跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2024/12/04 00:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李冠億
研究生(外文):Lee, Kuan-Yi
論文名稱:鉛碘鈣鈦礦氣體感測器之摻雜研究
論文名稱(外文):Investigation of Doping Effect in Perovskite Gas Sensor
指導教授:孟心飛
指導教授(外文):Meng, Hsin-Fei
口試委員:冉曉雯林貴林孟心飛
口試委員(外文):Zan, Hsiao-WenLin, Guey-LinMeng, Hsin-Fei
口試日期:2020-07-14
學位類別:碩士
校院名稱:國立交通大學
系所名稱:物理研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:49
中文關鍵詞:鈣鈦礦硫氰酸根氣體感測溶液製程垂直結構
外文關鍵詞:perovskitethiocyanategas sensingsolution processesvertical structures
相關次數:
  • 被引用被引用:0
  • 點閱點閱:137
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗室希望以鉛碘鈣鈦礦材料為主開發在大氣環境下具有能夠偵測到ppb等級濃度的氣體之靈敏度的氣體感測器。其中我們不僅在電極結構中使用垂直式通道結構、對更換電極材料也做了比較,更在薄膜製程上做了許多嘗試。我們比較了不同溶液製程的成膜方式,以及在鉛碘鈣鈦礦材料中摻入不同物質,其中以摻入硫氰酸根影響最大。我們發現摻入硫氰酸根後的元件在大氣環境下不只對硫化氫(H2S)有相當靈敏的反應,且對大氣的穩定性與對硫化氫的反應大小和無摻入時相比上升許多。對此結果我們認為相當有趣,因此針對摻入硫氰酸根材料的薄膜進行分析,並嘗試說明為何會有此結果的產生。
Our laboratory hopes to use lead iodine perovskite as the main sensing material to develop a gas sensor that can detect gas with a concentration of parts-per-billion (ppb) level in the ambient air. We have not only used vertical channel structures in the electrode structure, but also made a comparison on the replacement of electrode materials, and also made many attempts in the thin film manufacturing process. We compared the film-forming methods of different solution processes, as well as the inclusion of different substances in lead-iodine perovskite materials, in which the addition of thiocyanate has the greatest effect. We found that the components after doping thiocyanate not only have a very sensitive response to hydrogen sulfide (H2S) in the ambient air, but also the stability to the ambient air and the reaction to hydrogen sulfide are much higher than without doping thiocyanate. We think that this result is very interesting, so we analyze the film with doping thiocyanate material and try to explain why this result occurs.
中文摘要 …………………………………………………………………… I
英文摘要 …………………………………………………………………… II
致謝 …………………………………………………………………… III
目錄 …………………………………………………………………… V
圖目錄 …………………………………………………………………… VII
表目錄 …………………………………………………………………… IX
第一章 緒論
1-1 前言 …………………………………………………………… 1
1-2 研究動機 ……………………………………………………… 1
1-3 論文架構 ……………………………………………………… 4
第二章 鉛碘鈣鈦礦氣體感測器元件製程介紹
2-1 ITO 圖樣製程定義 …………………………………………… 5
2-2 鉛碘鈣鈦礦材料製程介紹 ………………………………… 7
2-2-1 鉛碘鈣鈦礦材料介紹 ……………………………………… 7
2-2-2 溶液製程不同成膜方式介紹 ………………………………… 8
2-2-3 一步旋塗法與兩步旋塗法介紹 …………………………… 9
2-3 垂直指叉式電極與水平指叉式鉛碘鈣鈦礦感測元件製程 … 10
2-3-1 垂直指叉式電極感測元件 ………………………………… 10
2-3-2 水平指叉式電極感測元件 ………………………………… 12
2-4 鉛碘鈣鈦礦氣體量測介紹 ………………………………… 13
2-4-1 鉛碘鈣鈦礦材料氣體感測機制介紹 ……………………… 14
2-4-2 氣體量測系統介紹 …………………………………………… 15
2-4-3 濕度控制系統介紹 …………………………………………… 15
第三章 純碘與摻入咖啡因之鉛碘鈣鈦礦氣體感測元件偵測一氧化碳應用
3-1 純碘鈣鈦礦氣體感測元件 ………………………………… 17
3-1-1 水平與垂直指叉式電極比較 ………………………………… 17
3-1-2 不同薄膜製程影響 …………………………………………… 18
3-1-3 不同配藥比例影響 …………………………………………… 21
3-1-4 蒸鍍不同電極對氣體的反應比較 …………………………… 21
3-2 摻入咖啡因之鉛碘鈣鈦礦氣體感測器 ……………………… 23
3-2-1 有無摻入咖啡因之反應大小比較 …………………………… 23
VI
3-2-2 摻入咖啡因後對元件壽命影響 …………………………… 24
第四章 硫氰酸鉛碘鈣鈦礦氣體感測元件偵測硫化氫氣體應用
4-1 硫氰酸鉛碘鈣鈦礦氣體感測元件 …………………………… 25
4-2 垂直指叉式與水平指叉式比較 …………………………… 26
4-3 不同電極金屬影響 …………………………………………… 26
4-3-1 電流與反應大小比較 ……………………………………… 26
4-3-2 壽命與穩定性比較 …………………………………………… 27
4-4 不同成膜方式影響 …………………………………………… 29
4-4-1 一步驟旋塗與兩步驟旋塗比較 …………………………… 29
4-4-2 不同塗佈方式比較 …………………………………………… 30
4-5 對不同氣體選擇性比較 ……………………………………… 33
4-6 元件有無照光影響 …………………………………………… 34
4-7 不同環境濕度對元件影響 ………………………………… 35
4-8 有無硫氰酸鉛碘鈣鈦礦氣體感測器差異 ………………… 36
4-8-1 電流大小與反應大小差異 ………………………………… 36
4-8-2 薄膜表面結構 AFM 與 SEM 差異 …………………………… 37
4-8-3 XRD 薄膜結構差異 …………………………………………… 39
4-8-4 元件壽命與穩定性比較 ……………………………………… 40
4-9 量測後保存方式對元件壽命影響 …………………………… 41
第五章 結論及未來展望
5-1 結論 …………………………………………………………… 43
5-2 未來展望 ……………………………………………………… 44
參考文獻 ………………………………………………………………… 45
[1] ATSDR(Agency for Toxic Substances and Disease Registry), ToxFAQTM for Hydrogen Sulfide, https://www.atsdr.cdc.gov/toxfaqs/tf.asp?id=388&tid=67

