|
Bell, M. L., Goldberg, R., Hogrefe, C., Kinney, P. L., Knowlton, K., Lynn, B., Rosenthal,J., Rosenzweig,C., & Patz,J.A. (2007). Climate change, ambient ozone, and health in 50 US cities. Climatic Change, 82(1-2), 61–76. doi: 10.1007/s10584-006-9166-7 Bloomer, B. J., Stehr, J. W., Piety, C. A., Salawitch, R. J., & Dickerson, R. R. (2009). Observed relationships of ozone air pollution with temperature and emissions. Geophysical Research Letters, 36(9). doi: 10.1029/2009gl037308 Brauer,M., Amann,M., Burnett,R.T., Cohen,A., Dentener,F., Ezzati,M., Henderson,S.B., Krzyzanowski,M., Martin,R.V., Dingenen,R.V., Donkelaar,A.V.,& Thurston,.G.D.(2012). Exposure Assessment for Estimation of the Global Burden of Disease Attributable to Outdoor Air Pollution. Environmental Science & Technology 2012, 46, 652−660. doi: 10.1021/es2025752 Brook, R. D., Brook, J. R., Urch, B., Vincent, R., Rajagopalan, S., & Silverman, F. (2002). Inhalation of Fine Particulate Air Pollution and Ozone Causes Acute Arterial Vasoconstriction in Healthy Adults. Circulation, 105(13), 1534–1536. doi: 10.1161/01.cir.0000013838.94747.64 Castro-Neto, M., Jeong, Y.-S., Jeong, M.-K., & Han, L. D. (2009). Online-SVR for short-term traffic flow prediction under typical and atypical traffic conditions. Expert Systems with Applications, 36(3), 6164–6173. doi: 10.1016/j.eswa.2008.07.069 Chan, K. Y., & Jian, L. (2013). Identification of significant factors for air pollution levels using a neural network based knowledge discovery system. Neurocomputing, 99, 564–569. doi: 10.1016/j.neucom.2012.06.003 Chang, S.-C., & Lee, C.-T. (2006). Assessment of PM10 Enhancement by Yellow Sand on the Air Quality of Taipei, Taiwan in 2001. Environmental Monitoring and Assessment, 132(1-3), 297–309. doi: 10.1007/s10661-006-9534-9 Chau, K. W., & Wu, C. L. (2010). A hybrid model coupled with singular spectrum analysis for daily rainfall prediction. Journal of Hydroinformatics, 12(4), 458–473. doi: 10.2166/hydro.2010.032 Chen, K.-S., Lin, C., & Chou, Y.-M. (2001). Determination of Source Contributions to Ambient PM2.5in Kaohsiung, Taiwan, Using a Receptor Model. Journal of the Air & Waste Management Association, 51(4), 489–498. doi: 10.1080/10473289.2001.10464287 Chen, Z., Cai, J., Gao, B., Xu, B., Dai, S., He, B., & Xie, X. (2017). Detecting the causality influence of individual meteorological factors on local PM2.5 concentration in the Jing-Jin-Ji region. Scientific reports, 7, 40735. doi: 10.1038/srep40735 Cheng, Y.-H., & Li, Y.-S. (2010). Influences of Traffic Emissions and Meteorological Conditions on Ambient PM10 and PM2.5 Levels at a Highway Toll Station. Aerosol and Air Quality Research, 10(5), 456–462. doi: 10.4209/aaqr.2010.04.0025 Cobourn, W. G., Dolcine, L., French, M., & Hubbard, M. C. (2000). A Comparison of Nonlinear Regression and Neural Network Models for Ground-Level Ozone Forecasting. Journal of the Air & Waste Management Association, 50(11), 1999–2009. doi: 10.1080/10473289.2000.10464228 Elattar, E. E., Goulermas, J., & Wu, Q. H. (2010). Electric Load Forecasting Based on Locally Weighted Support Vector Regression. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 40(4), 438–447. doi: 10.1109/tsmcc.2010.2040176 Fann, N., Lamson, A. D., Anenberg, S. C., Wesson, K., Risley, D., & Hubbell, B. J. (2011). Estimating the National Public Health Burden Associated with Exposure to Ambient PM2.5 and Ozone. Risk Analysis, 32(1), 81–95. doi: 10.1111/j.1539-6924.2011.01630.x Finlayson-Pitts,B.J.,& James, N.P.J.