跳到主要內容

臺灣博碩士論文加值系統

(44.222.64.76) 您好!臺灣時間:2024/06/13 09:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:朱柏軒
研究生(外文):Chu, Po-Hsuan
論文名稱:使用刮刀溶液製程的鋁摻雜氧化鋅作為有效電子選擇性接觸的有機/矽混合太陽能電池
論文名稱(外文):Hybrid Organic/Silicon Solar Cells Using Blade Coating Solution-Processed Aluminum-Doped Zinc Oxides as Efficient Electron Selective Contact
指導教授:孟心飛
指導教授(外文):Meng, Hsin-Fei
口試委員:余沛慈
口試委員(外文):Yu, Pei-chen
口試日期:2020-07-24
學位類別:碩士
校院名稱:國立交通大學
系所名稱:物理研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:68
中文關鍵詞:混合式矽太陽能電池刮刀塗佈無機矽太陽能電池載子選擇層
外文關鍵詞:Hybrid silicon solar cellsInorganic silicon solar cellsBlade-coatingCarrier Selection Layer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:118
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近來,有機矽異質結太陽能電池以其良好的性能和易於加工的吸引力而成為一種有前途的光伏技術,混合有機矽異質結太陽能電池引起了人們的極大興趣。然而,跨陰極界面的電子傳輸仍然是要解決的關鍵問題之一。在這項研究中,我們採用鋁摻雜的氧化鋅(AZO)納米顆粒分散體,通過刮刀塗層在n型矽(n-Si)和背面鋁(Al)電極之間形成電子傳輸中間層。我們進一步研究了各種爐管退火條件(100°C-400°C)的表面形態與器件特性之間的相關性。這些AZO薄膜已成功用作用於n-Si / PEDOT:PSS及n-Si / MoO3異質結太陽能電池中的有效電子選擇性層,相對於參考太陽能電池,AZO中間層在300°C退火的混合太陽能電池n-Si / PEDOT:PSS表現出最高的功率轉換效率(PCE)為12.0%,填充係數(FF)為78.6%,作為比較沒有AZO中間層的參考對照組的PCE為11.6%,而無機太陽能電池n-Si / MoO3最高的功率轉換效率(PCE)為8.8%,填充係數(FF)為78.0%,沒有AZO中間層參考對照組的PCE為6.2%,其中薄膜的形貌顯示出較小且相對光滑的晶粒原子力顯微鏡。初步結果表明,無機納米顆粒溶液工藝可用於形成均勻的薄膜中間層。我們充分證明了這種低溫固溶處理的AZO中間層的潛力巨大,不僅可用於混合太陽能電池,而且還可用於其他類型的矽基光伏器件。
Recently, hybrid organic silicon heterojunction solar cells have attracted significant interests due to good device performance and simple solution processes. However, electron transport across the cathode interface remains one of the critical issues to be solved. In this study, we employ aluminum-doped zinc oxide (AZO) nanoparticle dispersion to form an electron transport interlayer between the n-type silicon (n-Si) and rear-side aluminum (Al) electrode via blade coating. We further investigate the correlation between the surface morphology and the device characteristics for various furnace annealing conditions: 100°C-400°C. We have successfully used these AZO films as effective electron-selective layers in n-Si/PEDOT: PSS and n-Si/MoO3 heterojunction solar cells, relative to reference solar cells. The hybrid solar cell n-Si / PEDOT:PSS with the AZO interlayer annealed at 300°C exhibits the highest power conversion efficiency (PCE) of 12.0% with a fill-factor (FF) of 78.6% and Inorganic solar cell n-Si / MoO3 the highest power conversion efficiency (PCE) of 8.7% with a fill-factor (FF) of 78.0%, where the film morphology shows small and relatively smooth grains revealed by the atomic force microscopy. As a comparison, The PCE of the reference counterpart without the AZO intermediate layer was 12.0% and 8.7%, respectively. The preliminary results demonstrate the potential of inorganic nanoparticle solution processes for forming a uniform and homogeneous interlayer. Further work on the contact resistance and carrier selectivity of the AZO thin film is still in progress and will be presented.
