跳到主要內容

臺灣博碩士論文加值系統

(44.201.92.114) 您好!臺灣時間:2023/03/31 08:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳政彥
研究生(外文):Wu, Cheng-Yen
論文名稱:軟性有機太陽能電池壽命提升及穩定性分析
論文名稱(外文):Analysis of Lifetime Extension and Stability of Flexible Organic Solar Cells
指導教授:孟心飛
指導教授(外文):Meng, Hsin-Fei
口試日期:2020-07-24
學位類別:碩士
校院名稱:國立交通大學
系所名稱:物理研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:65
中文關鍵詞:有機太陽能電池軟性基板界面修飾層商業化封裝壽命軟性材料
外文關鍵詞:organic solar cellflexible substrateinterlayermodificationcommercialpackaginglifetimeflexible material
相關次數:
  • 被引用被引用:0
  • 點閱點閱:102
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
能源危機一直是人類近幾年來都在討論的問題,從軍事用途到民生用品人們的生活都需要使用到能源,然而能源並不是取之不盡用之不絕,因此資源日漸減少而需求量日與月增下能源不足除了導致人們生活不便外,為了爭奪資源可能將引發戰爭,這些都是世界各國所擔心的因此著手研究開發出新的替代能源,而有機太陽能電池便是有效的替代能源之一也是研究發展的一大重點。
本論文主要在研究軟性有機太陽能電池壽命與穩定性,而有機太陽能電池現在處於開發階段,其優點除了可大面積化、製程容易、成本低廉外也可製成半透明式上;而軟性有機太陽能電池除了上述優點外且兼具了可撓性質,其應用範圍更加廣泛除了一般玻璃基板的大樓上及空地中,軟性基板由於輕薄能安裝於無法負載大重量的無人機上、窗簾、小型穿戴裝置等地方,不過軟性基板元件仍然存在著許多問題如使用壽命過短與轉換效率不高都是軟性基板元件的無法商業化的缺點;本實驗使用PBDTTT-EFT:PC71BM作為主動層材料並且以Chlorobenzene氯苯作為溶劑,再搭配界面活性劑混合而成的有機材料,並以正結構製作出軟性基板元件,最後比較出軟性基板與玻璃基板的電性,由於製程中所使的參數皆是優化後的玻璃基板因此再初期軟性基板各項數值皆不如玻璃基板。在本次實驗中軟性基板元件將採取新穎的封裝方式,相較於以往的玻璃封裝,軟性材料封裝便讓元件的可朔性提升,也大幅減緩了元件劣化的程度,接著優化元件的成膜厚度並搭配不同的介面修飾層將元件的壽命提升從原先70小時上升至300小時以上,並保有30 %左右轉換效率,但僅有這樣還是無法達商業化標準,若將持續研究相信軟性有機太陽能電池在未來市場上更具競爭力。
The energy crisis always has been an issue that humans have been discussing in recent years. From military use to civilian supplies, people need to use energy. However, energy is not inexhaustible, so resources are decreasing and demand is increasing. In addition to increasing energy shortages with the month, in addition to causing inconvenience to people’s lives, in order to compete for resources, it may cause wars. These are the concerns of countries around the world. Therefore, research and development of new alternative energy sources have begun, and OSCs are an effective alternative energy source. One is also a major focus of research and development.