(1997). Tropospheric Air Pollution: Ozone, Airborne Toxics, Polycyclic Aromatic Hydrocarbons, and Particles. Science 16 May 1997:Vol. 276, Issue 5315, 1045-1051.doi: 10.1126. Gong,J.P., Hu,Y.M., Liu,M., Bu,R.C.,Chang,Y., Li,C.L., &Wu,W.(2015). Characterization of Air Pollution Index and Its Affecting Factors in Industrial Urban Areas in Northeastern China. Polish Journal of Environmental Studies Vol. 24, No. 4 (2015), 1579-1592.doi:10.15244/pjoes/37757 Guo, G., Fu, Y., Dyer, C., & Huang, T. (2008). Image-Based Human Age Estimation by Manifold Learning and Locally Adjusted Robust Regression. IEEE Transactions on Image Processing, 17(7), 1178–1188. doi: 10.1109/tip.2008.924280 Huang, F., Li, X., Wang, C., Xu, Q., Wang, W., Luo, Y., … Guo, X. (2015). PM2.5 Spatiotemporal Variations and the Relationship with Meteorological Factors during 2013-2014 in Beijing, China. Plos One, 10(11). doi: 10.1371/journal.pone.0141642 Hung,L.J., Tsai,S.S., Chen,P.S., Yang,Y.H., Liou,S.H., Wu,T.N., & Yang,C.Y.(2012). Traffic Air Pollution and Risk of Death from Breast Cancer in Taiwan: Fine Particulate Matter (PM2.5) as a Proxy Marker. Aerosol and Air Quality Research, 12: 275–282, 2012 .doi: 10.4209/aaqr.2011.09.0155 Jacob, Daniel J., & Darrel A. Winner. (2009). Effect of climate change on air quality. Atmospheric Environment 43(1): 51-63. doi: 10.1016/j.atmosenv.2008.09.051 Jerrett, M., Burnett, R. T., Pope, C. A., Ito, K., Thurston, G., Krewski, D., Shi,Y., Calle,E.,&Thun, M. (2009). Long-Term Ozone Exposure and Mortality. New England Journal of Medicine, 360(11), 1085–1095. doi: 10.1056/nejmoa0803894 Ji, X., Yao, Y., & Long, X. (2018). What causes PM2.5 pollution? Cross-economy empirical analysis from socioeconomic perspective. Energy Policy, 119, 458–472. doi: 10.1016/j.enpol.2018.04.040 Kim, Y. P., & Lee, G. (2018). Trend of Air Quality in Seoul: Policy and Science. Aerosol and Air Quality Research, 18(9), 2141–2156. doi: 10.4209/aaqr.2018.03.0081 Kuklinska, K., Wolska, L., & Namiesnik, J. (2015). Air quality policy in the U.S. and the EU – a review. Atmospheric Pollution Research, 6(1), 129–137. doi: 10.5094/apr.2015.015 Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D., & Pozzer, A. (2015). The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature, 525(7569), 367–371. doi: 10.1038/nature15371 Li, X., Feng, Y. J., & Liang, H. Y. (2017). The Impact of Meteorological Factors on PM2.5 Variations in Hong Kong. IOP Conference Series: Earth and Environmental Science, 78, 012003. doi: 10.1088/1755-1315/78/1/012003 Lin, G., Fu, J., Jiang, D., Hu, W., Dong, D., Huang, Y., & Zhao, M. (2013). Spatio-Temporal Variation of PM2.5 Concentrations and Their Relationship with Geographic and Socioeconomic Factors in China. International Journal of Environmental Research and Public Health, 11(1), 173–186. doi: 10.3390/ijerph110100173 Lin, Y., Zou, J., Yang, W., & Li, C. Q. (2018). A Review of Recent Advances in Research on PM2.5 in China. International journal of environmental research and public health, 15(3), 438. doi:10.3390/ijerph15030438 Lu, C.-J., Lee, T.-S., & Chiu, C.-C. (2009). Financial time series forecasting using independent component analysis and support vector regression. Decision Support Systems, 47(2), 115–125. doi: 10.1016/j.dss.2009.02.001 McConnell,R., Berhane,K., Gilliland,F., London, S., Islam,T., Gauderman,W., Avol,E., Margolis,H.,& Peters,J.