASiW-12介面層做測試,在室溫無照光環境中壽命經1900小時後效率扔維持在80%左右;80℃加速老化半衰期為150小時;紫外線A加速老化半衰期達300小時。
With the shortage of petroleum energy, the demand for "electricity" in modern life is gradually increasing. How to obtain environmentally friendly and low-cost energy source on the earth is a major problem facing modern people. Therefore, organic solar cells are regarded as an important development direction. With the continuous updating of novel organic materials, the energy conversion efficiency of small-area organic solar cells can reach up to 15%. However, due to various factors in the spin-coating process, most research cannot perfectly transfer the results of small-area devices to large-area devices. In order to achieve the goal of commercialized organic solar cells, this thesis uses the blade-coating process to fabricate organic solar cell devices, the efficiency of large-area devices can reach 80% of small-area devices. This means that we can replicate the small-area results to fabricate large-area devices to achieve the goal of mass production.
In this experiment, I use non-fullerene materials NF3000-N and NF3000-P as the active layers, DIO surfactant added in chlorobenzene as the solvent, ITO as the anode, and aluminum as the cathode to fabricate a normal structure organic solar cell. For the interlayer, TASiW-12 has better performance then ZrOx and LiF. The energy conversion efficiency of the small-area device is 12.5% and the large-area device is 9.5%. This result breaks the academic record.
To achieve commercialized organic solar cells, in addition to high efficiency and mass production feasibility (large-area blade-coating process), the stability of organic solar cells is also an important goal. However, studying solar cell stability takes a long time, and there are many unknown variables, so most research only focuses on the part of efficiency improvement. In order to shorten the time of studying outdoor stability, this thesis takes an indoor accelerated aging system as the front-end test of outdoor stability. For the device with NF3000 series materials as the active layer and TASiW-12 as the interlayer, the efficiency can maintain at 80% after 1900 hours in the dark environment at room temperature; the half-life of accelerated aging at 80℃ is 150 hours; the half-life of UVA accelerated aging is 300 hours.
目錄
摘要 i
Abstract iii
致謝 v
目錄 vii
表目錄 x
圖目錄 xi
第一章、 緒論 1
1.1 研究背景 1
1.1.1 前言 1
1.1.2 太陽能電池簡介與發展 2
1.1.3 有機太陽能電池的發展 3
1.2 研究動機 6
1.2.1 有機太陽能電池優勢 6
1.2.2 有機太陽能電池高分子吸光層 7
1.2.3 有機太陽能電池之介面層 7
1.2.4 半透明有機太陽能電池 8
1.3 文獻回顧 9
1.3.1 有機發光二極體 9
1.3.2 大面積有機太陽能電池 9
1.4 論文架構 10
第二章、 實驗原理 11
2.1 太陽能電池介紹 11
2.1.1 太陽能電池原理 11
2.1.2 太陽能電池等效電路分析 12
2.1.3 太陽能電池之各項參數 14
2.1.4 太陽能電池運作分析 17
2.2 有機太陽能電池介紹 20
2.2.1 有機太陽能電池能帶理論 20
2.2.2 有機太陽能電池材料特性 21
2.3 本論文所使用之材料特性 21
2.3.1 有機主動層材料 21
2.3.2 電洞傳輸層材料 25
2.3.3 陽極材料 25
2.3.4 陰極材料以及陰極介面層 26
2.4 本論文研究之元件結構與能帶圖 28
第三章、 實驗方法與流程 30
3.1 元件製作實驗流程 30
3.2 ITO基板蝕刻 31
3.3 ITO基板清洗 34
3.4 刮刀塗佈系統 34
3.5 電洞傳輸層刮刀塗佈 36
3.6 主動層材料刮刀塗佈 37
3.7 陰極介面層(刮刀塗佈或蒸鍍) 38
3.8 陰極蒸鍍 39
3.9 元件封裝 42
3.10 元件量測 43
第四章、 實驗結果與討論 44
4.1 三元材料系統結果 44
4.2 NF3000系列之材料介紹與前段測試 45
4.2.1 材料膜厚之最佳結果 46
4.2.2 不同介面層之相容性比較 47
4.3 NF3000系列之高效率大面積結果 48
4.3.1 PEDOT:PSS膜厚改善 48
4.3.2 NF3000系列主動層膜厚 50
4.3.3 界面層膜厚之問題與調整 51
4.3.4 摻雜富勒烯材料之初步測試結果 53
4.3.5 半透明大面積 54
4.4 NF3000系列材料搭配TASiW-12之戶外穩定性前端測試 55
4.4.1 材料本質壽命 55
4.4.2 材料熱加速老化壽命 56
4.4.3 材料紫外光A加速老化壽命 57
第五章、 總結與未來展望 62
參考文獻 63
參考文獻
[1] A. Chodos, J. Ouellette, and E. Tretkoff, "This month in physics history," in American Physical Society News vol. 18, ed, 2009, p. 2.
[2] N. R. E. Laboratory. "Best Research-Cell Efficiency Chart." Available: https://www.nrel.gov/pv/cell-efficiency.html.
[3] M. A. Green, "Thin-film solar cells: review of materials, technologies and commercial status," Journal of Materials Science: Materials in Electronics, vol. 18, no. 1, pp. 15-19, 2007.
