|
[1] W. H. Lai, The Implications of SN1987A Data to Dark Boson Interactions and The Expected Constraints to Lorentz Violating Neutrino Flavor Transitions by IceCube-Gen2. PhD thesis, National Chiao Tung University, 2019. [2] J. B. Dent, F. Ferrer, and L. M. Krauss, “Constraints on Light Hidden Sector Gauge Bosons from Supernova Cooling,” 2012. [3] T. Araki, S. Hoshino, T. Ota, J. Sato, and T. Shimomura, “Detecting the Lµ-Lτ gauge boson at Belle II,” Physical Review D, vol. 95, no. 5, pp. 1–10, 2017. [4] G. Bertone, D. Hooper, and J. Silk, “Particle dark matter: Evidence, candidates and constraints,” Physics Reports, vol. 405, no. 5-6, pp. 279–390, 2005. [5] A. G. Riess, A. V. Filippenko, and et al., “Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant,” The Astronomical Journal, vol. 116, no. 3, pp. 1009–1038, 1998. [6] R. Foot, X. G. He, H. Lew, and R. R. Volkas, “Model for a light Z’ boson,” Physical Review D, vol. 50, no. 7, pp. 4571–4580, 1994. [7] R. Foot, H. Lew, and R. R. Volkas, “Electric-charge quantization,” Journal of Physics G: Nuclear and Particle Physics, vol. 19, no. 3, pp. 361–372, 1993. [8] X.G. He, G. C. Joshi, H. Lew and R. R. Volkas, “New Z’ phenomenology,” vol. 43, no. 1, pp. 22–24, 1991. [9] G. G. Raffelt, Stars as laboratories for fundamental physics: the astrophysics of neutrinos, axions, and other weakly interacting particles. The University of Chicago, 1996. [10] D. Croon, G. Elor, R. K. Leane, and S. D. McDermott, “Supernova Muons: New Constraints on Z’ Bosons, Axions, and ALPs,” 2020. [11] A. Burrows and J. M. Lattimer, “The birth of neutron stars,” The Astrophys. J. Lett, pp. 178–196, 1986. [12] A. Burrows and J. M. Lattimer, “Neutrinos from SN 1987A,” The Astrophys. J. Lett., vol. 53, no. 9, pp. L63–L68, 1987. [13] E. Rrapaj and S. Reddy, “Nucleon-nucleon bremsstrahlung of dark gauge bosons and revised supernova constraints,” Physical Review C, vol. 94, no. 4, 2016. [14] J. H. Chang, R. Essig, and S. D. McDermott, “Revisiting Supernova 1987A constraints on dark photons,” Journal of High Energy Physics, vol. 2017, no. 1, 2017. [15] W. Altmannshofer, S. Gori, M. Pospelov, and I. Yavin, “Quark flavor transitions in Lµ− L τ models,” Physical Review D - Particles, Fields, Gravitation and Cosmology, vol. 89, no. 9, pp. 1–11, 2014. [16] A. Alves, S. Profumo, and F. S. Queiroz, “The Dark Z Portal : Direct , Indirect and Collider Searches,” 2013. [17] O. Lebedev and Y. Mambrini, “Axial Dark Matter: the case for an invisible Z,” pp. 1–10, 2014. [18] G. Arcadi, Y. Mambrini, and M. H. G. Tytgat, “Invisible Z’ and dark matter : LHC vs LUX constraints,” 2014. [19] W. H. Lai, G. L. Lin, Y. L. S. Tsai, and M. R. Wu, “Constraints on Electromagnetic and Neutral Current Couplings of Dark Vector Boson to Standard Model Fermions by SN1987A,” pp. 1–24, 2020. [20] E. Rrapaj and S. Reddy, “Nucleon-nucleon bremsstrahlung of dark gauge bosons and revised supernova constraints,” Physical Review C, vol. 94, no. 4, pp. 1–16, 2016. [21] P. Cerda-Duran and N. Elias-Rosa, “Neutron Stars Formation and Core Collapse Supernovae,” pp. 1–56, 2018. [22] A. Sung, H. Tu, and M. R. Wu, “New constraint from supernova explosions on light particles beyond the Standard Model,” Physical Review D, vol. 99, no. 12, pp. 1–6, 2019. [23] N. Ishizuka and M. Yoshimura, “Axion and Dilaton Emissivity from Nascent Neutron Stars,” Progress of Theoretical Physics, vol. 84, no. 2, pp. 233–250, 1990. [24] D. Kazanas, R. N. Mohapatra, S. Nussinov, V. L. Teplitz, and Y. Zhang, “Supernova bounds on the dark photon using its electromagnetic decay,” Nuclear Physics B, vol. 890, pp. 17– 29, 2015.
|