跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/11 04:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張亦和
研究生(外文):Zhang, Yi-He
論文名稱:漲跌幅限制下具有不連續現金股利之選擇權定價
論文名稱(外文):Option pricing with discrete dividends in the price-limit markets
指導教授:郭家豪郭家豪引用關係
指導教授(外文):Guo, Jia-Hau
口試委員:王之彥郭家豪張龍福林瑞嘉
口試委員(外文):Wang, Jr-YanGuo, Jia-HauChang, Lung-FuLin, Jui-Chia
口試日期:2020-06-29
學位類別:碩士
校院名稱:國立交通大學
系所名稱:財務金融研究所
學門:商業及管理學門
學類:財務金融學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:43
中文關鍵詞:不連續現金股利提早覆約提早覆約溢酬價格限制Richardson外插法多天股價機率密度函數
外文關鍵詞:Discrete DividendEarly ExerciseEarly Exercise PremiumPrice LimitsRichardson ExtrapolationMulti-day Density Function
相關次數:
  • 被引用被引用:0
  • 點閱點閱:115
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文旨在探討在每日價格限制市場中,公司發放不連續現金股利對股票選擇權價值的數值解。我們由擴展Guo and Chang (2020)的單日股價機率密度函數至多天期的機率密度函數,並提出一個整合Haug et al. (2003) 及 Chang et al. (2016) 在每日價格限制的新效率定價架構,來考慮歐式選擇權於公司發放不連續現金股利的評價問題;此外,我們建立了一個結合了FFT的有效方法來計算漲跌幅限制下美式賣權提早履約之溢酬,並結合三點式Richardson外插法來計算美式賣權,最後我們也建構Monte Carlo模擬來驗證我們提出方法。
This study proposes a numerical solution for pricing options on stocks paying discrete dividends in markets with daily price limits. We first extend the intraday density function of Guo and Chang (2020) to a multi-day density function. Second, with the aid of the mulit-day density function, we use the framework of Haug et al.(2003) to value Euro-style equity option on stocks paying discrete dividends. Third, as for American options, we further adopt fast Fourier transform (FFT) to derive an efficient formula. We also employ the three-point Richardson extrapolation to accelerate the computation. Finally, the accuracy of our proposed method is verified by a Monte Carlo simulation.
摘要... i
Abstract... ii
Table of Contents... iii
List of Tables... iv
List of Figures... v
1. Introduction... p.1
2. Literature Review... p.2
3. Model and Methodology... p.5
3.1 Framework of Haug et al.(2003)... p.5
3.2 Intraday characteristic function... p.11
3.3 Pricing option by fast Fourier transform(FFT)...p.14
3.4 Multi-day density function... p.15
3.5 Early exercise premium... p.15
4. Numerical Results and Findings... p.17
4.1 Numerical Results... p.17
4.2 Findings... p.20
5. Conclusion... p.21
References... p.23
Arciniega, A., and E. Allen (2004), “Extrapolation of Difference Methods in Option Valuation,” Applied Mathematics and Computation, 153, 165-186.
Ban, J., Choi, H. I., and H. Ku (2000), “Valuation of European Options in the Market with Daily Price Limit,” Applied Mathematical Finance, 7, 61-74.
Barndorff-Nielsen, O. E. and N. Shephard (2001), “Non-Gaussian Ornstein-Uhlenbeck-based Models and Some of Their Uses in Financial Economics,” Journal of the Royal Statistical Society, Series B, 63, 167-241.
Barone-Adesi, G. and R. Whaley (1987), “Efficient Analytic Approximation of American Option Values,” Journal of Finance, 42, 301-320.
Bates, D. (1991), “The Crash of `87: Was It Expected? The Evidence from Options Markets,” Journal of Finance, 46, 69-107.
Beneder, Reimer and Ton Vorst. (2001), “Options on Dividends Paying Stocks,” in “Proceedings of the International Conference on Mathematical Finance”, Shanghai.
Black, F. (1975), “Fact and Fantasy In the Use of Options,” Financial Analysts Journal, 36-72
Black, F. and M. Scholes. (1973), “The Pricing of Options and Corporate Liabilities,” Journal of Political and Economy, 81, 637-654.
Bos, Remco and Stephen Vandermark. (2002), “Finesssing Fixed Dividends,” Risk, 15(9), 157–158.
Bos, Remco, Alexander Gairat, and Anna Shepeleva (2003), “Dealing with Discrete Dividends,” Risk, 16 (1), 109-112.
Boyle, P. P., and Y. S. Tian (1999), “Pricing Lookback and Barrier Options under the CEV Model,” Journal of Financial and Quantitative Analysis, 34, 241-264.
Brav, A., J. Graham, C. Harvey, R. Michaely. (2005) “Payout policy in the 21st century,” Journal of Financial Economics, 77, 483-527.
Breen, R. (1991), “The Accelerated Binomial Option Pricing Model,” Journal of Financial and Quantitative Analysis, 26, 153-164.
Broadie, M., and J. Detemple. (1996), “American Option Valuation: New Bounds, Approximations, and a Comparison of Existing Methods,” Review of Financial Studies, 9, 1211-1250.