[2] RuiWang, JingjingXue, LeiMeng, Jin-WookLee, ZipengZhao, PengyuSun, LeCai, TianyiHuang, ZhengxuWang, Zhao-KuiWang, YuDuan, Jonathan LeeYang, ShaunTan, YonghaiYuan, YuHuang, YangYang, Science Direct 3(6), 1464-1477, (2019).

[3] Sneha A. Kulkarni , Tom Baikie, Pablo P. Boix, Natalia Yantara, Nripan Mathews and Subodh Mhaisalkar, J. Mater. Chem. A 2, 9221-9225, (2014).

[4] Simon A. Bretschneider, Jonas Weickert, James A. Dorman, and Lukas Schmidt-Mende, Apl Materials 2 (4), 9, (2014).

[5] Keith T. Butler , Jarvist M. Frost and Aron Walsh, Materials Horizons 2(2), 228-231, (2015).

[6] Constantinos C. Stoumpos, Christos D. Malliakas, and Mercouri G. Kanatzidis, , Inorganic Chemistry 52(15), 9019-9038, (2013).

[7] Giacomo Maculan, Arif D. Sheikh, Ahmed L. Abdelhady, Makhsud Saidaminov, Md Azimul Haque, Banavoth Murali, Erkki Alarousu, Omar F. Mohammed, Tom Wu, and Osman M. Bakr, Journal of Physical Chemistry Letters 6(19), 3781-3786, (2015).

[8] Guichuan Xing, Nripan Mathews, Shuangyong Sun, Swee Sien Lim, Yeng Ming Lam, Michael Grätzel, Subodh Mhaisalkar, Tze Chien Sum, Science 342(6156), 344-347, (2013)

[9] Chunxiong Bao, Jie Yang, Weidong Zhu, Xiaoxin Zhou, Hao Gao, Faming Li, Gao Fu, Tao Yu and Zhigang Zoua, Chem Commun, 51(84), 15426-9, (2015).