摘要 I
Abstract II
致謝 IV
目錄 VI
表目錄 IX
圖目錄 X
第一章、 緒論與研究動機 1
1.1 太陽能電池發展與市場潛力 1
1.2 矽基太陽能電池發展 6
1.2.1 矽基太陽能電池的市場 6
1.2.2 矽基太陽能電池的技術演變 7
1.3 載子選擇層 9
1.3.1 無機載子選擇層 10
1.3.2 有機載子選擇層 13
1.4 研究動機 15
第二章、 太陽能電池運作原理與量測分析技術 16
2.1 太陽能電池的基本結構與光電轉換原理 16
2.1.1 太陽能電池的基本結構 16
2.1.2 太陽能電池的光電轉換原理 18
2.1.3 太陽能電池常用的參數定義 20
2.2 太陽能電池的量測及儀器分析技術 25
2.2.1 元件電流密度-電壓特性量測(J-V curve) 25
2.2.2 外部量子效率量測(External Quantum Efficiency) 26
2.2.3 掃描式電子顯微鏡(Scanning electron microscopy) 27
2.2.4 紫外光/可見光/近紅外光光譜儀 28
2.2.5 橢圓偏光儀(Ellipsometry) 29
2.2.6 少數載子生命週期量測 29
2.2.7 Suns -Voc量測儀 31
2.2.8 原子力顯微鏡(Atomic Force Microscope, AFM) 32
2.2.9 表面電位顯微鏡(Scanning Kelvin Probe Microscopy) 33
第三章、 混合式有機矽太陽能電池元件製作流程 34
3.1 有機機與無機材料的選擇與屬性件紹 34
3.1.1 有機太陽能電池能帶理論 35
3.1.2 電洞選擇層材料 36
3.1.3 電子選擇層材料 37
3.2 矽基板之清洗流程 38
3.3 矽基板之表面結構製作 39
3.4 元件製作流程 41
3.3.1 刮刀塗佈系統介紹 41
3.3.2 元件前置作業 42
3.3.3 電子選擇層塗佈 43
3.3.4 電洞選擇層塗佈與蒸鍍 44
3.3.5 陰、陽電極蒸鍍 45
第四章、 電子選擇材料應用於太陽能電池 46
4.1 元件膜厚測試 46
4.1.1 元件穿透反射率量測 46
4.1.2 整體膜面成膜概況 48
4.1.3 元件膜厚測定 49
4.1.4 膜面結構量測 52
4.2 退火溫度與功函數變化 55
4.3 接觸電阻量測 57
4.4 元件的電性分析 59
4.4.1 混合式矽太陽能電池的J-V特性量測 59
4.4.2 無機太陽能電池的J-V特性量測 62
4.5 測試材料之綜合比較 64
第五章、 結論與未來展望 64
第六章、 參考文獻 65
[1] “工研院:2020綠能趨勢台灣應擴大布局第三地並持續轉型為良方 - 陽光日日發,日日讓你發.” https://ririfa.com.tw/20191031-2/ (accessed Jul. 01, 2020).
[2] “摩尔光伏-2019全球光伏市场与技术发展分析.” http://molepv.com/news_views.asp?id=11921 (accessed Jul. 02, 2020).
[3] “166mm或210mm将快速成为主流,M2三年内消失_阳光工匠光伏网.” http://www.21spv.com/news/show.php?itemid=69762 (accessed Jul. 02, 2020).
[4] M. A.Green, “Third generation photovoltaics: Ultra-high conversion efficiency at low cost,” Prog. Photovoltaics Res. Appl., vol. 9, no. 2, pp. 123–135, Mar.2001, doi: 10.1002/pip.360.
[5] “ITRPV - VDMA.” https://itrpv.vdma.org/en/ueber-uns (accessed Jul. 02, 2020).
[6] “太陽能電池效率記錄| 體育教育.” https://www.pveducation.org/pvcdrom/appendices/solar-cell-efficiency-results2 (accessed Jul. 02, 2020).
[7] A.Goodrich et al., “A wafer-based monocrystalline silicon photovoltaics road map: Utilizing known technology improvement opportunities for further reductions in manufacturing costs,” Sol. Energy Mater. Sol. Cells, vol. 114, pp. 110–135, Jul.2013, doi: 10.1016/j.solmat.2013.01.030.