Bunch, D. S., and H. Johnson (1992), “A Simple and Numerically Efficient Valuation Method for American Puts Using a Modified Geske-Johnson approach,” Journal of Finance, 47, 809-816.
Carr, P. (1998), “Randomization and the American Put,” Review of Financial Studies, 11, 597-626.
Carr, P. P. and D. B. Madan. (1999), “Option valuation using the fast Fourier transform,” Journal of Computational Finance, 2(4), 61-73.
Carr, P., and J. Crosby (2010), “A Class of Lévy Process Models with Almost Exact Calibration of Both Barrier and Vanilla FX Options,” Quantitative Finance, 10, 1115-1136.
Carr, P., Ellis, K., and V. Gupta, 1998, “Static Hedging of Exotic Options,” Journal of Finance, 53(3), 1165-1190.
Carr, P., H, Geman, D. H. Madan, and M. Yor (2001), “Stochastic Volatility for Lévy Process,” Prépublications du Laboratoire de Probabilités et Modèles Aléatoires, 645, Universités de Paris 6 & Paris 7, Paris.
Carr, P., R. Jarrow, and R. Myneni (1992), “Alternative Characterizations of American put options,” Mathematical Finance, 2, 87-106.
Chang, C. C., Chung, S. L., and R. C. Stapleton (2007), “Richardson Extrapolation Techniques for the Pricing of American-Style Options,” Journal of Futures Markets, 27, 791-817.
Chang, G., J. Kang, H.-S. Kim, and I. J. Kim (2007), “An Efficient Approximation Method for American Exotic Options,” Journal of Futures Markets, 27(1), 29-59.
Chang, L. F., Guo, J. H., and M. W. Hung (2016), “A Generalization of the Recursive Integration Method for the Analytic Valuation of American Options,” Journal of Futures Markets, 36(9), 887-901.
Chiarella, C., G. H. Meyer, and B. Kang (2010), “Pricing American Options under Stochastic Volatility,” Computing in Economics and Finance, 77, Society for Computational Economics.
Chriss, Neil A. (1997), Black-Scholes and Beyond: Option Pricing Models, New York, New York: McGraw-Hill.
Chung, S. L., and M. B. Shackleton (2007), “Generalized Geske-Johnson Interpolation of Option Prices,” Journal of Business Finance and Accounting, 34, 976-1001.
Chung, S. L., Shih, P. T., and W. C. Tsai (2013), “Static Hedging and Pricing American Knock-In Put Options,” Journal of Banking & Finance, 37, 191-205.
Chung, S.-L., P.-T. Shin, and W. C. Tsai (2010), “A Modified Static Hedging Method for Continuous Barrier Options,” Journal of Futures Markets, 30(12), 1150-1166.
Dai, M., and Y. K. Kwok (2004), “Knock-In American Options,” Journal of Futures Markets, 24, 179-192.
Dai, T.-S. and Chiu, C.-Y. (2014), “Pricing barrier stock options with discrete dividends by approximating analytical formulae,” Quant. Finance, 14(8),1367-1382
Derman, E., D. Ergener, and I. Kani. (1995), “Static Options Replication,” Journal of Derivatives, 2(4), 78-95.
Derman, E., D. Ergener, and I. Kani.(1995), “Static Options Replication,” Journal of Derivatives, 2(4), 78-95.
Fazio, R. (2014), “Perpetual American Put Option: An Error Estimator for a Non-Standard Finite Difference Scheme,” working paper.
Fink, J. (2003), “An Examination of the Effectiveness of Static Hedging in the Presence of Stochastic Volatility,” Journal of Futures Markets, 23(9), 859-890.
Frishling, Volf. (2002), “A Discrete Question,” Risk, 15 (1).
Gao, B., J. Huang, and M. Subrahmanyam. (2000), “The Valuation of American Barrier Options Using the Decomposition Technique,” Journal of Economic Dynamics & Control, 24, 1783-1827.
Gaudenzi, M., and F. Pressacco. (2003), “An Efficient Binomial Method for Pricing American Options,” Decisions in Economics and Finance, 26, 1-17.
Geske, R. (1978), "The Pricing of Options with Stochastic Dividend Yield." The Journal of Finance, 33, 617-625.
Geske, R. (1979), “The valuation of compound options,” Journal of Financial Economics, 7, 63-81.
Geske, R. (1979), ”Analytical Valuation Formula for Unprotected American Call Options on Stocks with Known Dividends," Journal of Financial Economies, 7, 375-380.
Geske, R., and H. Johnson (1984), “The American Put Option Valued Analytically,” Journal of Finance, 39, 1511-1524.
Geske, R., and K. Shastri. (1982), "Valuation by Approximation," Unpublished working paper, University of California, Los Angeles
Guo, J., and L. Chang (2020), “A Generalization of Option Pricing to Price-Limit Markets,” Review of Derivatives Research, 23, 145-161.
Guo, J.-H., M.-W. Hung, and L.-C. So (2009), “A Generalization of the Barone-Adesi and Whaley Approach for the Analytic Approximation of American Options,” Journal of Futures Markets, 29(5), 478-493.