[10] C. Balamurugan, D.-W. Lee, Sensors and Actuators B: Chemical, 221(31),
857-866,(2015).


[11] Xianwei Fu, Shilong Jiao, Ning Dong, Gang Lian, Tianyu Zhao, Song Lv, Qilong Wang and Deliang Cui, RSC Advances 8 (1), 390-395, (2018).

[12] R. H. BariInt, International Journal of Chemical Concepts 4(1), 23-33, (2018).

[13] Avisek Maity, A. K. Raychaudhuri and Barnali Ghosh, Scientific Reports 9(7777), (2019).

[14] Yilu Chen, Xinyu Zhang, Zhifu Liu, Zhigang Zeng, Hongbin Zhao, Xiaohong Wang, Jiaqiang Xu, Microchimica Acta 186(47), (2019).

[15] Yue Zhuang, Wenjing Yuan, Liu Qian, Shan Chen and Gaoquan Shi, Phys Chem Chem Phys 19(20), 12876-12881, (2017).

[16] George Kakavelakis, Emmanouil Gagaoudakis, Konstantinos Petridis, Valia Petromichelaki, Vassilis Binas, George Kiriakidis, and Emmanuel Kymakis, ACS Sens 3(1), 135-142, (2018).

[17] Wanli Jiao, Jing He, Lei Zhang, Sensors and Actuators B : Chemical 309(15), 127786, (2020).

[18] Masaki Shirayama, Masato Kato, Tetsuhiko Miyadera, Takeshi Sugita, Takemasa Fujiseki, Shota Hara, Hideyuki Kadowaki, Daisuke Murata, Masayuki Chikamatsu, and Hiroyuki Fujiwara, J. Appl. Phys. 119, 115501, (2016).

[19] Zhaohua Zhu, Qian Sun, Zhipeng Zhang, Jie Dai, Guichuan Xing, Shaozhou Li, Xiao Huang and Wei Huang, J. Mater. Chem. C 6(38), 10121, (2018).

[20] Jian Chen, Tongfei Shi, Xinhua Li, Bukang Zhou, Huaxiang Cao, Yuqi Wang, Solar Energy 136(15), 470-474, (2016).

[21] Qinglong Jiang, Dominic Rebollar, Jue Gong, Elettra L. Piacentino, Prof. Chong Zheng, Prof. Tao Xu, Angewandte Chemie 127(26), 7727-7730, (2015).

[22] Changlei Wang, DeweiZhaobYueYu, Niraj Shrestha, Corey R.Grice, Weiqiang Liao, Alexander J.Cimaroli, Jing Chen, Randy J. Ellingson, Xingzhong Zhao, Yanfa Yan, Nano energy 35, 223-232, (2017).
[23] Muhammad Jahandar, Jin Hyuck Heo, Chang Eun Song, Ki-Jeong Kong, Won Suk Shin, Jong-Cheol Lee, Sang HyukIm, Sang-Jin Moon, Nano energy 27, 330-339, (2016).

[24] Yang Zhou, Zongbao Zhang, Yangyang Cai, Hui Liu, Qiqi Qin, Qidong Tai, Xubing Lu, Xingsen Gao, Lingling Shui, Sujuan Wu, Jun-Ming Liu, Electrochimica Acta 260, 468-476, (2018).

[25] Guichuan Xing, Nripan Mathews, Swee Sien Lim, Natalia Yantara, Xinfeng Liu, Dharani Sabba, Michael Grätzel, Subodh Mhaisalkar and Tze Chien Sum, Nature Materials 13, 476–480 (2014)

[26] Saif M.H. Qaid, Mohammed. S. Al Sobaie, M.A. Majeed Khan, Idriss M. Bedja, Fahhad. H. Alharbi, Mohammad Khaja Nazeeruddin, Abdullah S. Aldwayyan, Materials Letters 164, 498–501 (2016)

[27] Samuel D. Stranks, Giles E. Eperon, Giulia Grancini, Christopher Menelaou, Marcelo J. P. Alcocer, Tomas Leijtens, Laura M. Herz, Annamaria Petrozza, Henry J. Snaith, Science 342 (6156), 341-344 (2013)