This thesis is mainly studying the lifetime and stability of flexible OSCs, and OSCs are now in the development stage. In addition to their large-area, easy process, and low cost, they can also be made translucent; flexible OSCs In addition to the above advantages and the flexible of Solar Cells, that has a wider range of applications. In addition to the general glass substrates in buildings and open spaces, the flexible substrate can be installed on drones, curtains, and small wearable devices that cannot support heavy weights. However, there are still many problems with flexible substrate components such as short lifetime and low conversion efficiency. Both are shortcomings of flexible substrate components that cannot be commercialized; this experiment uses PBDTTT-EFT:PC71BM as the active layer material and uses Chlorobenzene is used as a solvent, and an organic material mixed with a surfactant is used to produce a flexible substrate component with a positive structure. Finally, the electrical  
properties of the flexible substrate and the glass substrate are compared. Because the parameters used in the process are optimized The glass substrate is therefore inferior to the glass substrate in the initial values of the flexible substrate. In this experiment, the flexible substrate components will adopt a novel packaging method. Compared with the previous glass packaging, the flexible material packaging will improve the reliability of the component, and also greatly reduce the degree of component degradation, and then optimize the film formation of the component The thickness and the combination of different inter layer modification increase the lifetime of the device from 70 hours to more than 300 hours, and maintain a conversion efficiency of about 30 %, but this is still not a commercial standard. If continuous research is believed to be flexible OSCs are more competitive in the future market
摘要……………………………………………………………………………… i
Abstract …………………………………………………………………………. ii
致謝……………………………………………………………………………… iv
目錄……………………………………………………………………………… vi
表目錄…………………………………………………………………………… ix
圖目錄…………………………………………………………………………… x
第一章、 序論 ……………………………………………………………... 1
1.1 研究背景 …………………………………………………………… 1
1.1.1前言 …………………………………………………………….. 1
1.1.2太陽能電池簡介與發展 ……………………………………….. 1
1.1.3有機太陽能電池的發展………………………………………… 3
1.2 研究動機 ……………………………………………………………... 7
1.2.1高分子有機太陽能電池優勢 ………………………………… 7
1.2.2有機太陽能電池之高分子材料混合層 ……………………….. 8
1.2.3半透明有機太陽能電池 …………………………………….... 8
1.3 文獻回顧 …………………………………………………………... 9
1.3.1以刮刀塗佈製程製作有機發光二極體 ……………………….. 9
1.3.2以刮刀塗佈製程製作有機太陽能電池 ……………………… 10
1.4 論文架構 …………………………………………………………... 11
第二章、 實驗原理 …………………………………………………………. 12
2.1 太陽能電池介紹 ……………………………………………………. 12
2.1.1太陽能電池基本原理 ……………………………………….. 12
2.1.2太陽能電池等校電路分析 ………………………………….. 13
2.1.3太陽能電池各項參數介紹 ………………………………….. 15 
2.1.4太陽能電池表現分析 ………………………………………… 18
2.2 有機太陽能電池介紹 ……………………………………………... 21
2.2.1有機太陽能電池材料特性…………………………………….. 21
2.2.2有機太陽能電池之能帶理論 ………………………………… 22
2.3 本論文所使用之材料與結構介紹 …………………………………. 23
2.3.1有機太陽能電池主動層材料 ……………………………….. 23
2.3.2電洞傳輸層材料 …………………………………………….. 25
2.3.3介面修飾層及陰極材料 …………………………………….. 25
2.3.4陽極材料 …………………………………………………….. 27
2.4 本實驗元件結構與能帶圖 …………………………………………. 28
第三章、 實驗方法及流程 ………………………………………………... 30
3.1 有機太陽能電池元件製作流程 …………………………………. 30
3.2 ITO蝕刻介紹 ……………………………………………………. 31
3.3 ITO實驗前清洗準備 ………………………………………………. 33
3.4 刮刀塗佈系統 …………………………………………………….. 34
3.5 電洞傳輸層塗佈 ………………………………………………… 35
3.6 主動層材料塗佈 ………………………………………………….. 36
3.7 界面修飾層塗佈 ………………………………………………….. 37
3.8 蒸鍍電極 ………………………………………………………… 38
3.9 元件封裝 ………………………………………………………….. 39
3.10 元件量測 ………………………………………………………….. 41
第四章、 實驗結果與討論 ………………………………………………... 42
4.1 早期的軟性基板元件 …………………………………………….. 42
4.2 電洞傳輸層厚度對軟性基板影響結果 ………………………….. 43
4.3 軟性材料封裝與壽命之結果 …………………………………… 46
4.3.1軟性材料封裝元 …………………………………………….. 46
4.3.2軟性材料封裝之元件壽命表現 ………………………………. 47
4.3.3軟性基板對於元件壽命之影響 ……………………………... 48
4.4 不同封裝結構對於元件壽命影響之結果 …………………………. 51
4.4.1低溫膠膜封裝結構之結果 …………………………………... 51
4.4.2外部封裝與內部封裝結果比較 ………………………………... 52
4.4.3外部封裝之最佳結構 ………………………………………... 54
4.5 界面修飾層對於元件壽命影響之結果 ……………………………. 57
4.5.1界面修飾層下藥量對元件之影響 ……………………………. 57
4.5.2界面修飾層TASiW-12對元件之影響 ………………………... 59
4.5.3界面修飾層AZO對元件之影響 ……………………………... 60
第五章、 結論與未來展望 ……………………………………………………. 62
參考文獻 ……………………………………………………………………... 64
[1]What Are Greenhouse Gases. US Department of Energy.
2007-09-09
[2]silicon.pdf>."