(2002). Asthma in exercising children exposed to ozone: a cohort study. Lancet. 359. 386-391. doi: 10.1016/S0140-6736(02)07597-9. McKendry,I.G.(2002). Evaluation of Artificial Neural Networks for Fine Particulate Pollution (PM10 and PM2.5) Forecasting. Journal of the Air & Waste Management Association, 52:9, 1096-1101.doi: 10.1080/10473289.2002.10470836. Nieto, P. G., Combarro, E., Díaz, J. D. C., & Montañés, E. (2013). A SVM-based regression model to study the air quality at local scale in Oviedo urban area (Northern Spain): A case study. Applied Mathematics and Computation, 219(17), 8923–8937. doi: 10.1016/j.amc.2013.03.018 Nieto, P. G., Combarro, E., Díaz, J. D. C., & Montañés, E. (2013). A SVM-based regression model to study the air quality at local scale in Oviedo urban area (Northern Spain): A case study. Applied Mathematics and Computation, 219(17), 8923–8937. doi: 10.1016/j.amc.2013.03.018 Patton, M. and Cocharn, M. (2002) .A Guide to Using Qualitative Research Methodology. Médecins Sans Frontières, Paris. https://evaluation.msf.org/sites/evaluation/files/a_guide_to_using_qualitative_research_methodology.pdf Shaban, K. B., Kadri, A., & Rezk, E. (2016). Urban Air Pollution Monitoring System With Forecasting Models. IEEE Sensors Journal, 16(8), 2598–2606. doi: 10.1109/jsen.2016.2514378 Suganthi, L., & Samuel, A. A. (2012). Energy models for demand forecasting—A review. Renewable and Sustainable Energy Reviews, 16(2), 1223–1240. doi: 10.1016/j.rser.2011.08.014 Tsai,S.S.,Chang ,C.C.,Liou,S.H., & Yang,C.Y.(2014). The Effects of Fine Particulate Air Pollution on Daily Mortality: A Case-Crossover Study in a Subtropical City, Taipei, Taiwan. International Journal of Environmental Research and Public Health 2014, 11, 5081-5093.doi:10.3390/ijerph110505081. United Nations Environment Programme(2015). United States of America Air Quality Catalogue. United States Environmental Protection Agency. Reducing Emissions of Hazardous Air Pollutants. V Lu,H.Y., Wu,Y.L., Mutuku,J.K., Chang,K.H.(2019). Various Sources of PM2.5 and their Impact on the Air Quality in Tainan City, Taiwan. Aerosol and Air Quality Research, 19: 601–619, 2019. doi: 10.4209/aaqr.2019.01.0024 Vinagre, E., Pinto, T., Ramos, S., Vale, Z., & Corchado, J. M. (2016). Electrical Energy Consumption Forecast Using Support Vector Machines. 2016 27th International Workshop on Database and Expert Systems Applications (DEXA). doi: 10.1109/dexa.2016.046 Vingarzan, R. (2004). A review of surface ozone background levels and trends. Atmospheric Environment, 38(21), 3431–3442. doi: 10.1016/j.atmosenv.2004.03.030 Wang, J., & Ogawa, S. (2015). Effects of Meteorological Conditions on PM2.5 Concentrations in Nagasaki, Japan. International Journal of Environmental Research and Public Health, 12(8), 9089–9101. doi: 10.3390/ijerph120809089 Wang, L., Zhang, F., Pilot, E., Yu, J., Nie, C., Holdaway, J., … Krafft, T. (2018). Taking Action on Air Pollution Control in the Beijing-Tianjin-Hebei (BTH) Region: Progress, Challenges and Opportunities. International Journal of Environmental Research and Public Health, 15(2), 306. doi: 10.3390/ijerph15020306 Weizhen, H., Zhengqiang, L., Yuhuan, Z., Hua, X., Ying, Z., Kaitao, L.,Donghui,L., Peng,W.,& Yan, M. (2014). Using support vector regression to predict PM10 and PM2.5. IOP Conference Series: Earth and Environmental Science, 17, 012268. doi: 10.1088/1755-1315/17/1/012268 Weizhen,H., Zhengqiang,L., Yuhuan,Z., Hua,X., Ying,Z., Kaitao ,L., Donghui,L., Peng,W.,& Yan,M.