[4] S. Kim, J.-W. Chung, H. Lee, J. Park, Y. Heo, and H.-M. Lee, "Remarkable progress in thin-film silicon solar cells using high-efficiency triple-junction technology," Solar Energy Materials and Solar Cells, vol. 119, pp. 26-35, 2013.
[5] T. D. Lee and A. U. Ebong, "A review of thin film solar cell technologies and challenges," Renewable and Sustainable Energy Reviews, vol. 70, pp. 1286-1297, 2017.
[6] H. Heriche, Z. Rouabah, and N. Bouarissa, "High-efficiency CIGS solar cells with optimization of layers thickness and doping," Optik, vol. 127, no. 24, pp. 11751-11757, 2016.
[7] K. M. Coakley and M. D. McGehee, "Conjugated polymer photovoltaic cells," Chemistry of materials, vol. 16, no. 23, pp. 4533-4542, 2004.
[8] H. Hoppe and N. S. Sariciftci, "Organic solar cells: An overview," Journal of Materials Research, vol. 19, pp. 1924-1945, 2004.
[9] Y. Chen et al., "Insights into the working mechanism of cathode interlayers in polymer solar cells via [(C 8 H 17) 4 N] 4 [SiW 12 O 40]," Journal of Materials Chemistry A, vol. 4, no. 48, pp. 19189-19196, 2016.
[10] S.-R. Tseng, H.-F. Meng, K.-C. Lee, and S.-F. Horng, "Multilayer polymer light-emitting diodes by blade coating method," Applied Physics Letters, vol. 93, no. 15, p. 382, 2008.
[11] N. Agrawal, M. Z. Ansari, A. Majumdar, R. Gahlot, and N. Khare, "Efficient up-scaling of organic solar cells," Solar Energy Materials and Solar Cells, vol. 157, pp. 960-965, 2016.
[12] K. Zhang et al., "Efficient large area organic solar cells processed by blade‐coating with single‐component green solvent," Solar RRL, vol. 2, no. 1, p. 1700169, 2018.
[13] L. Lucera et al., "Printed semi-transparent large area organic photovoltaic modules with power conversion efficiencies of close to 5%," Organic Electronics, vol. 45, pp. 209-214, 2017.
[14] L. Lucera et al., "Highly efficient, large area, roll coated flexible and rigid OPV modules with geometric fill factors up to 98.5% processed with commercially available materials," Energy & Environmental Science, vol. 9, no. 1, pp. 89-94, 2016.
[15] L. Mao et al., "Flexible silver grid/PEDOT: PSS hybrid electrodes for large area inverted polymer solar cells," Nano Energy, vol. 10, pp. 259-267, 2014.
[16] K.-M. Huang et al., "Nonfullerene Polymer Solar Cell with Large Active Area of 216 cm2 and High Power Conversion Efficiency of 7.7%," Solar RRL, vol. 3, no. 8, p. 1900071, 2019.
[17] M. Shanawani, D. Masotti, and A. Costanzo, "THz rectennas and their design rules," Electronics, vol. 6, no. 4, p. 99, 2017.
[18] C. Brabec et al., "The influence of materials work function on the open circuit voltage of plastic solar cells," Thin solid films, vol. 403, pp. 368-372, 2002.
[19] H. Kim, S. H. Jin, H. Suh, and K. Lee, "Origin of the open circuit voltage in conjugated polymer-fullerene photovoltaic cells," in Organic Photovoltaics IV, 2004, vol. 5215: International Society for Optics and Photonics, pp. 111-118.
[20] W. Zhao et al., "Fullerene‐free polymer solar cells with over 11% efficiency and excellent thermal stability," Advanced materials, vol. 28, no. 23, pp. 4734-4739, 2016.
[21] W. Zhao, S. Li, S. Zhang, X. Liu, and J. Hou, "Ternary polymer solar cells based on two acceptors and one donor for achieving 12.2% efficiency," Advanced Materials, vol. 29, no. 2, p. 1604059, 2017.
[22] Y. Lin et al., "An electron acceptor challenging fullerenes for efficient polymer solar cells," Advanced materials, vol. 27, no. 7, pp. 1170-1174, 2015.
[23] C.-N. Weng, "Outdoor stability and scalable fabrication for commercial applications of Organic Solar Cells," master degree, Electrophysics, National Chiao Tung University, 2019.
[24] B. A. Courtright and S. A. Jenekhe, "Polyethylenimine interfacial layers in inverted organic photovoltaic devices: Effects of ethoxylation and molecular weight on efficiency and temporal stability," ACS applied materials & interfaces, vol. 7, no. 47, pp. 26167-26175, 2015.
[25] E. Haskal, A. Curioni, P. Seidler, and W. Andreoni, "Lithium–aluminum contacts for organic light-emitting devices," Applied physics letters, vol. 71, no. 9, pp. 1151-1153, 1997.
[26] Z. a. Tan et al., "High performance polymer solar cells with as-prepared zirconium acetylacetonate film as cathode buffer layer," Scientific reports, vol. 4, p. 4691, 2014.
[27] W. R. Mateker and M. D. McGehee, "Progress in Understanding Degradation Mechanisms and Improving Stability in Organic Photovoltaics," Advanced Materials, vol. 29, no. 10, p. 1603940, 2017, doi: 10.1002/adma.201603940.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