[28] Keith T. Butler, Jarvist M. Frost and Aron Walsh, Mater. Horiz. 2, 228-231 (2015)

[29] Nidhi Gupta, Omita Nanda, Rakhi Grover, Kanchan Saxena, Organic Electronics 58, 202–206 (2018)

[30] V. Lantto, S. Saukko, N.N. Toan, L.F. Reyes, & C.G. Granqvist, Journal of Electroceramics 13, 721–726, (2004)

[31] Meng-Ya Zhua, Le-Xi Zhang, Jing Yin, Jing-Jing Chen, Li-Jian Bie, Bradley D. Fahlman, Sensors & Actuators: B. Chemical 282, 659–664, (2019)

[32] Yong Sun, Jiajun Peng, YaniChen, YingshanYao & Ziqi Liang, Scientific Reports 7, 46193, (2017)

[33] Qingfeng Dong, Yanjun Fang, Yuchuan Shao, Padhraic Mulligan, Jie Qiu, Lei Cao, Jinsong Huang, Science 347(6225), 967-970 (2015)

[34] Xue-Feng Cheng, Xiang Hou, Jin Zhou, Bi-Jun Gao, Jing-Hui He, Hua Li, Qing-Feng Xu, Na-Jun Li, Dong-Yun Chen, and Jian-Mei Lu, Small 14(12), 1703667, (2018)

[35] Weidong Zhu, Chunxiong Bao, Faming Li, Xiaoxin Zhou, Jie Yang, Tao Yu and Zhigang Zou, Chem. Commun. 52, 304 (2016)

[36] Feng Li, Chun Ma, Hong Wang, Weijin Hu, Weili Yu, Arif D. Sheikh & Tom Wu, Nature Communications 6, 8238 (2015)

[37] Like Huang, Ziyang Hu, Guoqiang Yue, Jinwang Liu, Xiaohong Cui, Jing Zhang and Yuejin Zhu, Phys. Chem. Chem. Phys. 17, 22015 (2015)

[38] Qidong Tai, Peng You, Hongqian Sang, Zhike Liu, Chenglong Hu, Helen L.W. Chan & Feng Yan, Nature Communications 7, 11105 (2016)

[39] David J. Polhemus, David J. Lefer, Circulation Research 114(4), 730-737 (2014)

[40] Martin A. Green, Anita Ho-Baillie and Henry J. Snaith, Nature Photonics 8, 506–514 (2014)

[41] Letian Dou, Yang (Micheal) Yang, Jingbi You, Ziruo Hong, Wei-Hsuan Chang, Gang Li & Yang Yang, Nature Communications 5, 5404 (2014)

[42] Li-Long Pan, Ming Qin, Xin-Hua Liu and Yi-Zhun Zhu, Front. Pharmacol. 8, 686 (2017)

[43] R. Sheng, X. Wen, S. Huang, X. Hao, S. Chen, Y. Jiang, X. Deng, M. A. Green and A. W. Y. Ho-Baillie, Nanoscale 8, 1926 (2016)

[44] Silvia G. Motti, Marina Gandini, Alex J. Barker, James M. Ball, Ajay Ram Srimath Kandada and Annamaria Petrozza, ACS Energy Lett. 1, 726−730 (2016)

[45] Feng Hao, Constantinos C. Stoumpos, Duyen Hanh Cao, Robert P. H. Chang and Mercouri G. Kanatzidis, Nature Photonics 8, 489–494 (2014)

[46] Yixin Zhao and Kai Zhu, Chem. Soc. Rev. 45, 655-689 (2016)

[47] Woon Seok Yang, Jun Hong Noh, Nam Joong Jeon, Young Chan Kim, Seungchan Ryu, Jangwon Seo, Sang Il Seok, Science 348(6240), 1234-1237 (2015)

[48] Akihiro Kojima, Kenjiro Teshima, Yasuo Shirai, and Tsutomu Miyasaka, J. Am. Chem. Soc. 131, 17, 6050–6051 (2009)

[49]Chi-An Chen, Master's Thesis, Investigaion of Perovskite Gas Sensing Property, National Tsing Hua University, (2019)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top