(2014). Using support vector regression to predict PM10 and PM2.5. IOP Conf. Series: Earth and Environmental Science 17 (2014) 012268 doi:10.1088/1755-1315/17/1/012268 Yang, H., Huang, K., King, I., & Lyu, M. R. (2009). Localized support vector regression for time series prediction. Neurocomputing, 72(10-12), 2659–2669. doi: 10.1016/j.neucom.2008.09.014 Yang, Y., Li, J., Zhu, G., & Yuan, Q. (2019). Spatio–Temporal Relationship and Evolvement of Socioeconomic Factors and PM2.5 in China During 1998–2016. International Journal of Environmental Research and Public Health, 16(7), 1149. doi: 10.3390/ijerph16071149 Yan-Song, X., Le, Y., & Pengwei, X. (2008). Analysis of PM10 Concentration Time Series and Climiate Factor in Hangzhou 2004. 2008 International Workshop on Education Technology and Training & 2008 International Workshop on Geoscience and Remote Sensing. doi: 10.1109/ettandgrs.2008.115 Yeh, H.-L., Hsu, S.-W., Chang, Y.-C., Chan, T.-C., Tsou, H.-C., Chang, Y.-C., & Chiang, P.-H. (2017). Spatial Analysis of Ambient PM2.5 Exposure and Bladder Cancer Mortality in Taiwan. International Journal of Environmental Research and Public Health, 14(5), 508. doi: 10.3390/ijerph14050508 Yun, G., He, Y., Jiang, Y., Dou, P., & Dai, S. (2019). PM2.5 Spatiotemporal Evolution and Drivers in the Yangtze River Delta between 2005 and 2015. Atmosphere, 10(2), 55. doi: 10.3390/atmos10020055 Zhan, D., Kwan, M.-P., Zhang, W., Wang, S., & Yu, J. (2017). Spatiotemporal Variations and Driving Factors of Air Pollution in China. International Journal of Environmental Research and Public Health, 14(12), 1538. doi: 10.3390/ijerph14121538 Zhan, D., Kwan, M.-P., Zhang, W., Yu, X., Meng, B., & Liu, Q. (2018). The driving factors of air quality index in China. Journal of Cleaner Production, 197, 1342–1351. doi: 10.1016/j.jclepro.2018.06.108 Zhang, D., Liu, J., & Li, B. (2014). Tackling Air Pollution in China—What do We Learn from the Great Smog of 1950s in LONDON. Sustainability, 6(8), 5322–5338. doi: 10.3390/su6085322 Zhang, D., Liu, J., & Li, B. (2014). Tackling Air Pollution in China—What do We Learn from the Great Smog of 1950s in LONDON. Sustainability, 6(8), 5322–5338. doi: 10.3390/su6085322 Zhao, H., Guo, S., & Zhao, H. (2019). Quantifying the Impacts of Economic Progress, Economic Structure, Urbanization Process, and Number of Vehicles on PM2.5 Concentration: A Provincial Panel Data Model Analysis of China. International Journal of Environmental Research and Public Health, 16(16), 2926. doi: 10.3390/ijerph16162926 Zhao, H., Guo, S., & Zhao, H. (2019). Quantifying the Impacts of Economic Progress, Economic Structure, Urbanization Process, and Number of Vehicles on PM2.5 Concentration: A Provincial Panel Data Model Analysis of China. International Journal of Environmental Research and Public Health, 16(16), 2926. doi: 10.3390/ijerph16162926 Zhou, C., Chen, J., & Wang, S. (2018). Examining the effects of socioeconomic development on fine particulate matter (PM2.5) in Chinas cities using spatial regression and the geographical detector technique. Science of The Total Environment, 619-620, 436–445. doi: 10.1016/j.scitotenv.2017.11.124 中文參考文獻 台灣行政院環境保護署(107)。107年版「環境白皮書」。
|