[8] A.Richter, J.Benick, F.Feldmann, A.Fell, M.Hermle, andS. W.Glunz, “n-Type Si solar cells with passivating electron contact: Identifying sources for efficiency limitations by wafer thickness and resistivity variation,” Sol. Energy Mater. Sol. Cells, vol. 173, pp. 96–105, Dec.2017, doi: 10.1016/j.solmat.2017.05.042.
[9] R.Brendel andR.Peibst, “Contact Selectivity and Efficiency in Crystalline Silicon Photovoltaics,” IEEE J. Photovoltaics, vol. 6, no. 6, pp. 1413–1420, Nov.2016, doi: 10.1109/JPHOTOV.2016.2598267.
[10] “Passivating and Carrier-selective Contacts - Basic Requirements and Implementation - IEEE Conference Publication.” https://ieeexplore.ieee.org/abstract/document/8366202 (accessed Jul. 02, 2020).
[11] C.Battaglia et al., “Hole selective MoOx contact for silicon solar cells,” Nano Lett., vol. 14, no. 2, pp. 967–971, Feb.2014, doi: 10.1021/nl404389u.
[12] “TOPCon – Overcoming Fundamental Bottlenecks to a New World-Record Silicon Solar Cell - Fraunhofer ISE.” https://www.ise.fraunhofer.de/en/research-projects/topcon.html (accessed Jul. 12, 2020).
[13] C.Hollemann, F.Haase, S.Schäfer, J.Krügener, R.Brendel, andR.Peibst, “26.1%‐efficient POLO‐IBC cells: Quantification of electrical and optical loss mechanisms,” Prog. Photovoltaics Res. Appl., vol. 27, no. 11, pp. 950–958, Nov.2019, doi: 10.1002/pip.3098.
[14] X.Yang, K.Weber, Z.Hameiri, andS.DeWolf, “Industrially feasible, dopant-free, carrier-selective contacts for high-efficiency silicon solar cells,” Prog. Photovoltaics Res. Appl., vol. 25, no. 11, pp. 896–904, Nov.2017, doi: 10.1002/pip.2901.
[15] J.Melskens, B. W. H.Van DeLoo, B.Macco, L. E.Black, S.Smit, andW. M. M.Kessels, “Passivating Contacts for Crystalline Silicon Solar Cells: From Concepts and Materials to Prospects,” IEEE J. Photovoltaics, vol. 8, no. 2, pp. 373–388, Mar.2018, doi: 10.1109/JPHOTOV.2018.2797106.
[16] D.Zielke, A.Pazidis, F.Werner, andJ.Schmidt, “Organic-silicon heterojunction solar cells on n-type silicon wafers: The BackPEDOT concept,” Sol. Energy Mater. Sol. Cells, vol. 131, pp. 110–116, Dec.2014, doi: 10.1016/j.solmat.2014.05.022.
[17] C.Reichel et al., “Electron-selective contacts via ultra-thin organic interface dipoles for silicon organic heterojunction solar cells,” J. Appl. Phys., vol. 123, no. 2, p. 024505, Jan.2018, doi: 10.1063/1.5010937.
[18] “tsec.” http://www.tsecpv.com/zh-tw/solar_knowledge/index/zero_house_02 (accessed Jul. 04, 2020).
[19] A. J.Stapleton et al., “Planar silver nanowire, carbon nanotube and PEDOT:PSS nanocomposite transparent electrodes,” Sci. Technol. Adv. Mater., vol. 16, no. 2, p. 025002, 2015, doi: 10.1088/1468-6996/16/2/025002.
[20] “The Evolution of Silicon Wafer Cleaning Technology - IOPscience.” https://iopscience.iop.org/article/10.1149/1.2086825 (accessed Jul. 07, 2020).
[21] I.Khatri, Z.Tang, Q.Liu, R.Ishikawa, K.Ueno, andH.Shirai, “Green-tea modified multiwalled carbon nanotubes for efficient poly(3,4-ethylenedioxythiophene):poly(stylenesulfonate)/n-silicon hybrid solar cell,” Appl. Phys. Lett., vol. 102, no. 6, p. 063508, Feb.2013, doi: 10.1063/1.4792691.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top