[3].
[4]H. Hoppe and N. S. Sariciftci, "Organic solar cells:
An overview," Journal of Materials Research, vol. 19,
no. 7, pp. 1924-1945, 2011.
[5]S. Zhang et al., Side Chain Selection for Designing
Highly Efficient Photovoltaic Polymers with 2D-
Conjugated Structure, Macromolecules, 2014, 47, 4653-
4659.
[6]S.-R. Tseng, H.-F. Meng, K.-C. Lee, and S.-F. Horng,
"Multilayer polymer light-emittingdiodes by blade
coating method," Applied Physics Letters, vol. 93, no.
15, 2008.
[7]Y. Galagan, D.J.D. Moet, D.C. Hermes, P.W.M. Blom, R.
Andriessen, “Large area ITO-free organic solar cells
on steel substrate” , Org. Electron., 13, 3310–3314 ,
2012.
[8]N. Agrawal, M. Zubair Ansari, A. Majumdar, R. Gahlot,
and N. Khare, "Efficient up-scaling of organic solar
cells," Solar Energy Materials and Solar Cells, vol.
157, pp. 960-965, 2016.
[9]A. Armin, M. Hambsch, P. Wolfer, H. Jin, J. Li, Z.
Shi, P. L. Burn and P. Meredith,“Efficient, Large
Area, and Thick Junction Polymer Solar Cells with
Balanced Mobilities and Low Defect Densities”, Adv.
Energy Mater., 5, 1401221, 2015.
[10]L. Maoet al., "Flexible silver grid/PEDOT:PSS hybrid
electrodes for large area inverted polymer solar
cells," Nano Energy, vol. 10, pp. 259-267, 2014.
[11]K. Zhang et al., "Efficient Large Area Organic Solar
Cells Processed by Blade-Coating With Single-
Component Green Solvent," Solar RRL, vol. 2, no. 1,
2018.
[12]L. Lucera, F. Machui, P. Kubis, H. D. Schmidt, J.
Adams, S. Strohm, T. Ahmad, K. Forberich, H. J.
Egelhaaf, C. J. Brabec, “Highly efficient, large
area, roll coated flexible and rigid OPV modules with
geometric fill factors up to 98.5% processed with
commercially available materials”, Energy Environ.
Sci., 9, 89–94, 2016.
[13]S.-L. Lim, K.-H. Ong, J. Li, L. Yang, Y.-F. Chang,
H.-F. Meng, X. Wang, Z.-K. Chen, “Efficient,large
area organic photovoltaic modules with active layers
processed with non-halogenated solvents in air”, Org.
Electron., 43, 55-63, 2017.
[14]Non-fullerene polymer solar cell with large active
area of 216 cm2 and high power conversion efficiency
of 7.7% Kuan-Min Huang, Chih-Ming Lin, Szu-Han Chen,
Cheng-Sian Li, Chen-Hsuan Hu, Yu Zhang, Hsin-Fei Meng*, Chih-Yu Chang*,
Yu-Chiang Chao, Hsiao-Wen Zan*, Lijun Huo and Peichen Yu
[15] https://www.researchgate.net/figure/Current-Voltage-characteristic-of-a-typical-bilayer-s
olar-cell-in-the-dark-dashed-line_fig3_26784566
[16] F.C. Krebs, J. Fyenbo, M. Jørgensen, J. Mater , “Product integration of compact
roll-to-roll processed polymer solar cell modules: methods and manufacture using
flexographic printing”, slot-die coating and rotary screen printing, Chem, 20, 8994–
9001 , 2010.
[17] P.-T. Tsai, K.-C.Lin, C.-Y.Wu, C.-H.Liao, M.-C.Lin, Y. Q. Wong, H.-F.Meng,
C.-Y.Chang, C.-L.Wang,Y.-F.Huang, S.-F.Horng, H.-W.Zan, Y.-C Chao “Toward
long-termstable and efficient large-area organic solar cells, ”
ChemSusChem ,102778−2787 , 2017.
[18] B. A. Courtright and S. A. Jenekhe, "Polyethylenimine Interfacial Layers in Inverted
Organic Photovoltaic Devices: Effects of Ethoxylation and MolecularWeight on
Efficiency and Temporal Stability," ACS Appl Mater Interfaces, vol.7, no. 47, pp.
26167-75, Dec 2 2015.
[19] https://www.materialsnet.com.tw/DocView.aspx?id=17065
[20] "<清大電子林志銘碩士論文.pdf>."
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