Haug, E.G., J. Haug and A. Lewis (2003), “Back to basics a new approach to the discrete dividend problem,” Wilmott, 9, 37-47.
Haug, E.S. and Haug, J. (1998),“A New Look at Pricing Options with Time Varying Volatility,” Unpublished working paper.
Heston, S. (1993), “A Closed-form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options,” Review of Financial Studies, 6, 327-343.
Heston, S., and G. Zhou. (2000), “On the Rate of Convergence of Discrete-Time Contingent Claims,” Mathematical Finance, 10-1, 53-75.
Ho, T. S., Stapleton, R. C., and M. G. Subrahmanyam (1997), “The Valuation of American Options with Stochastic Interest Rates: A Generalization of the Geske-Johnson Technique,” Journal of Finance, 57, 827-839.
Hout, K. J. and S. Foulon. (2006), “ADI Finite Difference Schemes for option Pricing in the Heston Model with Correlation,” International Journal of Numerical Analysis and Modeling, 7, No. 2.
Huang, J. Z., Subrahmanyam, M. G., and G. G. Yu. (1996), “Pricing and Hedging American Options: A Recursive Integration Method,” Review of Financial Studies, 9, 277-300.
Huang, J., M. Subrahmanyam, and G. Yu. (1996), “Pricing and Hedging American Options: A Recursive Integration Method,” Review of Financial Studies, 9, 277-284.
Hull, John. (2000), Options, Futures, and Other Derivatives, fourth ed., Englewood Cliffs, NewJersey: Prentice-Hall.
Ibáñez, A. (2003), “Robust Pricing of the American Put Option: A Note on Richardson Extrapolation and the Early Exercise Premium,” Management Science, 49(9), 1210-1228.
Jamshidian, F. (1992), “An Analysis of American Options,” Review of Futures Markets, 11(1), 72-80.
Ju, N. (1998), “Pricing an American Option by Approximating its Early exercise boundary as a Multipiece Exponential Function,” Review of Financial Studies, 11, 627-646.
Ju, N. (1998), “Pricing An American Option by Approximating its early exercise boundary as a piecewise exponential function,” Review of Financial Studies, 11, 627-646.
Kim, I. J. (1990), “The Analytic Valuation of American Options,” Review of Financial Studies, 3, 547-572.
Kim, I.J. (1990), “The Analytical Valuation of American Options,” Review of Financial Studies,3, 547-572.
Lipton, A. (2001), “Mathematical Methods for Foreign Exchange,” World Scientific, Singapore.
MacMillan, L. (1987), “Analytic Approximation for the American Put Option,” Futures and Options Research, 1A, 119-139.
Merton, R. C. (1973), “Theory of Rational Option Pricing,” Bell Journal of Economics and Management Science, 4, 141-183.
Nielsen, B. F., Skavhaug, O., and A. Tveito (2002), “Penalty and Front-Fixing Methods for the Numerical Solution of American Option Problems,” Journal of Computational Finance, 5, 69-97.
Omberg, E. (1987), “A Note on the Convergence of the Binomial Pricing and Compound Option Models,” Journal of Finance, 42, 463-469.
Ritchken, P. (1995), “On Pricing Barrier Options,” Journal of Derivatives, 3, 19-28.
Robert C. Merton. (1973), “Theory of Rational Option Pricing,” The Bell Journal of Economics and Management Science, 4, 141-183
Roll, R. (1977), "An Analytic Valuation Formula for Unprotected American Call Options on Stocks with Known Dividends," Journal of Financial Economies, 5, 251-258.
Rubinstein, M., &E. Reiner (1991), “Breaking Down the Barriers,” Risk, 4, 28-35.
Schoutens, W., E. Simons, and J. Tistaert (2005), “Model Risk for Exotic and Moment Derivatives,” In: A. Kyprianou, W. Schoutens, & P. Wilmott (Eds.) Exotic Options and Advanced Lévy Models. New York: Wiley.
Schroder, Mark. (1988), “Adapting the Binomial Model to Value Options on Assets with Fixedcash Payouts,” Financial Analysts Journal, 44 (6), 54–62.
Thomsen, H. (1998), “Barrier Option-Evaluation and Hedging,” Unpublished doctoral dissertation, University of Aarhus, Aarhus, Denmark.
Tian, Y. S. (1999), “A Flexible Binomial Option Pricing Model,” Journal of Futures Markets, 19-7, 817-843.
Tompkin, R. (2002), “Static versus Dynamic Hedging of Exotic Options: An Evaluation of Hedge Performance via Simulation,” Journal of Risk Finance, 3, 6-34.
Tsai, W. C. (2014), “Improved Method for Static Replication under the CEV Model,” Finance Research Letters, 11, 194-202.
Whaley, R. W. (1981), "On the Valuation of American Call Options on Stocks with Known Dividends," Journal of Financial Economies, 9, 207-211.
Wilmott, Paul, Jeff Dewynne, and Sam Howison. (1993), Option Pricing: Mathematical Models and Computation, Oxford: Oxford Financial Press.
電子全文 電子全文(網際網路公開日期:20250727)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top